弓 劍 曉 敏
(內(nèi)蒙古師范大學(xué)生命科學(xué)與技術(shù)學(xué)院,呼和浩特010022)
?
多不飽和脂肪酸代謝及其對炎癥的調(diào)節(jié)
弓 劍 曉 敏
(內(nèi)蒙古師范大學(xué)生命科學(xué)與技術(shù)學(xué)院,呼和浩特010022)
炎癥是一種機體對感染或組織損傷的保護性反應(yīng)。適度的或可控的炎癥對于入侵病原微生物的清除以及受損組織的修復(fù)是必需的,然而過度的或不可控的炎癥往往會導(dǎo)致病理性炎癥反應(yīng)發(fā)生,大大提高了各種感染性和代謝性疾病的發(fā)病風險。多不飽脂肪酸代謝生成的脂質(zhì)調(diào)控介質(zhì)對炎癥的啟動、發(fā)展以及消退均具有重要的調(diào)節(jié)作用,了解多不和脂肪酸的代謝及其代謝產(chǎn)物對炎癥反應(yīng)的調(diào)節(jié)機制,對于通過飼糧營養(yǎng)途徑控制疾病發(fā)生以及改善人和動物健康具有重要的理論和現(xiàn)實意義。鑒此,本文綜述了多不飽和脂肪酸的代謝途徑,并就其代謝產(chǎn)物對炎癥反應(yīng)的調(diào)節(jié)進行了詳細論述。
多不飽和脂肪酸;代謝;脂質(zhì)調(diào)控介質(zhì);炎癥
多不飽和脂肪酸(polyunsaturated fatty acids,PUFA)是一類含有2個或2個以上雙鍵的多聚不飽和脂肪酸。依據(jù)第1個雙鍵在碳鏈上位置的不同,PUFA分為n-6(ω-6)和n-3(ω-3)2類,n-6 PUFA表示第1個雙鍵位于從甲基端開始第6~7個碳位之間,而n-3 PUFA表示第1個雙鍵位于從甲基端開始第3~4個碳位之間。由此,1個含18個碳、2個雙鍵、第1個雙鍵位于從甲基端開始第6~7個碳位之間的脂肪酸可表示為C18∶2n-6。大量研究證據(jù)表明,飼糧中PUFA的組成及含量會影響細胞膜磷脂中PUFA的組成和含量,而細胞膜磷脂中PUFA組成和含量的改變會影響細胞膜的流動性以及膜受體的功能進而影響炎癥反應(yīng)[1-2]。此外,PUFA在一定條件下可從細胞膜磷脂池中釋放出來并轉(zhuǎn)變?yōu)橛坞x狀態(tài),游離狀態(tài)的PUFA可代謝生成上百種脂質(zhì)調(diào)節(jié)物質(zhì),這些物質(zhì)對炎癥的啟動、發(fā)展以及消退具有重要的調(diào)節(jié)作用[3]。絕大多數(shù)由n-6 PUFA代謝產(chǎn)生的脂質(zhì)調(diào)控介質(zhì)具有觸發(fā)炎癥反應(yīng)的作用,如果不能及時控制,往往會導(dǎo)致病理性炎癥反應(yīng)的發(fā)生,而由n-3 PUFA代謝產(chǎn)生的脂質(zhì)調(diào)節(jié)物質(zhì)具有抗炎作用或相比n-6 PUFA代謝產(chǎn)物有較低的促炎作用[4-5],而且n-3 PUFA與n-6 PUFA利用共同的酶系進行代謝,因而可競爭性地抑制n-6 PUFA的代謝,進而降低促炎脂質(zhì)調(diào)節(jié)物質(zhì)的產(chǎn)生;此外,n-3 PUFA還會代謝生成一些具有炎癥消退功能的脂質(zhì)調(diào)節(jié)物質(zhì)[6]。盡管PUFA代謝生成的脂質(zhì)調(diào)控介質(zhì)對炎癥的啟動、發(fā)展以及消退均具有重要的調(diào)節(jié)作用,但調(diào)節(jié)的機理尚不清楚,而且不同的代謝產(chǎn)物對炎癥的調(diào)節(jié)作用不盡相同,甚至相同的代謝產(chǎn)物在炎癥發(fā)展的不同階段對炎癥的調(diào)節(jié)也不盡相同。本文就PUFA代謝以及代謝產(chǎn)物對炎癥反應(yīng)可能的調(diào)節(jié)機理進行綜述,以期為通過飼糧營養(yǎng)途徑控制疾病發(fā)生以及改善人和動物健康提供理論依據(jù)。
