趙鳳亮,楊衛(wèi)東
(1.中國熱帶農(nóng)業(yè)科學院 環(huán)境與植物保護研究所,海南 海口 571101; 2.浙江大學 環(huán)境與資源學院,浙江 杭州 310029)
柳樹(Salixspp.)在污染環(huán)境修復(fù)中的應(yīng)用
趙鳳亮1,2,楊衛(wèi)東2,*
(1.中國熱帶農(nóng)業(yè)科學院 環(huán)境與植物保護研究所,海南 ???571101; 2.浙江大學 環(huán)境與資源學院,浙江 杭州 310029)
柳樹(Salixspp.)具有生物量高、生長速度快、易繁殖、蒸騰作用強等特點,是進行污染環(huán)境修復(fù)的良好植物資源。既有研究顯示,可利用柳樹通過植物-土壤、植物-砂石、人工濕地及河岸緩沖區(qū)的方式凈化污染水體,修復(fù)乙醇、多氯聯(lián)苯、多環(huán)芳烴等有機污染,還可通過自然修復(fù)和強化修復(fù)(螯合劑、菌根)治理重金屬污染。柳樹對環(huán)境污染物的修復(fù)效率與品種、無性系、土壤類型及水文條件有關(guān),且可通過螯合劑和菌根真菌等強化措施增強對污染物的凈化效率。在今后的研究中,應(yīng)當加強柳樹生物能源開發(fā)研究,并與污染環(huán)境生態(tài)修復(fù)相結(jié)合,注重柳樹環(huán)境修復(fù)優(yōu)良品種的篩選與評價。
柳樹;富營養(yǎng)化;重金屬;有機污染;植物修復(fù)
常用的污染環(huán)境修復(fù)方法可分為物理方法、化學方法和生物修復(fù)方法。其中,生物修復(fù)法中的植物修復(fù)具有成本低、環(huán)境友好、可持續(xù)等優(yōu)點。種質(zhì)材料的選擇是進行植物修復(fù)的重要因素,必須結(jié)合實際情況,并注重環(huán)境修復(fù)效益與經(jīng)濟效益的結(jié)合;因此,具有經(jīng)濟價值的農(nóng)林作物在植物修復(fù)中的應(yīng)用越來越廣泛。柳樹適應(yīng)性強、生物量大、生長速度快、耐水濕,可用于水體富營養(yǎng)化、有機物和重金屬等污染環(huán)境的修復(fù)。選擇柳樹進行污染環(huán)境修復(fù)的同時,結(jié)合能源林、木材林等經(jīng)營能夠帶來一定的經(jīng)濟收益,在歐洲與北美已得到廣泛的應(yīng)用[1]。
柳樹是楊柳科(Salicaceae)柳屬(Salix)和鉆天柳屬(Chosenia)植物的總稱。全世界柳屬植物共有520余種,其中我國約有257種、112個變種和133個變型,主要分布在東北、華北和西北地區(qū),有灌木、小喬木和喬木,單一枝條、多枝條等性狀,具有較寬的遺傳基礎(chǔ)。柳樹是重要的資源植物之一,可用作造紙、纖維原材料、板材和燃料等。自從20世紀70年代能源危機以來,歐洲、美洲等國家采用短輪伐期集約化栽培(short-ration intensive culture, SRIC)木本作物的方法來滿足其能源需求。作為能源樹種,柳樹具有栽培周期短、養(yǎng)分利用效率高、生長速度快、生物量大、適應(yīng)性強、一次栽培多年受益的優(yōu)點,是理想的能源樹種之一。采用短輪伐期矮林化栽培方式,通過地面修剪,促使樹樁生長枝條,可連續(xù)收獲20 a,適宜機械化種植和收獲,每年每公頃可產(chǎn)生10~15 t干物質(zhì),相當于5 000 L燃油[2]。近年來,許多研究人員將柳樹的應(yīng)用潛力進一步拓展到污染環(huán)境修復(fù)領(lǐng)域,本文就此進行簡要綜述。
