王 慧,曾路生,孫永紅,張金恒,郭慶增,孫芳莉,宋朝玉,陳建美
?
重金屬銅和鋅脅迫下的小麥冠層反射光譜特征
王 慧1,3,曾路生1,孫永紅2,張金恒3※,郭慶增3,孫芳莉3,宋朝玉2,陳建美2
(1. 青島農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,青島 266109; 2. 青島市農(nóng)業(yè)科學(xué)研究院,青島266100;3. 青島科技大學(xué)環(huán)境與安全工程學(xué)院,青島266042)
目前關(guān)于土壤重金屬污染對作物的光譜影響仍然處于探索階段,受植物種類和環(huán)境等因素的影響,植物重金屬脅迫機(jī)理的診斷仍存在不明確的問題,作物不同生長階段對不同重金屬的耐受程度存在差異。為了探究快速監(jiān)測作物受重金屬污染脅迫狀況,采用田間小區(qū)試驗,利用光譜分析方法研究了土壤重金屬不同質(zhì)量分?jǐn)?shù)銅(0、100、300、600、900 mg/kg)和鋅(0、250、500、750、1 000 mg/kg)處理下小麥分蘗期、拔節(jié)期和抽穗期冠層光譜特征。結(jié)果表明,小麥在分蘗期和拔節(jié)期冠層光譜在可見光(350~760 nm)波段內(nèi)反射率總體隨著銅、鋅污染濃度的增加而升高,而在近紅外(760~900 nm)波段內(nèi)反射率隨銅、鋅處理濃度的增加而降低;分蘗期不同濃度銅、鋅處理下,小麥冠層光譜出現(xiàn)紅邊藍(lán)移和紅谷藍(lán)移現(xiàn)象;分蘗期銅處理在600、900 mg/kg和拔節(jié)期銅處理在900 mg/kg下小麥紅邊歸一化指數(shù)值(NDVI705)均低于0.2;分蘗期鋅處理在750和1 000 mg/kg下小麥紅邊歸一化指數(shù)值(NDVI705)均低于0.2;該試驗中引起小麥?zhǔn)艿矫{迫作用冠層光譜響應(yīng)的銅臨界濃度介于300與600 mg/kg之間,而鋅臨界濃度介于500與700 mg/kg之間。
遙感;光譜分析;波長;小麥;銅;鋅;臨界濃度
當(dāng)前,中國受重金屬污染耕地面積約0.1億hm2,每年重金屬受污染的糧食約1 200萬t,土壤重金屬污染已經(jīng)嚴(yán)重影響到了中國的糧食安全[1]。土壤中過量的重金屬一旦被作物吸收,將對作物生長和發(fā)育產(chǎn)生影響,并能通過食物鏈傳入人體,在人體內(nèi)富集,從而危害人體健康[2]。因此,快速監(jiān)測或鑒別作物重金屬脅迫狀態(tài),對保障中國糧食安全具有重要意義。目前,隨著遙感技術(shù)的發(fā)展,高光譜遙感技術(shù)在土壤重金屬污染監(jiān)測得到應(yīng)用與發(fā)展[3-5]。同時,高光譜遙感技術(shù)的發(fā)展使準(zhǔn)確提取植被的生物物理參數(shù)和生物化學(xué)參數(shù)信息成為可能[6-8]。Mars等[9]研究表明植物受到污染脅迫反射光譜特征有時會發(fā)生變化。田國良等[10]研究表明,鎘和銅拌土生長的水稻在分蘗期受到的影響無論是在生理上還是在反射光譜方面變化都比較顯著,并且提出了3個有效波段范圍。李娜等[11]利用光譜技術(shù)分析了植被重金屬污染的光譜特征,并證明了光譜分析法在重金屬污染監(jiān)測上的可行性。任紅艷等[12]利用遙感技術(shù)分析了重金屬污染水稻的冠層光譜特征,并提出利用遙感技術(shù)監(jiān)測水稻重金屬污染的“光譜臨界值”這一概念。宮兆寧等[13]研究表明植物葉片葉綠素含量與植物光譜“三邊”參數(shù)呈極顯著相關(guān)性。然而,當(dāng)前關(guān)于土壤重金屬污染對作物的光譜影響仍然處于探索階段,受植物種類、環(huán)境等因素影響,植物重金屬脅迫機(jī)理的診斷仍存在不明確的問題[14]。作物不同生長階段對不同重金屬的耐受程度存在差異,因此探究重金屬對作物不同生長階段脅迫的臨界濃度具有一定現(xiàn)實意義。
1.1 試驗材料與設(shè)計
