国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

ARTP生物育種技術(shù)與裝備研發(fā)及其產(chǎn)業(yè)化發(fā)展

2017-02-24 09:59吳亦楠邢新會(huì)張翀李和平王立言
合成生物學(xué) 2017年1期
關(guān)鍵詞:等離子體生物活性

吳亦楠,邢新會(huì),,張翀,,李和平,王立言

ARTP生物育種技術(shù)與裝備研發(fā)及其產(chǎn)業(yè)化發(fā)展

吳亦楠1,邢新會(huì)1,2,張翀1,2,李和平2,3,王立言2

邢新會(huì),清華大學(xué)教授,博士生導(dǎo)師,“百人計(jì)劃”入選者。主持“國(guó)家自然科學(xué)基金重大儀器專項(xiàng)”項(xiàng)目、中以國(guó)際合作項(xiàng)目,“十二五”科技支撐計(jì)劃項(xiàng)目,日本JST CREST等項(xiàng)目;發(fā)表SCI論文150余篇,合作著書8本,譯著教材2部,申請(qǐng)發(fā)明專利100余項(xiàng),獲得發(fā)明專利60余項(xiàng),其中1項(xiàng)國(guó)際專利。擔(dān)任《Journal of Bioscience and Bioengineering》主編,《Biochemical Engineering Journal》副主編,《食品科學(xué)》、《生物產(chǎn)業(yè)技術(shù)》及5個(gè)英文學(xué)術(shù)期刊編委。獲得第17屆全國(guó)發(fā)明展覽會(huì)獎(jiǎng)銀獎(jiǎng)(2007年),北京市科學(xué)技術(shù)獎(jiǎng)三等獎(jiǎng)(2008年),中國(guó)石油和化學(xué)工業(yè)協(xié)會(huì)技術(shù)發(fā)明獎(jiǎng)二等獎(jiǎng)(2009年),中國(guó)僑界貢獻(xiàn)獎(jiǎng)(創(chuàng)新人才)(2010年),高等學(xué)??茖W(xué)研究?jī)?yōu)秀成果獎(jiǎng)(科學(xué)技術(shù))科技進(jìn)步獎(jiǎng)二等獎(jiǎng)(2015年)。E-mail:xhxing@mail.tsinghua.edu.cn

1.工業(yè)生物催化教育部重點(diǎn)實(shí)驗(yàn)室,清華大學(xué)化工系生物化工研究所,清華大學(xué)合成與系統(tǒng)生物學(xué)研究中心,北京 100084

2.清華大學(xué)無(wú)錫應(yīng)用技術(shù)研究院生物育種中心,無(wú)錫 214072

3.清華大學(xué)工程物理系,北京 100084

安全高效的微生物誘變和高通量篩選技術(shù)與裝備是生物技術(shù)科研及產(chǎn)業(yè)發(fā)展的核心,具有重要的研究?jī)r(jià)值和廣泛的應(yīng)用前景。筆者研究團(tuán)隊(duì)成功將基于大氣壓射頻輝光放電的常壓室溫等離子體(ARTP)應(yīng)用于生物誘變育種領(lǐng)域,對(duì)其與生物大分子、細(xì)胞之間的作用機(jī)理進(jìn)行了系統(tǒng)研究,并研發(fā)了具有自主知識(shí)產(chǎn)權(quán)的ARTP生物育種儀。因操作安全簡(jiǎn)便、突變快、突變率高、獲得的突變體性狀穩(wěn)定等特點(diǎn),ARTP育種儀已成功應(yīng)用于百種以上微生物的誘變育種,在行業(yè)引起了廣泛關(guān)注,并實(shí)現(xiàn)了的國(guó)際出口。綜述了ARTP生物育種技術(shù)的原理、裝備研發(fā)現(xiàn)狀及其近年來(lái)的研究和應(yīng)用進(jìn)展,并對(duì)其今后的發(fā)展趨勢(shì)進(jìn)行了展望。

ARTP;篩選;生物育種;誘變

自19世紀(jì)30年代以來(lái), 生物發(fā)酵技術(shù)以其節(jié)能高效、綠色無(wú)害的特點(diǎn)被廣泛用于生產(chǎn)各類化學(xué)品,服務(wù)于食品、醫(yī)藥、材料、環(huán)保、能源等領(lǐng)域。以化石資源為基礎(chǔ)的現(xiàn)代工業(yè)面臨著日益嚴(yán)重的資源短缺、環(huán)境污染、氣候變化和能源危機(jī),因此人類對(duì)工業(yè)生物技術(shù)及其綠色可持續(xù)發(fā)展工業(yè)給予極大的期待,生物經(jīng)濟(jì)呼之欲出[1]??焖龠x育具有高產(chǎn)、高魯棒性、高穩(wěn)定性、高安全性表型的工業(yè)微生物成為生物經(jīng)濟(jì)發(fā)展的關(guān)鍵技術(shù)。