柳樹具有適合環(huán)境植物修復(fù)的生理特征:(1)具有把太陽能轉(zhuǎn)變?yōu)榛瘜W能的極大潛力,在幼年期階段光合作用強,生長迅速,地上和地下生物量大;(2)蒸騰速率高,根系深且發(fā)達;(3)對營養(yǎng)元素的吸收和利用率高;(4)耐水澇,適宜生長在水分飽和、缺氧的土壤環(huán)境中;(5)易進行無性繁殖,硬枝扦插容易成活,萌發(fā)能力強;(6)適應(yīng)較寬的生態(tài)環(huán)境。因此,在歐美等國家,柳樹常被用于修復(fù)礦山棄地、工業(yè)廢物和構(gòu)建人工濕地[3-5]。與重金屬超積累植物相比,柳樹適應(yīng)性強、生長快和生物量大的特點,是對低生物量超積累植物的有效補充[6],在水體和土壤污染修復(fù)中有良好的應(yīng)用前景[7-8]。
2.1 水體修復(fù)
富營養(yǎng)水體修復(fù)通常采用植物-土壤凈化系統(tǒng)、植物-基質(zhì)復(fù)合系統(tǒng)、人工濕地及河岸林生態(tài)系統(tǒng)等。柳樹是非食用和非飼用植物,適應(yīng)性、抗逆性強,適用于生活污水、工業(yè)廢水等受污染水體的修復(fù),能夠充分利用水體中的營養(yǎng)成分并變廢為寶[9-11]。瑞典和波蘭研究人員利用柳樹過濾、凈化受污染水體,可以減少面源和點源污染,改善污染水質(zhì),同時能生產(chǎn)薪材,具有良好的環(huán)境生態(tài)效益和經(jīng)濟效益[12]。Jonsson等[13]采用土壤-植物(柳樹)凈化系統(tǒng)對貯木場產(chǎn)生的廢水進行處理,研究證實該系統(tǒng)能夠有效地去除廢水中的N、P等污染物。Mant等[11]用柳樹-砂石復(fù)合系統(tǒng)修復(fù)生活污水,結(jié)果顯示,N、P、K、BOD(生物需氧量)分別降低了57.7%、90.6%、24.9%、90%,處理效果高于植物-土壤系統(tǒng)。Mirck等[8]研究發(fā)現(xiàn),白柳(Salixalba)通過植物固定和植物提取方式能夠有效地處理皮革廢水中的N、P和多種金屬元素污染物。
人工濕地是修復(fù)富營養(yǎng)化水體的主要方法。Marler等[14]研究發(fā)現(xiàn),古丁氏柳(Salixgooddingii)、弗里楊(Populusfremontii)和檉柳(Tamarixramosissima)在高濃度的富營養(yǎng)水體中(556 mg·L-1NH4-N、556 mg·L-1NO3-N、323 mg·L-1PO4-P)生長良好,葉、莖生物量明顯增加,隨著營養(yǎng)水平增加,冠根比也顯著增加。波蘭學者Samecka-Cymerman等[15]利用蒿柳(Salixviminalis)構(gòu)建潛流人工濕地凈化廢水,研究發(fā)現(xiàn),蒿柳-人工濕地系統(tǒng)能夠有效去除廢水中的大量元素,夏季去除率為24%~82%,冬季去除率為10%~80%。在瑞典,河道緩沖帶栽培能源柳樹可以減少營養(yǎng)鹽的淋失和水土流失[16]。Shin等[17]進一步研究發(fā)現(xiàn),銀芽柳(Salixgracilistyla)對富營養(yǎng)水體的凈化效率與水力停留時間和流量負荷有關(guān),在5 g·d-1NH4-N、23 g·d-1NO3-N、5 g·d-1PO4-P 的條件下具有較高的凈化效率。王紅玲等[18]利用3種人工富營養(yǎng)鹽污水在苗期持續(xù)灌溉,比較了6個柳樹品種(無性系)對氮磷的富集能力,結(jié)果顯示,柳樹對氮的吸附、吸收效果優(yōu)于磷,復(fù)合污染處理促進了氮磷在柳樹植株內(nèi)的積累和向地上部的轉(zhuǎn)運,葉片對氮的富集量最高,根對磷富集量較高,不同無性系間植株氮磷含量、氮磷富集量,以及氮磷轉(zhuǎn)運系數(shù)均存在顯著差異。