試驗于2014年10月至2015年6月在青島市城陽區(qū)青島農(nóng)科院試驗田進(jìn)行。試驗區(qū)總面積為180 m2,土壤類型為砂姜黑土,pH值為6.85,有機(jī)物質(zhì)量分?jǐn)?shù)為22.6 g/kg,堿解氮94.6 mg/kg,有效磷77.5 mg/kg,速效鉀113 mg/kg,銅28.1 mg/kg,鋅73.0 mg/kg。試驗采用田間小區(qū)的方式,設(shè)置30個小區(qū),每個小區(qū)面積為6 m2,試驗區(qū)周圍設(shè)置了0.5 m寬的保護(hù)行。選擇銅、鋅2種重金屬元素,根據(jù)國家土壤質(zhì)量標(biāo)準(zhǔn)(GB15618-1995)分別設(shè)置5個不同濃度梯度處理:銅質(zhì)量分?jǐn)?shù)分別為 0(CK)、100(Cu L1)、300(Cu L2)、600(Cu L3)、900 mg/kg(Cu L4);鋅質(zhì)量分?jǐn)?shù)分別為0(CK)、250(Zn L1)、500(Zn L2)、750(Zn L3)、1 000 mg/kg(Zn L4)。重金屬銅、鋅分別以硫酸銅、硫酸鋅溶液形式噴灑于每個小區(qū),并翻土混勻加入土壤,每個處理3個重復(fù),隨機(jī)分布。重金屬在土壤中平衡60 d后,于2014年10月8日播種,小麥品種為濟(jì)麥22號,由青島農(nóng)科院提供。每個小區(qū)播種量約110 g,小麥采用常規(guī)的田間管理。
1.2 光譜數(shù)據(jù)測定
在小麥分蘗期(2015-01-08)、拔節(jié)期(2015-04-30)和抽穗期(2015-05-13)采集光譜數(shù)據(jù)。光譜儀選用荷蘭Aventes公司生產(chǎn)的AvaSpec-ULS2048FT-SPU,該光譜儀的波長范圍為350~1 100 nm,光譜分辨率為2.4 nm,探頭視場角為25°。測量選在晴天、無風(fēng)、少云的天氣,測量時間為11:00-14:00之間。采樣時,光譜儀探頭垂直于小麥葉片冠層并且距小麥葉片冠層70 cm,每個小區(qū)隨機(jī)布點采樣10次,每次測量時進(jìn)行白板校正。
1.3 光譜數(shù)據(jù)處理
將采集到的每個小區(qū)10次數(shù)據(jù)進(jìn)行平均,取平均值作為每個小區(qū)的光譜反射率。對每個小區(qū)平均后的光譜數(shù)據(jù)進(jìn)行處理分析,計算光譜曲線的一階微分,找出光譜曲線對應(yīng)的特征位置參數(shù)。其中一階微分計算公式為[15]
′(λ)=[′(λ﹢1)?′(λ-1)]/2?(1)
式中為波段位置;λ為每個波段波長;′(λ)為波長λ的一階微分光譜;?是波長λ+1到λ的間隔。
紅邊歸一化植被指數(shù)NDVI705指數(shù)的計算公式為[16]
NDVI705=(750?705)/(750+705) (2)
式中750和705分別代表波長750和705 nm處的光譜反射率。
2.1 銅脅迫小麥冠層光譜特征分析
由圖1可知,不同生育期不同濃度Cu處理下小麥冠層光譜反射率的變化趨勢大體一致:在550 nm左右形成一個反射峰,即“綠峰”,在650 nm左右形成一個反射谷,即“紅谷”,在760~900 nm形成反射率升高,形成“近紅外反射平臺”[17-18]。分蘗期和拔節(jié)期,小麥冠層光譜可見光(350~760 nm)反射率總體隨Cu處理濃度的增加而升高:CK
當(dāng)小麥?zhǔn)蹸u脅迫時,其冠層光譜特征中的紅谷位置會向短波方向移動,即發(fā)生“藍(lán)移”現(xiàn)象,綠峰位置會向長波方向移動,即發(fā)生“紅移”現(xiàn)象[19]。表1表明,與對照CK比較,分蘗期隨Cu處理濃度的增加,小麥紅邊和紅谷位置向短波方向發(fā)生了明顯的“藍(lán)移”現(xiàn)象,綠峰位置向長波方向發(fā)生了明顯的“紅移”現(xiàn)象,說明分蘗期小麥?zhǔn)艿矫黠@的Cu脅迫作用。拔節(jié)期,與對照CK比較,隨Cu處理濃度的增加,小麥紅邊位置“藍(lán)移”和綠峰位置“紅移”明顯減弱,紅邊的范圍由738 nm移動到730 nm,綠峰位置由553 nm移動到580 nm。抽穗期,與對照CK相比,Cu L1、Cu L2和Cu L3處理下小麥的紅邊、紅谷和綠峰位置無明顯變化,而Cu L4 處理下小麥的紅邊和紅谷位置發(fā)生“藍(lán)移”,綠峰位置發(fā)生“紅移”。說明隨著生育期由營養(yǎng)生長向生殖生長的轉(zhuǎn)變,小麥?zhǔn)蹸u脅迫的作用在逐漸減小。同時,結(jié)合小麥冠層光譜反射率的變化可知,小麥冠層光譜響應(yīng)Cu脅迫的臨界濃度介于300與600 mg/kg之間。
表1 不同生育期不同濃度銅處理下小麥冠層光譜3個特征參數(shù)