微生物育種技術(shù)是生物經(jīng)濟(jì)的核心。近年來(lái),隨著分子生物學(xué)、代謝工程學(xué)、系統(tǒng)生物學(xué)及合成生物學(xué)等學(xué)科的快速發(fā)展,菌株的理性和半理性設(shè)計(jì)得到了長(zhǎng)足的進(jìn)步。分子育種技術(shù)具有一定的定向性,且因其引入了外源基因和合成途徑,能極大地拓寬微生物生產(chǎn)的產(chǎn)品種類和效率,但由于細(xì)胞的復(fù)雜性,即使采用理性設(shè)計(jì),仍無(wú)法完全準(zhǔn)確預(yù)測(cè)結(jié)果,因此需要采用設(shè)計(jì)-構(gòu)建-測(cè)試-學(xué)習(xí)循環(huán)(DBTL)的模式,但理性設(shè)計(jì)存在技術(shù)難度高、周期長(zhǎng),適用微生物種類有限、生物安全性等問題,在實(shí)際應(yīng)用時(shí)仍面臨著很多挑戰(zhàn)。相比之下,具有悠久歷史的誘變育種技術(shù)因其操作簡(jiǎn)單、成本相對(duì)較低、產(chǎn)生突變?nèi)菀?、適用范圍廣、屬于非轉(zhuǎn)基因操作等,仍是微生物育種研究和產(chǎn)業(yè)應(yīng)用的平臺(tái)技術(shù)。因此,發(fā)展安全高效的新型生物誘變技術(shù)具有重要的研究?jī)r(jià)值。

誘變育種根據(jù)其誘變?cè)吹牟煌梢苑譃榛瘜W(xué)誘變[2-3]、物理誘變[4-7]和生物誘變[8-9]。近年來(lái),筆者研究團(tuán)隊(duì)基于大氣壓射頻輝光放電原理,自主研發(fā)的常壓室溫等離子體(ARTP)誘變技術(shù)[10]及裝備作為繼離子束注入[6]和大氣壓介質(zhì)阻擋放電等離子體(APDBD)體誘變技術(shù)[11-14]之后的又一安全高效誘變新方法。因不需要真空系統(tǒng),設(shè)備結(jié)構(gòu)簡(jiǎn)單、成本低;放電均勻、穩(wěn)定、可控,操作簡(jiǎn)便,安全性高;等離子體產(chǎn)生條件溫和(常壓、室溫范圍),富含大量活性粒子,突變譜廣,突變率高等,ARTP在工業(yè)微生物育種中得到了廣泛應(yīng)用并取得良好效果,引起了國(guó)內(nèi)外科研機(jī)構(gòu)和企業(yè)越來(lái)越多的關(guān)注。 本文重點(diǎn)介紹ARTP技術(shù)和裝備的研究及應(yīng)用發(fā)展。

圖1 常見的APNED發(fā)生器[17]

1 ARTP生物育種技術(shù)原理

ARTP是常壓非平衡放電等離子體(APNED)[15-16]的一種。APNED由帶電粒子(電子、陰離子、陽(yáng)離子)、自由基、中性粒子(激發(fā)的原子或分子)、光子(可見光和紫外線)和電磁場(chǎng)組成,其各組分比例因等離子體產(chǎn)生方式、放電電壓、氣源種類不同而略有差異。常見的APNED發(fā)生器如圖1所示[17]。APNED因去除了復(fù)雜、昂貴的真空系統(tǒng)且溫度較低,其熱效應(yīng)影響可以忽略而越來(lái)越受關(guān)注,被廣泛用于細(xì)菌、真菌、病毒等病原體的滅活、傷口及醫(yī)療設(shè)備的消毒、細(xì)胞轉(zhuǎn)染及癌癥細(xì)胞的誘導(dǎo)凋亡等研究[18-21]。