1.1 花生四烯酸(arachidonic acid,ARA)和亞油酸(linoleic acid,LA)代謝
ARA是n-6 PUFA的典型代表,屬于二十碳四烯酸(C20∶4n-6)。從細胞膜磷脂池中釋放出來的游離ARA主要通過酶和非酶2條途徑氧化代謝并生成具有生物活性的脂質(zhì)代謝產(chǎn)物[7]。如圖1所示,ARA在環(huán)氧合酶(cyclooxygenase,COX)的催化下生成2系列的前列腺素(prostaglandin,PG)和血栓素(thromboxane,TX)A2;在脂氧合酶(lipoxygenase,LOX)的催化下生成4系列的白三烯(leukotriene,LT)、過氧羥基二十碳四烯酸(hydroperoxyeicosatetraenoic acid,HPETE)、羥基二十碳四烯酸(hydroxyeicosatetraenoic acid,HETE)和氧代二十碳四烯酸(oxoeicosatetraenoic acid,oxo-ETE),其中,15-HETE也可轉(zhuǎn)變?yōu)橹跛?lipoxin,LX)[8];此外,活性氧(reactive oxygen species,ROS)可直接氧化ARA生成9-HPETE和11-HPETE,二者進一步代謝生成9-HETE和11-HETE[9]。
LA也屬于n-6 PUFA,是ARA合成的前體,除了合成ARA外,也可通過COX和LOX途徑代謝(圖1),生成的產(chǎn)物主要為過氧羥基十八碳二烯酸(hydroperoxyoctadecadienoic acid,HPODE)、羥基十八碳二烯酸(hydroxyoctadecadienoic acid,HODE)和氧代十八碳二烯酸(oxooctadecadienoic acid,oxo-ODE)。
ARA:花生四烯酸arachidonic acid;LOX:脂氧合酶lipoxygenase;COX:環(huán)氧合酶cyclooxygenase;ROS:活性氧reactive oxygen species;HPETE:過氧羥基二十碳四烯酸hydroperoxyeicosatetraenoic acid;HETE:羥基二十碳四烯酸hydroxyeicosatetraenoic acid;PG:前列腺素prostaglandin;LT:白三烯leukotriene;oxo-ETE:氧代二十碳四烯酸oxoeicosatetraenoic acid;LX:脂氧素lipoxin;TX:血栓素thromboxane;LA:亞油酸linoleic acid;HPODE:過氧羥基十八碳二烯酸hydroperoxyoctadecadienoic acid;HODE:羥基十八碳二烯酸hydroxyoctadecadienoic acid;oxo-ODE:氧代十八碳二烯酸oxooctadecadienoic acid。
圖1 ARA和LA代謝途徑
Fig.1 The metabolic pathways of ARA and LA[8-9]
1.2 ARA和LA代謝產(chǎn)物對炎癥反應(yīng)的調(diào)節(jié)
COX有2個同分異構(gòu)體,分別為COX-1和COX-2,在絕大多數(shù)組織中,COX-1基因通常持續(xù)表達并代謝ARA生成生理水平的PG,主要為PGI2,起著維持正常生理功能和血管功能的作用;正常生理條件下,COX-2基因不表達,但當組織或細胞受到病原微生物、炎癥因子或ROS的刺激時,COX-2基因的表達量明顯提高。ARA由COX-2途徑代謝生成的脂質(zhì)調(diào)節(jié)物質(zhì)主要為PGE2、PGF2α和TXB2,奶?;既榉垦讜r,牛奶中這些物質(zhì)的含量明顯提高[10-12]。PGE2、PGF2α和TXB2具有強有力的促炎作用,研究較多的是PGE2,其促炎作用表現(xiàn)為誘導(dǎo)發(fā)熱、提高血管壁通透性、增強血管舒張、引起疼痛反應(yīng)[6]、提高白介素(interleukin,IL)-6的生成以及誘導(dǎo)COX-2活化,進而增強其本身的生成[13]。