2.2 鋅脅迫小麥冠層光譜特征分析
與Cu處理脅迫相似,分蘗期和拔節(jié)期,Zn處理下小麥冠層光譜可見光(350~760 nm)反射率隨Zn處理濃度的增加而升高:CK
由表2可知,與對照CK相比,Zn處理下分蘗期、拔節(jié)期和抽穗期小麥冠層光譜紅谷位置都發(fā)生了“藍(lán)移”現(xiàn)象,但是隨著小麥的生長,“藍(lán)移”的強(qiáng)度逐漸減?。ǚ痔Y期藍(lán)移了31 nm,拔節(jié)期藍(lán)移了4 nm,抽穗期藍(lán)移了1 nm);在分蘗期和拔節(jié)期,紅邊位置發(fā)生“藍(lán)移”,綠峰位置發(fā)生“紅移”(分蘗期紅邊藍(lán)移17 nm,綠峰紅移38 nm;拔節(jié)期紅邊藍(lán)移1 nm,綠峰紅移1 nm)。抽穗期,紅邊和綠峰位置則未出現(xiàn)明顯移動。
試驗表明,小麥處在分蘗期和拔節(jié)期這一營養(yǎng)生長階段時,與對照CK相比,高濃度的鋅(Zn L3、Zn L4)對小麥產(chǎn)生了脅迫作用,當(dāng)小麥進(jìn)入到生殖生長階段,與對照CK相比,低濃度鋅處理對小麥生長表現(xiàn)出相對的促進(jìn)作用,其中Zn L2的促進(jìn)作用最大。同時結(jié)合小麥冠層光譜反射率的變化可得知,在本研究中小麥鋅脅迫的臨界濃度介于500與750 mg/kg之間。
表2 不同生育期不同濃度鋅處理下小麥冠層光譜3個特征參數(shù)
2.3 紅邊歸一化植被指數(shù)(NDVI705)分析
紅邊歸一化植被指數(shù)(NDVI705)是用于植被脅迫性探測的植被指數(shù)之一,該植被指數(shù)值對葉冠層的微小變化非常靈敏,NDVI705值的范圍是?1~1,一般綠色植被區(qū)的范圍是0.2~0.9。當(dāng)植被指數(shù)值低于0.2時,說明植物受到了一定的脅迫作用[16]。由圖3可知,小麥分蘗期和拔節(jié)期,NDVI705值隨著銅處理濃度的升高而降低;抽穗期,NDVI705值隨銅處理濃度的升高先升高,當(dāng)銅的質(zhì)量分?jǐn)?shù)達(dá)600 mg/kg(Cu L3)后,NDVI705值隨銅處理濃度的升高而降低。分蘗期銅質(zhì)量分?jǐn)?shù)為600(Cu L3)、900 mg/kg(Cu L4)和拔節(jié)期900 mg/kg(Cu L4)時,NDVI705值低于0.2,說明該濃度銅處理對小麥生長產(chǎn)生了脅迫作用。小麥分蘗期和拔節(jié)期,NDVI705值隨著鋅處理濃度的升高而降低;抽穗期鋅各濃度處理下小麥NDVI705值與對照CK相比均有所增加。分蘗期鋅的質(zhì)量分?jǐn)?shù)為750(Zn L3)、1 000 mg/kg(Zn L4)時,NDVI705值低于0.2,說明在小麥生長的分蘗期,高濃度鋅對小麥的生長產(chǎn)生了脅迫作用。
由表3可知,土壤重金屬銅、鋅含量與NDVI705值在小麥分蘗期和拔節(jié)期呈現(xiàn)顯著負(fù)相關(guān)性,抽穗期土壤重金屬銅、鋅與NDVI705值沒有顯著相關(guān)性??赡芤驗榉痔Y期和拔節(jié)期,小麥屬于初期營養(yǎng)生長階段,器官較幼嫩,對銅、鋅處理濃度的承受范圍較小,對重金屬脅迫更敏感,因而與土壤重金屬銅、鋅濃度之間存在顯著相關(guān)性;抽穗期,小麥進(jìn)入生殖生長階段,對銅、鋅處理濃度的承受范圍較大,因而與土壤重金屬銅、鋅濃度沒有顯著相關(guān)性。分蘗期與拔節(jié)期土壤重金屬銅、鋅含量與NDVI705值的線性擬合模型見圖4。
表3 土壤重金屬Cu、Zn含量與NDVI705值相關(guān)性
注:** 和*分別表示在0.01和0.05水平上顯著相關(guān)。
Note: **and*indicate significance at the 0.01 and 0.05 levels,respectively.