大量研究表明,APNED與DNA、蛋白質(zhì)、微生物細(xì)胞發(fā)生相互作用[17],從而產(chǎn)生細(xì)胞的致死和亞致死效應(yīng)。APNED中存在的大量活性氧化物和活性氮化物是引起DNA斷裂、真核細(xì)胞DDR響應(yīng)、原核細(xì)胞SOS響應(yīng)的主要因素[22-24]。APNED中常見的活性物質(zhì)如表1[25]所示,活性物質(zhì)與DNA的作用位點(diǎn)、誘導(dǎo)DNA斷裂的作用過程如圖2[26]和圖3[17]所示。當(dāng)N-糖苷鍵受到攻擊或脫氧核糖發(fā)生脫氫反應(yīng)時(shí),DNA會(huì)由于一系列變化產(chǎn)生單鏈斷裂;而當(dāng)不同鏈上的斷鏈位置相近時(shí),能夠產(chǎn)生雙鏈斷裂。裸露的DNA雙鏈、質(zhì)粒經(jīng)由APNED處理后,在短時(shí)間內(nèi)就會(huì)出現(xiàn)雙鏈斷裂和完全裂解的現(xiàn)象。APNED照射活細(xì)胞首先會(huì)改變細(xì)胞膜的通透性,但具有不同膜結(jié)構(gòu)的細(xì)胞對(duì)APNED的耐受能力不同[13]。在膜結(jié)構(gòu)被破壞之后,APNED內(nèi)的活性粒子或其與水分子及胞內(nèi)脂質(zhì)、蛋白質(zhì)等生物分子進(jìn)一步反應(yīng)生成的有機(jī)氧化物會(huì)引發(fā)DNA易錯(cuò)性修復(fù)機(jī)制[27]。當(dāng)APNED照射強(qiáng)度過高時(shí),細(xì)胞會(huì)死亡;而當(dāng)強(qiáng)度適中時(shí),細(xì)胞則會(huì)產(chǎn)生基因突變,胞內(nèi)基因轉(zhuǎn)錄水平、翻譯水平等都將隨之變化[28-33]。王立言和張雪等[10,34]利用黃嘌呤氧化酶法和FDG與PI熒光染料從細(xì)胞水平上解析了上述作用機(jī)制。者研究團(tuán)隊(duì)首次用于微生物育種。并且研究團(tuán)隊(duì)揭示了ARTP與生物作用的機(jī)理,有良好的應(yīng)用成效[35]。

表1 APNED中常見的活性物質(zhì)

圖2 等離子體活性物質(zhì)與DNA的可能作用位點(diǎn)[26]

圖3 活性物質(zhì)引起的DNA斷裂[17]

2 ARTP生物育種設(shè)備研發(fā)及誘變特點(diǎn)

AR TP生物育種技術(shù)的實(shí)驗(yàn)室研究平臺(tái)如圖4所示[10]。當(dāng)工作氣體經(jīng)過兩個(gè)通電電極之間時(shí),具有高能量的電子與周圍的中性粒子通過彈性碰撞和非彈性碰撞發(fā)生能量交換,使工作氣體分子分解、激發(fā)或電離,隨著電壓的升高,氣體被擊穿產(chǎn)生放電,形成具有一定電離度的等離子體;在氣流作用下產(chǎn)生的等離子體以一定的速度噴出并與空氣中的組分反應(yīng),形成含有氮、氧、羥基等其他活性粒子的等離子體射流。

筆者研究團(tuán)隊(duì)以He為工作氣體對(duì)該發(fā)生器的物理特性進(jìn)行了系統(tǒng)深入的研究,代表性結(jié)果圖5所示。

在大氣壓條件下,ARTP溫度可控制在室溫范圍,適用于各類生物處理[10];在適宜的電極間距內(nèi),等離子體發(fā)生器能以α和γ模式實(shí)現(xiàn)放電[37]。后者可以用于誘發(fā)純空氣或氧氣的持續(xù)性放電,起到降低氣耗成本的目的[38],放電均勻、穩(wěn)定[36]。等離子體含有豐富的活性粒子,紫外線強(qiáng)度和臭氧含量極低,具有高效誘變細(xì)胞的潛力[22]。

由于不同的活性物質(zhì)作用于DNA的位點(diǎn)不同,造成的氧化損傷、基因突變的偏好性也會(huì)有所差異,因此,包含大量不同活性粒子的APNED基因突變范圍廣、突變率高,相比于傳統(tǒng)的物理誘變方法能夠產(chǎn)生更多的基因多樣性和突變譜。ARTP作為APNED中放電最均勻、穩(wěn)定、安全、可控和更溫和的一類低溫等離子體,被筆

圖4 ARTP生物育種設(shè)備的實(shí)驗(yàn)室研發(fā)平臺(tái)[10]

圖5 ARTP基本物理性質(zhì)[10,22,36]