一些研究表明,PGE2可通過增強15-LOX的活性,進而提高具有抗炎作用的LXA4的生成[14]。近年來的研究發(fā)現(xiàn),COX-2基因表達量的提高不僅表現(xiàn)在炎癥發(fā)起階段,在炎癥消退階段其活性也明顯提高,但催化ARA生成的脂質(zhì)調(diào)節(jié)物質(zhì)不是PGE2、PGF2α和TXB2,而是PGD2以及其下游終產(chǎn)物PGJ2[15]。PGD2和PGJ2可抑制白細胞向內(nèi)皮細胞的黏附以及核因子-κB(NF-κB)的活化,進而抑制促炎細胞因子的生成[16]。
依據(jù)對脂肪酸氧化位點的不同,LOX可分為5-LOX、12-LOX和15-LOX 3種,ARA經(jīng)5-LOX途徑代謝生成的終產(chǎn)物主要為4系列的LT,具有促炎作用。例如,研究較多的LTB4,其促炎作用表現(xiàn)為提高血管壁通透性、提高局部血流速度、提高白細胞趨化性遷移、誘導(dǎo)溶酶體酶釋放、增強吞噬細胞ROS生成、抑制淋巴細胞增殖以及激活自然殺傷細胞[5]。LTB4對促炎細胞因子的生成也具有調(diào)節(jié)作用,可增強腫瘤壞死因子(tumour necrosis factor,TNF)-α、IL-1、IL-6和干擾素(interferon,IFN)-γ的產(chǎn)生[6]。ARA經(jīng)15-LOX途徑代謝生成的終產(chǎn)物主要為LXA4,LXA4具有很強的抗炎作用,可抑制粒細胞的趨化和跨膜遷移,降低血管內(nèi)皮細胞促炎細胞因子(IL-6、IL-8)[17]、L-選擇蛋白和細胞間黏附分子-1(ICAM-1)的生成[18]。奶牛患乳房炎時,血漿[11]和乳腺組織[10]中LXA4的含量顯著降低。近年來的研究發(fā)現(xiàn),ARA經(jīng)LOX途徑的代謝終產(chǎn)物oxo-ETE和LA的代謝終產(chǎn)物oxo-ODE具有抗炎作用。人結(jié)腸內(nèi)皮細胞的研究表明,13-oxo-ODE可激活抗炎核受體過氧化物酶體增殖物激活受體γ,進而降低促炎細胞因子IL-8的生成[19]。然而,終產(chǎn)物oxo-ETE和oxo-ODE的上游中間代謝產(chǎn)物HPETE和HPODE具有促炎作用。例如,13-HPODE可激活血管平滑肌細胞促炎轉(zhuǎn)錄因子NF-κB[20],15-HPETE可增強促炎因子ICAM-1和血管細胞黏附分子-1(VCAM-1)基因的表達[21]。HPETE和HPODE極不穩(wěn)定,進一步代謝生成較為穩(wěn)定的HETE和HODE。在氧化應(yīng)激和炎癥(人動脈粥樣硬化)情況下,LOX的活性明顯增強,HETE和HODE在組織或細胞中含量明顯提高[22-23];而且,對奶牛的研究發(fā)現(xiàn),患乳房炎時,奶牛血漿和乳中HETE/oxo-ETE以及HODE/oxo-ODE的值顯著提高[11]。此外,在氧化應(yīng)激條件下,一些ROS可直接氧化ARA和LA生成HPETE和HPODE,進而增強促炎反應(yīng)。
2.1 二十碳五烯酸(eicosapentaenoic acid,EPA)和二十二碳六烯酸(docosahexaenoic acid,DHA)代謝
EPA和DHA屬于n-3 PUFA,其生物合成的前體為α-LA,在魚油中的含量非常豐富。如圖2所示,與ARA的代謝相似,EPA也可代謝生成PG和LT,有所不同的是,EPA經(jīng)COX-2途徑生成3系列的PG,經(jīng)5-LOX途徑生成5系列的LT[6]。阿司匹林(aspirin)是一種抗菌消炎藥,可使COX-2乙?;?,乙?;腃OX-2仍具有活性,但環(huán)氧化性減弱,脂氧化性增強,因而可催化EPA生成E系列的消退素(resolvin E,RvE),包括RvE1和RvE2[24]。同樣,乙?;腃OX-2也可催化DHA生成D系列的消退素(resolvin D,RvD),包括RvD1、RvD2、RvD3、RvD4、RvD5和RvD6[25]。此外,15-LOX可直接催化DHA生成RvD和保護素D(protectin D,PD)[25]。隨后的研究發(fā)現(xiàn),巨噬細胞中的DHA在12-LOX的催化下可生成一種叫maresin(MaR)的脂質(zhì)調(diào)節(jié)物質(zhì)[26]。