不同濃度重金屬銅、鋅處理下,小麥光譜在不同生長期會表現(xiàn)出不同的光譜特征。分蘗期特征最為顯著,隨著濃度的增加,銅、鋅處理下的小麥冠層光譜紅邊、紅谷均發(fā)生“藍(lán)移”現(xiàn)象,同時土壤重金屬銅、鋅含量與NDVI705值存在明顯相關(guān)性。通過分析可知,本試驗中,小麥?zhǔn)艿矫{迫作用的冠層光譜響應(yīng)的銅臨界濃度介于300與600 mg/kg之間,鋅臨界濃度介于500與750 mg/kg之間。由于銅和鋅都是植物所需的微量元素,并且在化學(xué)性質(zhì)上具有一定的相似性,因此對植物光譜的影響也具有相似性。相關(guān)研究表明,紅邊、紅谷位置是反映植物受重金屬脅迫程度的重要參數(shù),可見光波段反射率的變化大小以及紅邊的藍(lán)移程度與植物葉片的重金屬含量存在著明顯的正相關(guān)性[20-22]。植物受重金屬銅、鋅脅迫時,小麥體內(nèi)葉綠素形成所需酶的活性會受到抑制,阻礙葉綠素的形成,導(dǎo)致葉黃素增加,葉綠素減少,因而反映在光譜上的特征為紅邊、紅谷發(fā)生“藍(lán)移”[23-25]。紅邊歸一化化植被指數(shù)(NDVI705)是分析植物受重金屬脅迫水平的重要參數(shù)之一,研究顯示NDVI705值與作物受重金屬污染的水平存在顯著的相關(guān)性,當(dāng)植物受重金屬脅迫時,NDVI705值會隨著受脅迫濃度的增加而降低[26-27]。
不同生長時期,土壤重金屬銅、鋅脅迫對植物生長的影響存在差異,因此在光譜特征上的表現(xiàn)也會有所不同。分蘗期,由于土壤中金屬銅、鋅有效態(tài)含量較高,小麥處于初期營養(yǎng)生長階段,抵抗重金屬脅迫的能力較弱,大量的重金屬離子進(jìn)入小麥體內(nèi)后,對小麥根系發(fā)育、葉綠素形成和細(xì)胞超微結(jié)構(gòu)等產(chǎn)生嚴(yán)重傷害,從而表現(xiàn)在光譜上的特征較為明顯。拔節(jié)期和抽穗期小麥進(jìn)入生殖生長階段,表現(xiàn)出較強(qiáng)的抗氧化能力和滲透性調(diào)節(jié)能力,一定程度上緩解了重金屬對小麥造成的氧化損害,因而表現(xiàn)在光譜上的特征差異不明顯[28-30]。
1)不同濃度重金屬銅、鋅處理下,小麥冠層光譜在不同生長時期(分蘗期、拔節(jié)期和抽穗期)表現(xiàn)出不同的光譜特征。分蘗期小麥冠層光譜在銅和鋅脅迫下均表現(xiàn)為可見光(350~760 nm)波段內(nèi)反射率隨著處理濃度的增加而升高,近紅外(760~900 nm)波段內(nèi)反射率隨處理濃度的增加而降低。
2)銅、鋅脅迫下,小麥冠層光譜在不同生長時期(分蘗期、拔節(jié)期和抽穗期)的紅邊、紅谷和綠峰位置有所不同。分蘗期小麥冠層光譜在銅和鋅脅迫下均出現(xiàn)紅邊和紅谷“藍(lán)移”現(xiàn)象、綠峰位置出現(xiàn)“紅移”現(xiàn)象。
3)分蘗期600、900 mg/kg銅質(zhì)量分?jǐn)?shù)和拔節(jié)期900 mg/kg 銅質(zhì)量分?jǐn)?shù)下小麥NDVI705值低于0.2,小麥生長受到了銅脅迫作用;分蘗期750、1 000 mg/kg 鋅質(zhì)量分?jǐn)?shù)下NDVI705值低于0.2,小麥生長受到了鋅脅迫作用;分蘗期和拔節(jié)期土壤重金屬銅、鋅含量與NDVI705值存在顯著的相關(guān)性。
4)本試驗中,小麥?zhǔn)艿矫{迫作用的冠層光譜響應(yīng)的銅臨界濃度介于300與600 mg/kg之間,鋅臨界濃度介于500與750 mg/kg之間。
[1] 路子顯. 糧食重金屬污染對糧食安全、人體健康的影響[J]. 糧食科技與經(jīng)濟(jì),2011,36(4):14-17.
Lu Zixian. The influence of heavy metal pollution of grain on food security and human health[J]. Grain Science and Technology and Economy, 2011, 36(4): 14-17. (in Chinese with English abstract)
[2] 周明冬,秦曉輝,候洪,等. 農(nóng)田土壤重金屬的危害及防控措施[J]. 環(huán)境與可持續(xù)發(fā)展,2014,2:57-58.
Zhou Mingdong, Qin Xiaohui, Hou Hong, et al. Prevention and control measures and damage of heavy metals in farmland soil[J]. Environment and Sustainable Development, 2014, 2: 57-58. (in Chinese with English abstract)