筆者研究團(tuán)隊(duì)在揭示ARTP對(duì)胞外DNA損傷作用[22]的基礎(chǔ)上,對(duì)生產(chǎn)阿維菌素的阿維鏈霉菌進(jìn)行了誘變育種,結(jié)果顯示誘變后的菌株菌落形態(tài)發(fā)生了明顯變化,根據(jù)菌落形態(tài)對(duì)突變后的菌株進(jìn)行篩選,獲得了一株阿維菌素總產(chǎn)量提高18%、抗蟲活性最高的組分B1a產(chǎn)量提高43%的高產(chǎn)菌株,且具有良好的遺傳穩(wěn)定性[35]。利用umu test原理和流式細(xì)胞儀,建立了各種誘變?cè)磳?duì)活細(xì)胞DNA損傷強(qiáng)度定量分析方法,結(jié)果顯示ARTP對(duì)活細(xì)胞DNA的損傷強(qiáng)度遠(yuǎn)高于其他方法[10,34]。此外,筆者團(tuán)隊(duì)還通過f uctuation test方法比較了不同強(qiáng)度ARTP、UV、化學(xué)誘變的DNA損傷強(qiáng)度與突變率的關(guān)系[34],結(jié)果如圖6所示?;罴?xì)胞內(nèi)DNA損傷強(qiáng)度與誘變率具有一定的正相關(guān)性,ARTP誘變的突變率高于其他誘變?cè)?,是一種更為高效的誘變?cè)础?/p>

為了推進(jìn)ARTP生物育種技術(shù)的廣泛應(yīng)用,實(shí)現(xiàn)技術(shù)的裝備化及其產(chǎn)業(yè)化是關(guān)鍵,筆者團(tuán)隊(duì)在清華大學(xué)無(wú)錫應(yīng)用技術(shù)研究院建立了生物育種研發(fā)中心,并孵化了無(wú)錫源清天木生物科技有限公司,成功研制了一系列ARTP誘變育種儀,滿足不同應(yīng)用需求,如圖7所示。該系列儀器獲得授權(quán)國(guó)家發(fā)明專利10余項(xiàng),自2012年開始應(yīng)用以來(lái)得到了學(xué)術(shù)界和工業(yè)界的廣泛關(guān)注,并已出口到新加坡和日本等國(guó)。

3 ARTP生物育種技術(shù)在微生物改造中的應(yīng)用

ARTP生物育種技術(shù)以其操作便捷性、安全性和高效性等特點(diǎn)得到了廣泛應(yīng)用,在微生物育種領(lǐng)域發(fā)揮著重要作用[39]。表2列舉了近三年來(lái)ARTP生物育種技術(shù)應(yīng)用的部分代表性案例,其他應(yīng)用案例可參考已發(fā)表的綜述論文[37,39]。

目前,ARTP生物育種技術(shù)已經(jīng)成功用于百余種微生物的性能改造,包括細(xì)菌、真菌、微藻等,涉及生產(chǎn)能力、細(xì)胞生長(zhǎng)速度及耐受性等表型的改變,服務(wù)于80余家國(guó)內(nèi)外生物技術(shù)龍頭企業(yè)和科研院所。另外,近兩年ARTP生物育種技術(shù)在植物[51]和動(dòng)物育種中的應(yīng)用也初步獲得了成功,這表明ARTP生物育種技術(shù)是具有普適性的誘變方法。以此為契機(jī),發(fā)起并聯(lián)合組建的中國(guó)生物發(fā)酵產(chǎn)業(yè)協(xié)會(huì)微生物育種分會(huì)為行業(yè)提供了平臺(tái)支撐。

圖6 ARTP與常規(guī)突變?cè)吹腄NA損傷強(qiáng)度與突變率的關(guān)系(a)及突變率比較結(jié)果(b)[34]

圖7 系列ARTP誘變育種儀

表2 ARTP生物育種技術(shù)近三年的部分代表性應(yīng)用實(shí)例

4 ARTP生物育種技術(shù)展望

綜上所述,基于ARTP固有的安全、簡(jiǎn)便、可控等物理學(xué)特點(diǎn),筆者團(tuán)隊(duì)研發(fā)的ARTP生物育種裝備具有高效構(gòu)建多樣性突變庫(kù)、實(shí)現(xiàn)全局突變、基因沉默及激活途徑等功能,是生物誘變育種的平臺(tái)工具。