相關(guān)研究表明,采用強化措施能夠提高柳樹的抗逆性以及對富營養(yǎng)水體的凈化效率。Rogers等[19]發(fā)現(xiàn)接種內(nèi)生細菌后,柳樹根系、地上部分生物量分別增加84%和55%。劉桂青等[20]比較了8株來源于超積累植物的內(nèi)生菌對柳樹生長及氮磷吸收的影響,發(fā)現(xiàn)接種LM02、SaNR1和SaMR12對柳樹根系生長有明顯的促進作用,與對照相比,接種LM02、SaMR12和SaMR10后柳樹生物量分別增加了234%、43%和54%,地上部氮積累量分別增加176%、26%和41%,地上部磷積累量分別增加109%、12%和30%,顯著提高了對富營養(yǎng)化水體的修復(fù)效率。
2.2 有機污染修復(fù)
環(huán)境中的有機污染物幾乎涵蓋了有機化合物的各種類型,包括多環(huán)芳烴﹑多氯聯(lián)苯(PCB)等。目前,常用的方法是將污染物從現(xiàn)場挖走,然后通過光降解或焚燒的方式加以去除,但該法費用昂貴,對于大面積污染土壤難以實施。利用柳樹對有機染污物的提取、降解作用,可進行原位修復(fù),該方法已得到各國政府和科學家的高度重視。da Cunha等[21]研究發(fā)現(xiàn),柳樹能夠使土壤中芘的濃度從23.06降至 0.1 μg·kg-1,1,2-苯并菲的濃度從126.27 μg·kg-1降至檢測限以下,對苯并(k)熒蒽和苯并[a]芘也有較好的去除效果。種植黃花柳(Salixcaprea)的土壤PCB濃度降低了32%[22]。Corseuil等[23]試驗發(fā)現(xiàn),垂柳(Salixbabylonica)能夠耐受高達2 000 mg·L-1濃度的乙醇,在7 d內(nèi)能夠使水培液中乙醇的濃度從1 360 mg·L-1降至9 mg·L-1,苯濃度也減少了99%,其凈化效率與蒸騰速率有關(guān)。在德國,研究人員利用柳樹治理2,4,6-TNT污染的土壤,發(fā)現(xiàn)TNT降解能力與柳樹地上、地下生物量、根系深度有關(guān)[24-25]。Ucisik等[26]研究表明,蒿柳對于苯酚污染(濃度不超過250 mg·L-1)的土壤和水體具有較好的修復(fù)效果。當水溶液中4-氯酚(4-DCP)的濃度低于15 mg·L-1時,蒿柳的生長和呼吸速率不受影響,但若超過37.3 mg·L-1,會出現(xiàn)毒害現(xiàn)象[27]。
2.3 重金屬污染修復(fù)
2.3.1 自然修復(fù)
眾多研究證實,通過植物提取、植物固定的方法,柳樹可以有效地修復(fù)單一或復(fù)合重金屬污染土壤,其修復(fù)效率與重金屬種類、品種(品系)、樹齡、生長季節(jié)、土壤類型及水文特征等多種因素有關(guān)[28]。Fischerov等[3]比較7個樹種對As、Cd、Pb、Zn的積累能力和提取潛力,發(fā)現(xiàn)毛枝柳(Salixdasyclados)積累能力和修復(fù)效率與超積累植物Arabidopsishalleri、Thlaspicaerulescens相似。通過SRIC方法,對17個柳樹品系研究發(fā)現(xiàn),F(xiàn)ritzi Pauley品系對Al的提取效率較高 (1.4 kg·hm-2)、Wolterson和Balsam Spire品系對Cd和Zn的積累較高,分別可達47~57 g·hm-2、2.0~2.4 kg·hm-2[7]。Wieshammer等[28]通過室外盆栽試驗,比較了黃花柳(Salixcaprea)、爆竹柳(Salixfragilis)以及2種雜交柳(S.×smithiana,S.×dasyclados)對土壤中Cd和Zn的提取效率,發(fā)現(xiàn)雜交柳S.