[3] 姚云軍,秦其明,張自力,等. 高光譜技術(shù)在農(nóng)業(yè)遙感中的應(yīng)用研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(7):301-306.
Yao Yunjun, Qin Qiming, Zhang Zili, et al. Research progress of hyperspectral technology applied in agricultural remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 301-306. (in Chinese with English abstract)
[4] 唐延林,黃敬峰. 農(nóng)業(yè)高光譜遙感研究的現(xiàn)狀與發(fā)展趨勢[J]. 遙感技術(shù)與應(yīng)用,2001,16(4):248-251.
Tang Yanlin, Huang Jingfeng. Study on hyperspectral remote sensing agriculture [J]. Remote Sensing Technology &Application, 2001, 16(4): 248-251. (in Chinese with English abstract)
[5] 姜慶虎,童芳,余明珠. 高光譜技術(shù)—生態(tài)學(xué)領(lǐng)域研究的新方法[J]. 植物科學(xué)學(xué)報,2015,33(5):633-640.
Jiang Qinghu, Tong Fang, Yu Mingzhu, et al. Hyperspectral technique—an opportunity in ecology[J]. Plant Science Journal, 2015, 33(5): 633-640. (in Chinese with English abstract)
[6] Thenkabail P S, Smith R B, Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics[J]. Remote Sensing of Environment, 2000, 71: 158-182.
[7] 文瑤,李明贊,趙毅,等. 玉米苗期冠層多光譜反射率與葉綠素含量診斷[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(增刊2):193-199.
Wen Yao, Li Mingzan, Zhao Yi, et al. Multispectral reflectance inversion and chlorophyll content diagnosis of maize at seeding stage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 193-199. (in Chinese with English abstract )
[8] 楊寶華,陳建林,陳林海,等. 基于敏感波段的小麥冠層氮含量估測模型[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(22):176-182.
Yang Baohua, Chen Jianlin, Chen Linhai, et al. Estimation model of wheat canopy nitrogen content based on sensitive bands[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 176-182. (in Chinese with English abstract)
[9] Mars J C, Crowley J K. Mapping mine wastes and analyzing areas affected by selenium rich water run off southeast Idaho using AVIRIS imagery and digital elevation data[J]. Remote Sensing of Environment, 2003, 84 : 422-436.