針對(duì)微生物菌種選育過程復(fù)雜、操作周期長(zhǎng)的問題,除了發(fā)展快速引起基因組大范圍突變技術(shù)之外,還需要將理性設(shè)計(jì)和非理性進(jìn)化方法結(jié)合,系統(tǒng)地改造微生物細(xì)胞工廠。伴隨著測(cè)序技術(shù)和生物信息學(xué)的飛速發(fā)展,經(jīng)由ARTP誘變構(gòu)建的突變庫(kù)將為研究代謝網(wǎng)絡(luò)調(diào)控、生物信號(hào)傳導(dǎo)、酶促反應(yīng)機(jī)制、表觀遺傳、GWAS等科學(xué)問題提供新素材,成為代謝工程和合成生物學(xué)等理性設(shè)計(jì)的重要平臺(tái)工具(圖8)。

圖8 面向菌種高效設(shè)計(jì)與改造的生物育種裝備與進(jìn)化工程和合成途徑工程技術(shù)的整合研究

ARTP作為一種高效的突變工具,能在短時(shí)間內(nèi)處理生物細(xì)胞并產(chǎn)生104以上的突變體,構(gòu)建大的突變庫(kù)。如何從多樣性的大突變文庫(kù)中快速精準(zhǔn)地篩選具有理想目的性狀的菌株是另一個(gè)急需解決的關(guān)鍵問題,這也是生物育種技術(shù)發(fā)展的前沿[52]。對(duì)于目標(biāo)表型與細(xì)胞形態(tài)、顏色無(wú)關(guān)的工業(yè)微生物的篩選,高通量篩選和適應(yīng)性進(jìn)化技術(shù)成為未來(lái)發(fā)展的重要方向。自動(dòng)化設(shè)備如移液站、Colony picker等的應(yīng)用大大加快了這一研究的過程,但其通量大小和篩選效率依然有局限性,而且運(yùn)行成本高。流式細(xì)胞儀[53-54]和微液滴技術(shù)[55-58]的興起與應(yīng)用能夠很好的滿足突變庫(kù)的高通量篩選需求。兩者能夠通過生物傳感器或熒光檢測(cè)試劑將目的產(chǎn)物胞內(nèi)或胞外濃度與熒光強(qiáng)度結(jié)合,以103~104個(gè)單菌/s的通量進(jìn)行突變菌株的高效篩選。對(duì)于抗逆表型,適應(yīng)性進(jìn)化是有效的選擇手段[59]。但搖瓶傳代培養(yǎng)體系操作繁瑣,耗時(shí)耗力;恒化培養(yǎng)體系則對(duì)培養(yǎng)設(shè)備有較高的要求,而且也存在操作復(fù)雜的問題。如果微液滴技術(shù)[60]能在芯片上實(shí)現(xiàn)長(zhǎng)期的恒化培養(yǎng)及自動(dòng)化操作,開發(fā)出在芯片上自動(dòng)操作的適應(yīng)性進(jìn)化體系,將大幅度提升突變微生物的進(jìn)化通量?;诖?,本團(tuán)隊(duì)提出了將ARTP高效誘變技術(shù)與微液滴技術(shù)整合的新思路,目標(biāo)是研制出誘變-篩選一體化的高通量生物進(jìn)化儀,以實(shí)現(xiàn)微生物的定制化改造,為理論進(jìn)化生物學(xué)和工業(yè)微生物育種提供系統(tǒng)、高效的平臺(tái),于2016年獲得了國(guó)家自然科學(xué)基金委國(guó)家重大科研儀器研制專項(xiàng)的支持。

[1] OECD. The Bioeconomy to 2030 - Main f ndings and conclusions[R]. Paris,OECD,2009.

[2] MIAO Z H,RAO V A,AGAMA K,et al. 4-nitroquinoline 1-oxide induces the formation of cellular topoisomerase I-DNA cleavage complexes[J]. Cancer Research,2006,66(13):6540-6545.

[3] SLAME?OVá D,GáBELOVá A,RU?EKOVá L,et al. Detection of MNNG-induced DNA lesions in mammalian cells; validation of comet assay against DNA unwinding technique,alkaline elution of DNA and chromosomal aberrations[J]. Mutation Research - DNA Repair,1997,383(3):243-252.

[4] SINHA R P,H?DER D P. UV-induced DNA damage and repair:a review[J]. Photochemical & Photobiological Sciences,2002,1(4):225-236.

[5] DE GRUIJL F R,VAN KRANEN H J,MULLENDERS L H F. UV-induced DNA damage,repair,mutations and oncogenic pathways in skin cancer[J]. Journal of Photochemistry and Photobiology B:Biology,2001,63(1-3):19-27.