×smithiana葉片中Cd、Zn含量分別高達250、3300 mg·kg-1,富集系數(shù)分別為27和3,通過3次采收即能去除供試污染土壤中20%的Cd和5%的Zn。Granel等[29]通過對15個柳樹品種(品系)的研究發(fā)現(xiàn),柳樹葉片Cd含量介于1.5~10 mg·kg-1,其中灌木柳葉片和莖對Cd、Mn、Zn的積累高于喬木柳。田間試驗發(fā)現(xiàn),爆竹柳和三蕊柳(S.triandra)生長末期葉片、木、樹皮中Cd、Zn含量最高。以上結(jié)果均證實,柳樹對土壤中的重金屬污染具有較好的修復(fù)效果,但值得注意的是:隨著栽培時間的延長,表層土壤中可提取的Cd含量不斷下降,這可能會影響柳樹修復(fù)潛力的充分發(fā)揮;同時,為了避免重金屬污染的擴散,應(yīng)當在收集木材的同時清除葉片[30]。
柳樹對重金屬的提取效率與土壤類型有關(guān)。Dos Santos Utmazian等[31]通過盆栽試驗發(fā)現(xiàn),Salixsmithiana無性系對Cd的積累較大,始成土(Cambisols)處理葉片Cd含量為440 mg·kg-1,雛形土(Eutric Cambisol)處理葉片Cd含量為70 mg·kg-1,雛形土處理Salixsmithiana無性系葉片Zn含量最高可達870 mg·kg-1,但是遠小于始成土處理雜交柳(S.matsudana×abba)葉片的Zn含量(2 430 mg·kg-1),輕度污染的雛形土處理下,對Cd、Zn積累能力最強的柳樹品系的富集系數(shù)分別為15.9和 3.93。
利用生物量大的蒿柳進行重金屬污染土壤修復(fù)是對傳統(tǒng)的植物修復(fù)技術(shù)(主要基于重金屬超積累植物,此類植物大多生物量較小、根系較淺)的有益補充。Hammer等[32]通過田間試驗表明,蒿柳5 a累計從鈣質(zhì)土壤提取Cd 170 g·hm-2、Zn 13.4 kg·hm-2,2 a內(nèi)從酸性土壤提取Cd 47 g·hm-2、Zn 14.5 kg·hm-2,葉片中Cd、Zn含量大于莖,莖中重金屬含量隨著時間的延長而下降。另外,Vandecasteele等[33-34]研究發(fā)現(xiàn),濕地水位條件對重金屬的生物有效性具有較大的影響,長期水淹條件降低了灰柳(Salixcinerea)葉片和樹皮中的Cd含量。
2.3.2 強化修復(fù)
土壤中有機物和重金屬的生物有效性在很大程度上決定了植物修復(fù)的效果。重金屬進入土壤后會與土壤中的有機質(zhì)產(chǎn)生絡(luò)合、沉淀或吸附在土壤顆粒表面而難以被植物吸收;對于一些疏水性有機物,因其水溶性差而導(dǎo)致其生物有效性較低,亦不利于植物吸收代謝,限制了修復(fù)效果。鑒于此,可以采取一些強化措施來提高植物吸收積累污染物質(zhì)的能力,進而改善植物修復(fù)效率[35]。自然狀態(tài)下土壤中Hg生物有效性很低,限制了柳樹對Hg的污染提取,KI可增加污染土壤中Hg的生物有效性。Wang等[36]研究發(fā)現(xiàn),添加1 mmol·L-1KI可使雜交柳(Salixviminalis×S.schwerinii)葉片、枝條、根系Hg濃度分別提高5倍、3倍和8倍。Komárek等[37]研究發(fā)現(xiàn),在提高土壤中Pb的生物有效性方面,乙二胺四乙酸(EDTA) 比乙二胺二琥珀酸(EDDS)更有效。柳樹一般是內(nèi)生真菌和外生真菌的宿主植物,在良好的條件下菌根菌絲體長度可以達到根系長度的8 000倍,菌根能夠增加宿主植物對重金屬脅迫的忍耐,并在液泡中貯存金屬。Baum等[38]研究表明,毛枝柳(Salixdasyclados)接種外生真菌Paxillusinvolutus,增加了土壤中Cd、Zn、Cu的生物有效性。Eapen等[39]指出,通過基因工程的方法將金屬螯合劑、金屬轉(zhuǎn)運蛋白、金屬硫蛋白和植物螯合肽的基因轉(zhuǎn)移到待試植物中,可以提高植物對金屬的吸收和貯存能力。另外,表面活性劑、環(huán)糊精等在提高土壤重金屬有效性方面也有一定的效果[40-41]。