2.2 EPA和DHA代謝產(chǎn)物對炎癥反應(yīng)的調(diào)節(jié)
從促炎角度講,代謝生成的3系列的PG和5系列的LT與ARA代謝生成的2系列的PG和4系列的LT相比具有較低的促炎作用。例如,作為化學(xué)趨化劑,LTB4對中性粒細胞的趨化作用較LTB5高出10~100倍[27]。與PGE2相比,PGE3對COX-2基因表達以及IL-6生成的誘導(dǎo)作用明顯降低[13]。
從抗炎角度講,n-3 PUFA代謝生成的多數(shù)產(chǎn)物具有抗炎和炎癥消退的雙重作用。炎癥的消退不是被動的炎癥反應(yīng)的終止,而是一個復(fù)雜的主動程序化過程。炎癥消退大概包括3個環(huán)節(jié):抑制或終止粒細胞的活化、趨化和遷移,抑制或降低趨化因子和促炎細胞因子的生成,促進粒細胞的凋亡和凋亡后清除。研究表明,RvE1通過抑制中性粒細胞活化,阻止中性粒細胞跨內(nèi)皮遷移,誘發(fā)中性粒細胞凋亡,促進炎癥部位巨噬細胞對中性粒細胞的非炎性清除[28]以及降低細胞因子IL-12的生成[29]等途徑促進炎癥消退。同樣,RvE2可阻止中性粒細胞的趨化和跨膜遷移[30];RvD1可改善作為屏障的上皮和內(nèi)皮細胞膜的完整性,阻止中性粒細胞的遷移[31],抑制TNF-α和IL-8的生成[32];RvD2可抑制TNF-α和IL-1的生成[33]。人的血細胞和神經(jīng)膠質(zhì)細胞、小鼠的腦細胞、中性粒細胞、巨噬細胞、T細胞和視網(wǎng)膜色素細胞均可產(chǎn)生PD1,在炎癥消退的各個環(huán)節(jié),PD1均起著重要的調(diào)節(jié)作用[34]。研究表明,PD1可限制中性粒細胞浸潤,抑制化學(xué)趨化劑和促炎細胞因子的生成,促進巨噬細胞對凋亡中性粒細胞的吞噬[28]。MaR1是近年來發(fā)現(xiàn)的具有抗炎和促進炎癥消退的DHA代謝產(chǎn)物,主要在巨噬細胞中產(chǎn)生。巨噬細胞有2種表型(M1和M2型),在炎癥啟動和發(fā)展階段,巨噬細胞主要以M1型存在,起著調(diào)節(jié)促炎細胞因子生成和吞噬病原體的功能,而在炎癥消退階段,巨噬細胞主要以M2型存在,起著促進炎癥消退、傷口愈合和組織再生的作用[35]。研究表明,當巨噬細胞為M2型時,MaR1的含量明顯提高[36]。MaR1干預(yù)治療可顯著限制小鼠支氣管炎癥中性粒細胞的浸潤和促炎介質(zhì)TNF-α、IL-6和ICAM-1的生成[37]。在脂多糖誘導(dǎo)的小鼠急性肺損傷中,MaR1可抑制中性粒細胞的浸潤和黏附,降低白細胞在肺部的聚集,下調(diào)TNF-α、IL-1α和IL-6的生成[38]。對小鼠結(jié)腸炎的研究表明,MaR1還可抑制NF-κB的活化[39]。另外,一些研究發(fā)現(xiàn),MaR1可誘導(dǎo)巨噬細胞由經(jīng)典活化型轉(zhuǎn)變?yōu)檠装Y消退型,而且其含量的增加與轉(zhuǎn)化為炎癥消退型巨噬細胞的數(shù)量呈正相關(guān)[40]。上述研究表明,MaR1可通過限制中性粒細胞浸潤、增強巨噬細胞對凋亡中性粒細胞的吞噬、下調(diào)促炎細胞因子生成和抑制NF-κB活化等途徑使炎癥消退。