[6] GU S B,LI S C,F(xiàn)ENG H Y,et al. A novel approach to microbial breeding-low-energy ion implantation[J]. Applied Microbiology and Biotechnology,2008,78(2):201-209.

[7] 胡偉,陳積紅,張珍,等. 重離子輻照檸檬酸菌株的誘變選育[J]. 輻射研究與輻射工藝學(xué)報(bào),2012,30(1):53-57.

[8] COX E C,HORNER D L. Structure and coding properties of a dominant Escherichia coli mutator gene,mutD [J]. Proceedings of theNational Academy of Sciences of the United States of America,1983,80(8):2295-2299.

[9] CHOU H H,KEASLING J D. Programming adaptive control to evolve increased metabolite production [J]. Nature Communications,2013,4(10):1-8.

[10] 王立言. 常壓室溫等離子體對(duì)微生物的作用機(jī)理及其應(yīng)用基礎(chǔ)研究[D].北京:清華大學(xué),2009. http://166.111.120.42/Thesis/Thesis/ThesisSearch/ Search_DataDetails.aspx?dbcode=ETDQH&dbid=7&sysid=213177.

[11] JéR?ME F,CHATEL G,DE OLIVEIRA VIGIER K. Depolymerization of cellulose to processable glucans by non-thermal technologies[J]. Green Chem,2016,18(14):3903-3913.

[12] HOU Y M,DONG X Y,YU H,et al. Disintegration of biomacromolecules by dielectric barrier discharge plasma in helium at atmospheric pressure[J]. IEEE Transactions on Plasma Science,2008,36(4 PART 3):1633-1637.

[13] LU H,PATIL S,KEENER K M,et al. Bacterial inactivation by high-voltage atmospheric cold plasma:Inf uence of process parameters and effects on cell leakage and DNA[J]. Journal of Applied Microbiology,2014,116(4):784-794.

[14] YU H,XIU Z L,REN C S,et al. Inactivation of yeast by dielectric barrier discharge (DBD) plasma in helium at atmospheric pressure[J]. IEEE Transactions on Plasma Science,2005,33(4):1405-1409.

[15] HAERTEL B,VON WOEDTKE T ,WELTMANN K,et al. Non-thermal atmospheric-pressure plasma possible application in wound healing[J]. Biomolecules & Therapeutics,2014,22(6):477-490.

[16] NEHRA V,KUMAR A,DWIVEDI H K. Atmospheric non-thermal plasma sources[J]. International Journal of Engineering,2008,2(1):53-68.

[17] ARJUNAN K,SHARMA V,PTASINSKA S. Effects of atmospheric pressure plasmas on isolated and cellular DNA—A Review[J]. International Journal of Molecular Sciences,2015,16(2):2971-3016.

[18] FRIDMAN G,SHERESHEVSKY A,JOST M M,et al. Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in Melanoma skin cancer cell lines[J]. Plasma Chemistry and Plasma Processing,2007,27(2):163-176.

[19] LEDUC M,GUAY D,LEASK R L,et al. Cell permeabilization using a non-thermal plasma[J]. New Journal of Physics,2009,11(11):1-12.

[20] YILDIRIM E D,AYAN H,VASILETS V N,et al. Effect of dielectric barrier discharge plasma on the attachment and proliferation of osteoblasts cultured over poly(ε-caprolactone) scaffolds[J]. Plasma Processes and Polymers,2008,5(1):58-66.

[21] MORFILL G E,SHIMIZU T,STEFFES B,et al. Nosocomial infections - A new approach towards preventive medicine using plasmas[J]. New Journal of Physics,2009,11(11).

[22] LI G,LI H P,WANG L Y,et al. Genetic effects of radio-frequency,atmospheric-pressure glow discharges with helium[J]. Applied Physics Letters,2008,92(22):2006-2009.

[23] GAUNT L F,BEGGS C B,GEORGHIOU G E. Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure:A review[J]. IEEE Transactions on Plasma Science,2006,34(4 II):1257-1269.

[24] LACKMANN J W,SCHNEIDER S,EDENGEISER E,et al. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically[J]. Journal of the Royal Society,2013,10(89):20130591.

[25] HALLIWELL B. Oxidative stress and neurodegeneration:Where are we now?[J]. Journal of Neurochemistry,2006,97(6):1634-1658.

[26] 隋澎,張翀,王立言. 開發(fā)高效菌株育種技術(shù)提升生物產(chǎn)業(yè)創(chuàng)新能力[J]. 生物產(chǎn)業(yè)技術(shù),2015,3:82-84.