通過選擇適宜的柳樹品種(品系)可以在一定程度上提高其環(huán)境修復(fù)效率[32]。Dos Santos Utmazian等[31]研究了8個柳樹品種對Cd、Zn的積累潛力,結(jié)果顯示,Salixsmithiana無性系葉片中Cd含量高達440 mg·kg-1,對Cd的積累高于其他品種。Yu等[42]研究發(fā)現(xiàn),Cr3+-EDTA在垂柳(S.babylonia)中比雜交柳 (S.matsudand×S.alba)運輸快。因此,可以在柳樹育種過程中有針對性地選擇對特定污染物吸收和耐受性強的品種或品系。
篩選環(huán)境修復(fù)柳樹品種方法主要有盆栽、水培、田間試驗等。Weih等[5]通過室外盆栽試驗,對14種柳樹無性系相對生長速率和地上生物量等參數(shù)進行分析,發(fā)現(xiàn)各個無性系對水分的利用效率存在較大的差異(-3.08%~-2.60%),且與植株相對含水量顯著相關(guān)。Punshon等[43]率先建立了水培篩選方法,在Cu濃度為0.25~0.75 mol·L-1的水培液中研究了不同柳樹品種對Cu的耐受性。Kuzovkina等[44]通過溫室水培系統(tǒng)評價5個柳樹品種對重金屬的耐受性,發(fā)現(xiàn)黑柳(Salixnigra)對Cu和Cd具有較強的吸收和積累能力。Watson等[45]進一步發(fā)展了營養(yǎng)液膜方法(nutrient thin film, NTF),通過對Salixburjatica和S.triandra×viminalis2個柳樹品種在不同濃度重金屬溶液中的連續(xù)觀察,發(fā)現(xiàn)2個柳樹品種的葉片生物量、莖生物量和植株高度存在較大的差異。傳統(tǒng)田間試驗方法評價柳樹對重金屬的抗性需要3~5 a時間,而水培法只需6周時間[46]。因此,通過對生長參數(shù)、污染環(huán)境修復(fù)效率的分析與比較,結(jié)合不同的評價方法,可以較為快速地篩選出適合進行污染環(huán)境修復(fù)的柳樹品種或品系[47]。
本文針對國內(nèi)外科研工作者對柳樹在富營養(yǎng)化水體、有機污染和重金屬污染修復(fù)方面的研究進行了較為系統(tǒng)的綜述。柳樹具有生長快、根系發(fā)達、生物量大、適應(yīng)性和抗逆性強、易繁殖等生物學性狀,這是其優(yōu)于其他植物資源的主要特點。研究顯示,柳樹對環(huán)境污染物的修復(fù)效率與柳樹種類、無性系、土壤類型及水文條件有關(guān),通過螯合劑、菌根真菌等強化措施可以增強其對污染物的凈化效率。目前,我國對柳樹開發(fā)利用的程度遠遠低于發(fā)達國家,作為短輪伐期集約栽培的生物能源樹種尚沒有規(guī)?;瘧?yīng)用。今后應(yīng)當加強柳樹在生物能源與污染環(huán)境生態(tài)修復(fù)領(lǐng)域研究的結(jié)合,注重優(yōu)良品種的篩選與評價,以充分挖掘其在環(huán)境修復(fù)中的應(yīng)用潛力。
[1] BERNDES G, FREDRIKSON F, B?RJESSON P. Cadmium accumulation andSalix-based phytoextraction on arable land in Sweden[J].AgricultureEcosystems&Environment, 2004, 103(1):207-223.