[10] 田國良,包佩麗,李建軍等. 土壤中鎘、銅傷害對水稻光譜特性的影響[J]. 環(huán)境遙感,1990,5(2):140-149.
Tian Guoliang, Bao Peili, Li Jianjun, et al. Effects of cadmium and copper in soil on spectral reflectance of Rice[J]. Environmental Remote Sensing, 1990, 5(2): 140-149. (in Chinese with English abstract)
[11] 李娜,呂建升,Altermann W. 光譜分析在植被重金屬污染監(jiān)測中的應(yīng)用[J]. 光譜學(xué)與光譜分析,2010,30(9):2508-2511.
Li Na, Lv Jiansheng, Altermann W. Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution[J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2508-2511. (in Chinese with English abstract)
[12] 任紅艷,莊大方,潘劍君,等. 鉛污染水稻的冠層高光譜特征研究[J]. 地球信息科學(xué),2008,10(3):314-319.
Ren Hongyan, Zhuang Dafang, Pan Jianjun, et al. Study on canopy spectral characteristics of paddy polluted by heavy metals[J]. Geo-Information Science, 2008, 10(3): 314-319. (in Chinese with English abstract)
[13] 宮兆寧,趙雅莉,趙文吉,等. 基于光譜指數(shù)的植物葉片葉綠素含量的估算模型[J]. 生態(tài)學(xué)報,2014,34(20):5736-5745.
Gong Zhaoning, ZhaoYali, Zhao Wenji, et al. Estimation model for plant leaf chlorophyll content based on the spectral index content[J]. Acta Ecologica Sinica, 2014, 34(20): 5736-5745. (in Chinese with English abstract)
[14] 唐鵬,劉光,徐俊鋒. 植物重金屬脅迫的高光譜遙感研究進(jìn)展[J]. 杭州師范大學(xué)學(xué)報:自然科學(xué)版,2014,13(6):634-640.
Tang Peng, Liu Guang, Xu Junfeng. The progress of hyperspectrum remote sensing under heavy metal stress in plants[J]. Journal of Hangzhou Normal University: Natural Science Edition, 2014, 13(6): 634-640. (in Chinese with English abstract)
[15] 浦瑞良,宮鵬. 高光譜遙感及其應(yīng)用[M]. 北京:高等教育出版社,2000:53-58.
[16] 鄧書斌,陳秋錦,杜會建,等. ENVI 遙感圖像處理方法(第二版)[M]. 北京:高等教育出版社,2014:381-383.
[17] 薛忠財,高遠(yuǎn)輝,彭濤,等. 光譜分析在植物生理生態(tài)中的運(yùn)用[J]. 植物生理學(xué)報,2011,47(4):313-320.
Xue Zhongcai, Gao Huiyuan, Peng Tao, et al. Application of spectral reflectance on research of plant eco-physiology[J]. Plant Physiology Journal, 2011, 47(4): 313-320. (in Chinese with English abstract)
[18] 楊璐,高永光,胡振琪. 銅脅迫下植被光譜變化規(guī)律研究[J]. 礦業(yè)研究與開發(fā),2008,28(4):74-76.
Yang Lu, Gao Yongguang, Hu Zhenqi. Study on Spectral Change of Vegetation under Cu Stress[J]. Mining Research and Development, 2008, 28(4): 74-76. (in Chinese with English abstract)
[19] 梁守真,施平,馬萬棟,等. 植被葉片光譜及紅邊特征與葉片生化組分關(guān)系的分析[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2010,18(4):804-809.
Liang Shouzhen, Shi Ping, Ma Wandong, et al. Relational analysis of spectra and red-edge characteristics of plant leaf and leaf biochemical constituent[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 804-809. (in Chinese with English abstract)
[20] 遲光宇,劉新會,劉素紅,等. Cu污染與小麥特征光譜相關(guān)關(guān)系研究[J]. 光譜學(xué)與光譜分析,2006,26(7):1272-1276.
Chi Guangyu, Liu Xinhui, Liu Suhong, et al. Studies of relationships between Cu pollution and spectral characteristics of TritiZnm Aestivum L[J]. Spectroscopy and Spectral Analysis, 2006, 26(7): 1272-1276. (in Chinese with English abstract)
[21] 朱葉青,屈永華,劉素紅. 重金屬銅污染植被光譜響應(yīng)特征研究[J]. 遙感學(xué)報,2014,18(2):344-352.