[27] KALGHATGI S,KELLY C M,CERCHAR E,et al. Effects of non-thermal plasma on mammalian cells[J]. PLoS One,2011,6(1):1-11.

[28] SHACKELFORD R E,KAUFMANN W K,PAULES R S. Oxidative stress and cell cycle checkpoint function[J]. Free Radical Biology and Medicine,2000,28(9):1387-1404.

[29] BARZILAI A,YAMAMOTO K I. DNA damage responses to oxidative stress[J]. DNA Repair,2004,3(8-9):1109-1115.

[30] SIMON H U,HAJ-YEHIA A,LEVI-SCHAFFER F. Role of reactive oxygen species (ROS) in apoptosis induction[J]. Apoptosis,2000,5(5):415-418.

[31] CIRCU M L,AW T Y. Reactive oxygen species,cellular redox systems,and apoptosis[J]. Free Radical Biology and Medicine,2010,48(6):749-762.

[32] SMITH J,LADI E,MAYER-PROSCHEL M,et al. Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(18):10032-10037.

[33] DROGE W,DR?GE W. Free radicals in the physiological control of cell function[J]. Physiological Reviews,2002,82(1):47-95.

[34] ZHANG X,ZHANG C,ZHOU Q Q,et al. Quantitative evaluation of DNA damage and mutation rate by atmospheric and roomtemperature plasma (ARTP) and conventional mutagenesis[J].Applied Microbiology and Biotechnology,2015,99(13):5639-5646.

[35] WANG L Y,HUANG Z L,LI G,et al. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma[J]. Journal of Applied Microbiology,2010,108(3):851-858.

[36] WANG Z,LE P,GE N,et al. One-dimensional modeling on the asymmetric features of a radio-frequency atmospheric helium glow discharge produced using a co-axial-type plasma[J]. Plasma Chem Plasma Process,2012(32):859-874.

[37] 張雪,張曉菲,王立言,等. 常壓室溫等離子體生物誘變育種及其應(yīng)用研究進(jìn)展[J]. 化工學(xué)報(bào),2014,65(7):2676-2684.

[38] LI H P,SUN W T,WANG H B,et al. Electrical features of radio-frequency,atmospheric-pressure,bare-metallic-electrode glow discharges[J]. Plasma Chemistry and Plasma Processing,2007,27(5):529-545.

[39] ZHANG X,ZHANG X F,LI H P,et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool[J]. Applied Microbiology and Biotechnology,2014,98(12):5387-5396.

[40] TAN Y,F(xiàn)ANG M,JIN L,et al. Culture characteristics of the atmospheric and room temperature plasma-mutated Spirulina platensis mutants in CO2aeration culture system for biomass production[J]. Journal of Bioscience and Bioengineering,2015,120(4):438-443.

[41] LIU B,SUN Z,MA X,et al. Mutation Breeding of extracellular polysaccharide-producing microalga Crypthecodinium cohnii by a novel mutagenesis with atmospheric and room temperature plasma[J]. International Journal of Molecular Sciences,2015,16(4):8201-8212.

[42] ZHANG C,SHEN H,ZHANG X,et al. Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids[J]. Biotechnology Letters,2016,38(10):1-6.

[43] KONG X,HE A,ZHAO J,et al. Efficient acetone-butanol-ethanol (ABE) production by a butanol-tolerant mutant of Clostridium beijerinckii in a fermentation-pervaporation coupled process[J]. Biochemical Engineering Journal,2016,105:90-96.

[44] DONG J,GASMALLA M A A,ZHAO W,et al. Characterisation of a cold adapted esterase and mutants from a psychrotolerant Pseudomonas sp. strain[J]. Biotechnology and Applied Biochemistry,2016.

[45] ZHANG D,WANG Q,LIANG X. Breeding high producers of enduracidin from Streptomyces fungicidicus by combination of various mutation treatments[J]. Advances in Applied Biotechnology,2014:133-142.

[46] WANG L,CHEN X,WU G,et al. Improved ε-poly-l-lysine production of Streptomyces sp. FEEL-1 by atmospheric and room temperature plasma mutagenesis and streptomycin resistance screening[J]. Annals of Microbiology,2015,65(4):2009-2017.

[47] MA J F,WU M K,ZHANG C Q,et al. Coupled ARTP and ALE strategy to improve anaerobic cell growth and succinic acid production by Escherichia coli[J]. Journal of Chemical Technology and Biotechnology,2016,91(3):711-717.

[48] WANG Y,LI Q,ZHENG P,et al. Evolving the L-lysine highproducing strain of Escherichia coli using a newly developed high-throughput screening method[J]. J Ins Microbiol Biotechnol,2016,43(9):1227-1235.