[2] MARMIROLI M, PIETRINI F, MAESTRI E, et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics[J].TreePhysiology, 2011, 31(12):1319-1334.
[4] KUZOVKINA Y A, QUIGLEY M F. Willows beyond wetlands: Uses ofSalixL. species for environmental projects[J].Water,Air, &SoilPollution, 2005, 162(1):183-204.
[5] WEIH M, NORDH N E. Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes[J].Biomass&Bioenergy, 2002, 23(6):397-413.
[6] LIU W, NI J, ZHOU Q. Uptake of heavy metals by trees: prospects for phytoremediation[J].MaterialsScienceForum, 2013, 743-744∶768-781.
[7] LAUREYSENS I, DE T L, HASTIR T, et al. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. Ⅱ. Vertical distribution and phytoextraction potential[J].EnvironmentalPollution, 2005, 133(3):541-551.
[8] MIRCK J, ISEBRANDS J G, VERWIJST T, et al. Development of short-rotation willow coppice systems for environmental purposes in Sweden[J].Biomass&Bioenergy, 2005, 28(2):219-228.
[9] DIMITRIOU I, ARONSSON P. Nitrogen leaching from short-rotation willow coppice after intensive irrigation with wastewater[J].Biomass&Bioenergy, 2004, 26(5):433-441.
[10] DIMITRIOU I, ARONSSON P, WEIH M. Stress tolerance of five willow clones after irrigation with different amounts of landfill leachate[J].BioresourceTechnology, 2006, 97(1):150-157.
[11] MANT C, PETERKIN J, MAY E, et al. A feasibility study of aSalixviminalisgravel hydroponic system to renovate primary settled wastewater[J].BioresourceTechnology, 2003, 90(1):19-25.
[12] PERTTU K L, KOWALIK P J. Salix vegetation filters for purification of waters and soils[J].Biomass&Bioenergy, 1997, 12(1):9-19.
[13] JONSSON M, DIMITRIOU I, ARONSSON P, et al. Treatment of log yard run-off by irrigation of grass and willows[J].EnvironmentalPollution, 2006, 139(1):157-166.
[14] MARLER R J, STROMBERG J C, PATTEN D T. Growth response ofPopulusfremontii,Salixgooddingii, andTamarixramosissimaseedlings under different nitrogen and phosphorus concentrations[J].JournalofAridEnvironments, 2001, 49(1):133-146.
[15] SAMECKA-CYMERMAN A, STEPIEN D, KEMPERS A J. Efficiency in removing pollutants by constructed wetland purification systems in Poland[J].JournalofToxicologyandEnvironmentalHealth,PartA, 2004, 67(4): 265-275.
[16] B?RJESSON P. Environmental effects of energy crop cultivation in Sweden—I: identification and quantification[J].BiomassandBioenergy, 1999, 16(2): 137-154.
[17] SHIN J Y, PARK S S, AN K G. Removal of nitrogen and phosphorus using dominant riparian plants in a hydroponic culture system[J].JournalofEnvironmentalScience&HealthPartA, 2004, 39(3):821-834.
[18] 王紅玲, 施士爭, 黃瑞芳,等. 6種柳樹對富營養(yǎng)化灌溉污水的氮磷富集能力比較[J]. 西北林學院學報, 2016, 31(4):59-66. WANG H L, SHI S Z, HUANG R F, et al. Comparison of the enriching ability of nitrogen and phosphorus between 6 willow species irrigated by artificial eutrophic water[J].JournalofNorthwestForestryUniversity, 2016, 31(4): 59-66. (in Chinese with English abstract)
[19] ROGERS A, MCDONALD K, MUEHLBAUER M F, et al. Inoculation of hybrid poplar with the endophytic bacteriumEnterobactersp. 638 increases biomass but does not impact leaf level physiology[J].GlobalChangeBiologyBioenergy, 2012, 4(3):364-370.