Zhu Yeqing, Qu Yonghua, Liu Suhong, et al. Spectral response of wheat and lettuce to copper pollution[J]. Journal of Remote Sensing, 2014, 18(2): 344-352. (in Chinese with English abstract)
[22] 陳思寧,劉新會,侯娟,等. 重金屬鋅脅迫的白菜葉片光譜響應(yīng)研究[J]. 光譜學(xué)與光譜分析,2007,27(9):1797-1801.
Chen Sining, Liu Xinhui, Hou Juan, et al. Study on the spectrum response of brassica campestris leaf to the zinc pollution[J]. Spectroscopy and Spectral Analysis, 2007, 27(9): 1797-1801. (in Chinese with English abstract)
[23] 劉新會,遲光宇,劉素紅,等. Zn2+污染與小麥特征光譜相關(guān)關(guān)系研究[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報,2006,2(1):62-66.
Liu Xinhui, Chi Guangyu, Liu Suhong, et al. Relationships between Zn2+Pollution and Spectral Characteristics of Wheat[J]. Journal of Ecology and Rural Environment, 2006, 2(1):62-66. (in Chinese with English abstract)
[24] 龔紅梅,李衛(wèi)國. 鋅對植物的毒害及機(jī)理研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué),2009,37(29):14009-14015.
Gong Hongmei, Li Weiguo. Research progress on the toxicity of zinc to plants and it’s mechanism[J]. Journal of Anhui Agri Sci, 2009, 37(29): 14009-14015. (in Chinese with English abstract)
[25] 王維,沈潤平,吉曹翔. 基于高光譜的土壤重金屬銅的反演研究[J]. 遙感技術(shù)與應(yīng)用,2011,26(3):348-354.
Wang Wei, Shen Runping, Ji Caoxiang. Study on heavy metal Cu based on hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 2011, 26(3): 348-354. (in Chinese with English abstract)
[26] 楊可明,史鋼強(qiáng),魏華鋒,等. 重金屬銅脅迫玉米葉片的光譜響應(yīng)特征[J]. 貴州農(nóng)業(yè)科學(xué),2015,43(6):22-26.
Yang Keming, Shi Gangqiang, Wei Huafeng, et al. Spectral response characteristics of corn leaves under copper stress[J]. Guizhou Agricultural Sciences, 2015, 43(6): 22-26. (in Chinese with English abstract)
[27] 郭云開,曹小燕,石自桂. 水稻冠層光譜變化特征的土壤重金屬全量反演研究[J]. 遙感信息,2015,30(3):116-123.
Guo Yunkai, Cao Xiaoyan, Shi Zigui. Inversion model of total amount of soil heavy metal based on spectral characteristics of rice canopy[J]. Remote Sensing Information, 2015, 30(3): 116-123. (in Chinese with English abstract)
[28] 譚萬能,李志安,鄒碧. 植物對重金屬耐性的分子生態(tài)機(jī)理[J]. 植物生態(tài)學(xué)報,2006,30(4):703-712.
Tan Wanneng, Li Zhian, Zou Bi, et al. Molecular mechanisms of plant tolerance to heavy metals[J]. Chinese Journal of Plant Ecology, 2006, 30(4): 703-712. (in Chinese with English abstract)
[29] 全先慶,張小茜,單雷等. 植物耐受重金屬脅迫細(xì)胞機(jī)制研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué),2006,34(5):850-852.
Quan Xianqing, Zhang Xiaoqian, Shan Lei, et al. Research advance in cellular mechanisms of plant tolerance to heavy metal[J]. Journal of Anhui Agri Sci, 2006, 34(5):850-852. (in Chinese with English abstract)
[30] 李洋,于麗杰,金曉霞. 植物重金屬脅迫耐受機(jī)制[J]. 中國生物工程雜志,2015,35(9):94-104.