[49] ZENG W,DU G,CHEN J,et al. A high-throughput screening procedure for enhancing alpha-ketoglutaric acid production in Yarrowia lipolytica by random mutagenesis[J]. Process Biochemistry,2015,50(10):1516-1522.

[50] ZHANG T C,NAKAJIMA M. Evaluation of an ethanol-tolerant acetobacter pasteurianus mutant generated by a new atmospheric and room temperature plasma (ARTP)[J]. Advances in Applied Biotechnology,2015:277-286.

[51] MEIJIE L. Effects on maize seed and pollen germination by atmospheric and room temperature plasma[J]. Molecular Plant Breeding,2016,14(5):1262-1267.

[52] DIETRICH J A,MCKEE A E,KEASLING J D. High-throughput metabolic engineering:advances in small-molecule screening and selection[J]. Annual Review of Biochemistry,2010,79:563-590.

[53] FANG M,WANG T,ZHANG C,et al. Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli[J]. Metabolic Engineering,2016,33:41-51.

[54] BINDER S,SCHENDZIELORZ G,ST?BLER N,et al. A highthroughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level[J]. Genome Biology,2012,13(5):R40.

[55] MAZUTIS L,GILBERT J,UNG W L,et al. Single-cell analysis and sorting using droplet-based microf uidicsz[J]. Nature Protocols,2013,8(5):870-891.

[56] BARET J C,MILLER O J,TALY V,et al. Fluorescence-activated droplet sorting (FADS):eff cient microf uidic cell sorting based on enzymatic activity[J]. Lab Chip,2009,9(13):1850-1858.

[57] WANG B L,GHADERI A,ZHOU H,et al. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption[J]. Nature Biotechnology,2014,5:1-26.

[58] BROUZES E,MEDKOVA M,SAVENELLI N,et al. Droplet microf uidic technology for single-cell high-throughput screening[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(34):14195-14200.

[59] PORTNOY V A,BEZDAN D,ZENGLER K. Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering[J]. Current Opinion in Biotechnology,2011,22(4):590-594.

[60] JAKIELA S,KAMINSKI T S,CYBULSKI O,et al. Bacterial growth and adaptation in microdroplet chemostats[J]. Angewandte Chemie(International ed. in English),2013,52(34):8908-891 1.

Recent progress on atmospheric and room temperature plasma(ARTP) biobreeding technology, instrumentation and its industrialization

WU Yinan1,XING Xinhui1,2,ZHANG Chong1,2,LI Heping2,3,WANG Liyan2

1. MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
2. Biobreeding Research Center, Wuxi Research Institute of Applied Technologies, Tsinghua University, Wuxi 214072, China
3. Department of Engineering Physics, Tsinghua University, Beijing 100084, China

As the core of biotechnological research and industry, development of safe and eff cient microbial mutagenesis technology and high-throughput screening as well as their instrumentation is of importance. Our research group has successfully developed a novel biological mutation breeding technology using atmospheric and room temperature plasma(ARTP) and invented the ARTP biobreeding equipment with our own intellectual property rights. Due to the benef ts of easy operation, rapid mutation capability, high mutation rate, high mutant genetic stability and high safety for the operators, ARTP biobreeding equipment has attracted extensive attention in the industry and academy and has achieved international exports. It has been successfully applied in the breeding of more than 100 kinds of microorganisms. This paper summarizes the recent progress on ARTP biobreeding technology and prospects.

ARTP; screening; biobreeding; mutagenesis

10.3969/j.issn.1674-0319.2017.01.006

吳亦楠,在讀博士,主要從事代謝工程、微生物高通量育種等方面的研究。E-mail:wuyinan14@mails.tsinghua.edu.cn

清華大學(xué)自主科研計(jì)劃(20161080108),日本JST CREST項(xiàng)目,國(guó)家自然科學(xué)基金委國(guó)家重大科研儀器研制專項(xiàng)(2162780028)

猜你喜歡
等離子體生物活性
生物多樣性
Co3O4納米酶的制備及其類過氧化物酶活性
生物多樣性
上上生物
骨碎補(bǔ)化學(xué)成分和生物活性研究進(jìn)展
連續(xù)磁活動(dòng)對(duì)等離子體層演化的影響
第12話 完美生物
簡(jiǎn)述活性包裝的分類及應(yīng)用(一)
金絲草化學(xué)成分及其體外抗HBV 活性
不同稀釋氣體下等離子體輔助甲烷點(diǎn)火