[20] 劉桂青, 楊棟, 倪其軍, 等. 內(nèi)生菌對柳樹生長及氮磷吸收的強化作用[J]. 浙江大學學報(農(nóng)業(yè)與生命科學版), 2016, 42(2):256-264. LIU G Q, YANG D, NI Q J, et al. Bioaugmentation effects of endophytic bacteria on growth and nitrogen and phosphorus accumulation of willow[J].JournalofZhejiangUniversity(Agriculture&LifeSciences), 2016, 42(2): 256-264. (in Chinese with English abstract)
[21] DA CUNHA A C B, SABEDOT S, SAMPAIO C H, et al.Salixrubens, andSalixtriandra, species as phytoremediators of soil contaminated with petroleum-derived hydrocarbons[J].Water,Air, &SoilPollution, 2012, 223(8):4723-4731.
[22] IONESCU M, BERANOVA K, DUDKOVA V, et al. Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphenyls[J].InternationalBiodeterioration&Biodegradation, 2009, 63(6):667-672.
[23] CORSEUIL H X, MORENO F N. Phytoremediation potential of willow trees for aquifers contaminated with ethanol-blended gasoline[J].WaterResearch, 2001, 35(12):3013-3017.
[24] SCHOENMUTH B W, PESTEMER W. Dendroremediation of trinitrotoluene (TNT) Part 1: Literature overview and research concept[J].EnvironmentalScienceandPollutionResearch, 2004, 11(4):273-278.
[25] SCHOENMUTH B W, PESTEMER W. Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees[J].EnvironmentalScienceandPollutionResearch, 2004, 11(5):331-339.
[26] UCISIK A S, TRAPP S. Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salixviminalis)[J].EnvironmentalToxicologyandChemistry, 2006, 25(9):2455-2460.
[27] UCISIK A S, TRAPP S. Uptake, removal, accumulation, and phytotoxicity of 4-chlorophenol in willow trees[J].ArchivesofEnvironmentalContamination&Toxicology, 2008, 54(4):619-627.
[28] WIESHAMMER G, UNTERBRUNNER R, GARCA T B, et al. Phytoextraction of Cd and Zn from agricultural soils bySalixssp. and intercropping ofSalixcaprea, andArabidopsishalleri[J].PlantandSoil, 2007, 298(1):255-264.
[29] GRANEL T, ROBINSON B, MILLS T, et al. Cadmium accumulation by willow clones used for soil conservation, stock fodder, and phytoremediation[J].SoilResearch, 2002, 40(8):1331-1337.
[30] MERTENS J, VERVAEKE P, MEERS E, et al. Seasonal changes of metals in willow (Salixsp.) stands for phytoremediation on dredged sediment[J].EnvironmentalScience&Technology, 2006, 40(6):1962-1968.
[31] DOS SANTOS UTMAZIAN M N, WENZEL W W. Cadmium and zinc accumulation in willow and poplar species grown on polluted soils [J].JournalofPlantNutritionandSoilScience, 2007, 170 (2): 265-272.
[32] HAMMER D, KAYSER A, KELLER C. Phytoextraction of Cd and Zn with Salix viminalis in field trials[J].SoilUseandManagement, 2003, 19(3):187-192.
[33] VANDECASTEELE B, MEERS E, VERVAEKE P, et al. Growth and trace metal accumulation of twoSalixclones on sediment-derived soils with increasing contamination levels[J].Chemosphere, 2005, 58(8):995-1002.
[34] VANDECASTEELE B, QUATAERT P, TACK F M. The effect of hydrological regime on the metal bioavailability for the wetland plant speciesSalixcinerea[J].EnvironmentalPollution, 2005, 135(2):303-312.