Li Yang, Yu Lijie, Jin Xiaoxia. Mechanism of heavy metal tolerance stress of plants[J].China Biotechnology, 2015, 35(9): 94-104. (in Chinese with English abstract)
Wheat canopy spectral reflectance feature response to heavy metal copper and zinc stress
Wang Hui1,3, Zeng Lusheng1, Sun Yonghong2,Zhang Jinheng3※, Guo Qingzeng3, Sun Fangli3, Song Chaoyu2, Chen Jianmei2
(1.,,266109,; 2.,266100,; 3.,,266042,)
With the rapid development of economy and modern industrial and agriculture, more and more heavy metals such as cadmium, copper and zinc come into environment. Heavy metals are not only polluting soil, water and air, but also affecting crops growth and the yield, and affecting food security and human health by food chain. It was reported that heavy metal contamination of arable land in China has reached 20 million hm2, accounting for the country's total cultivated area of 1/6. Therefore, many researchers pay more attention to the heavy metal pollution problems increasingly. At present, researchers usually use chemical and biological methods to test the pollution extent of different heavy metals. Those methods are time consuming and even cause the second environmental pollution. Using spectral analysis to monitor the heavy metals stress on crops is an innovative approach. However, the effect of heavy metal pollution on crops spectrum is still in the exploration stage. Because of the effect of different factors such as plants and environment, the diagnosis of heavy metal stress mechanism on plant is still unclear. The crop tolerance at different growth stages are different from heavy metals, therefor, to explore the critical concentration of different heavy metals stress on crops at the different growth stages has certain practical significance.
In order to monitor the crop stress of heavy metal pollution rapidly, under open field plot conditions and using canopy spectral analysis, the canopy spectral features of wheat at different stages of tillering, jointing and heading were studied at the different treatments of Cu (0, 100, 300, 600 and 900 mg/kg) and Zn (0, 250, 500, 750 and 1 000 mg/kg), according to the national soil quality standard (GB15618-1995) of China. The experiment was conducted in the experimental field of Qingdao Academy of Agricultural Sciences in Chengyang District of Qingdao City, in October 2014 to June 2015. The total area of the test plot was 180 m2, and the test soil type is Shajiang black soil, with the pH value of 6.85, the organic matter content of 22.6 g/kg, nitrogen content of 94.6 mg/kg, available phosphorus content of 77.5 mg/kg, the available potassium content of 113 mg/kg, copper content of 28.1 mg/kg and zinc content of 73 mg/kg. The experiment was conducted by traditional management. The results indicated that at different concentration treatments of copper (Cu) and zinc (Zn), the canopy spectral reflectance in the visible band (350-760 nm) increased obviously with the concentration treatments increasing of Cu and Zn at the tillering and jointing stages of wheat, however, the canopy spectral reflectance of near infrared band (760-900nm) reduced with the increasing concentration of Cu and Zn treatment levels. Wheat canopy spectral reflectance appeared red edge position and red valley position shifting toward short wavelength called “blue shift” at tillering stage of wheat under the different concentration treatments of Cu and Zn. At the tillering stage of wheat, copper treatments of 600 and 900 mg/kg and at the jointing stage copper treatment of 900 mg/kg, the red edge normalized index value (NDVI705) were less than 0.2. At the tillering stage, zinc treatments of 750 and 1 000 mg/kg, the red edge normalized index value (NDVI705) was less than 0.2. This research also indicated that the wheat canopy spectral features response obviously to the threshold values concentration treatment level of Cu were between 300 and 600 mg/kg, and Zn were between 500 g and 750 mg/kg.
remote sensing; spectrum analysis; wavelength; wheat; Cu; Zn; concentration threshold value
10.11975/j.issn.1002-6819.2017.02.023
S127
A
1002-6819(2017)-02-0171-06
2016-05-26
2016-11-17
國家自然科學(xué)基金項目(41471279)
王 慧,女,主要從事土壤重金屬污染研究,青島 青島農(nóng)業(yè)大學(xué),266109。Email:wanghui_whity@163.com
張金恒,男,青島科技大學(xué)生態(tài)環(huán)境與農(nóng)業(yè)信息化研究所所長,教授,主要從事農(nóng)業(yè)遙感與信息技術(shù),青島 青島科技大學(xué)環(huán)境與安全工程學(xué)院,266042。Email:zjh-nhl@163.com
王 慧,曾路生,孫永紅,張金恒,郭慶增,孫芳莉,宋朝玉,陳建美. 重金屬銅和鋅脅迫下的小麥冠層反射光譜特征[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(2):171-176. doi:10.11975/j.issn.1002-6819.2017.02.023 http://www.tcsae.org
Wang Hui, Zeng Lusheng, Sun Yonghong, Zhang Jinheng, Guo Qingzeng, Sun Fangli, Song Chaoyu, Chen Jianmei. Wheat canopy spectral reflectance feature response to heavy metal copper and zinc stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 171-176. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.023 http://www.tcsae.org