[35] 王銀, 王光輝, 胡蘇杭. 重金屬和有機污染土壤植物增效修復(fù)技術(shù)研究進展[J]. 安徽農(nóng)業(yè)科學, 2014, 42(16):5074-5076. WANG Y, WANG G H, HU S H. Application of enhanced phytoremediation in contaminated soil by heavy metals and organic pollutants[J].JournalofAnhuiAgriculturalSciences, 2014, 42(16): 5074-5076. (in Chinese with English abstract)
[36] WANG Y, GREGER M. Use of iodide to enhance the phytoextraction of mercury-contaminated soil[J].ScienceoftheTotalEnvironment, 2006, 368(1): 30-39.
[38] BAUM C, HRYNKIEWICZ K, LEINWEBER P, et al. Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix×dasyclados)[J].JournalofPlantNutritionandSoilScience, 2006, 169(4):516-522.
[39] EAPEN S, D’SOUZA S F. Prospects of genetic engineering of plants for phytoremediation of toxic metals[J].BiotechnologyAdvances, 2005, 23(2): 97-114.
[40] CHEN Y, TANG X, CHEEMA S A, et al. β-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area[J].JournalofEnvironmentalMonitoring, 2010, 12(7):1482-1489.
[41] YANG C, ZHOU Q, WEI S, et al. Chemical-assisted phytoremediation of Cd-PAHs contaminated soils usingSolanumnigrumL[J].InternationalJournalofPhytoremediation, 2011, 13(8):818-833.
[42] YU X Z, GU J D. The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees[J].Ecotoxicology, 2008, 17(3):143-152.
[43] PUNSHON T, LEPP N W, DICKINSON N M. Resistance to copper toxicity in some British willows[J].JournalofGeochemicalExploration, 1995, 52(1):259-266.
[44] KUZOVKINA Y A, KNEE M, QUIGLEY M F. Cadmium and copper uptake and translocation in five willow (SalixL.) species[J].InternationalJournalofPhytoremediation, 2004, 6(3):269-287.
[45] WATSON C, PULFORD I D, RIDDELLBLACK D. Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix)[J].InternationalJournalofPhytoremediation, 2003, 5(4):333-349.
[46] WATSON C, PULFORD I D, RIDDELLBLACK D. Heavy metal toxicity responses of two willow (Salix) varieties grown hydroponically: development of a tolerance screening test[J].EnvironmentalGeochemistryandHealth, 1999, 21(4):359-364.
[47] WATSON C, PULFORD I D, RIDDELLBLACK D. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials[J].InternationalJournalofPhytoremediation, 2003, 5(4):351-365.
(責任編輯 高 峻)
Review on application of willows (Salixspp.) in remediation of contaminated environment
ZHAO Fengliang1,2, YANG Weidong2,*
(1.EnvironmentandPlantProtectionInstitute,ChineseAcademyofTropicalAgriculturalSciences,Haikou571101,China; 2.CollegeofEnvironmentandResources,ZhejiangUniversity,Hangzhou310029,China)
Willows had ideal biological characteristics for phytoremediation, such as high biomass, fast-growing, easy propagation and high transpiration ability. Relevant studies showed that willows could effectively remove nitrogen, phosphorus from contaminated environment through plant-soil, plant-sand, constructed wetland and river buffer zones. Willows could remediate organic pollutants such as ethanol, polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Willows could also remove heavy metals through natural phytoremediation and induced phytoremediation (chelators, arbuscular myconhizal fungi). The phytoremediation efficiency of willows was strongly correlated with species or clones, soil types and hydrological regime. In the future, more strength should be put toward to explore the bioenergy potential of willow along with environment remediation techniques, and more efforts should be devoted to the screening and evaluation of willow species for environmental phytoremediation.
willows (Salixspp.); eutrophication; heavy metals; organic pollution; phytoremediation
10.3969/j.issn.1004-1524.2017.02.17
2016-10-20
國家公益性行業(yè)(農(nóng)業(yè))科研專項(201503106);國家自然科學基金青年基金項目(31100513,31401945)
趙鳳亮(1980—),男,山東青州人,博士,副研究員,主要從事植物營養(yǎng)與面源污染防控研究。E-mail: zfl7409@163.com
S792.12;X51
A
1004-1524(2017)02-0300-07
*通信作者,楊衛(wèi)東,ywdheze@126.com