EPA:二十碳五烯酸eicosapentaenoic acid;DHA:二十二碳六烯酸docosahexaenoic acid;COX:環(huán)氧合酶cyclooxygenase;LOX:脂氧合酶lipoxygenase;aspirin:阿司匹林;PG:前列腺素prostaglandin;HPETE:過氧羥基二十碳四烯酸hydroperoxyeicosatetraenoic acid;RvE:E系列消退素 E-series resolvin;HPDHA:過氧羥基二十二碳六烯酸hydroperoxydocosahexaenoic acid;RvD:D系列消退素 D-series resolvin;PD1:保護素D1 protectin D1;NPD1:神經(jīng)保護素D1 neuroprotectin D1;MaR:maresin;Aspirin-triggered D-series Resolvins:阿司匹林誘導(dǎo)型D系列消退素;D-series Resolvins:D系列消退素。
圖2 EPA和DHA代謝途徑
Fig.2 The metabolic pathways of EPA and DHA[6,24-26]
綜上所述,n-6 PUFA代謝產(chǎn)物主要起著誘導(dǎo)炎癥啟動和發(fā)展的作用,而n-3 PUFA代謝產(chǎn)物起著抗炎和促進炎癥消退的功能。臨床上,許多疾病,如動脈粥樣硬化、肥胖癥、奶牛產(chǎn)后乳房炎和子宮炎等的發(fā)生均與PUFA代謝紊亂進而導(dǎo)致不可控的慢性炎癥有關(guān)。生產(chǎn)實踐中,如何有效控制炎癥的發(fā)生和發(fā)展進而降低與其相關(guān)的疾病發(fā)生,提高飼糧n-3 PUFA的比例,降低n-6 PUFA的攝入可能是最直接有效的方法;也可在飼糧中添加一些微量元素和維生素(如硒、維生素A和維生素E)以調(diào)節(jié)PUFA代謝,進而降低促炎脂質(zhì)調(diào)控介質(zhì)的生成;此外,甚至可以將具有抗炎和炎癥消退功能的n-3 PUFA代謝產(chǎn)物作為外源性藥物直接干預(yù)炎癥的發(fā)生和發(fā)展。
[1] SIMONS K,TOOMRE D.Lipid rafts and signal transduction[J].Nature Reviews Molecular Cell Biology,2000,1(1):31-39.
[2] STILLWELL W,WASSALL S R.Docosahexaenoic acid:membrane properties of a unique fatty acid[J].Chemistry and Physics of Lipids,2003,126(1):1-27.
[3] DUMLAO D S,BUCZYNSKI M W,NORRIS P C,et al.High-throughput lipidomic analysis of fatty acid derived eicosanoids and N-acylethanolamines[J].Biochimica et Biophysica Acta:Molecular and Cell Biology of Lipids,2011,1811(11):724-736.
[4] POULSEN R C,GOTLINGER K H,SERHAN C N,et al.Identification of inflammatory and proresolving lipid mediators in bone marrow and their lipidomic profiles with ovariectomy and omega-3 intake[J].American Journal of Hematology,2008,83(6):437-445.
[5] CALDER P C.Polyunsaturated fatty acids and inflammation[J].Prostaglandins,Leukotrienes and Essential Fatty Acids,2006,75(3):197-202.
[6] CALDER P C.n-3 polyunsaturated fatty acids,inflammation,and inflammatory diseases[J].World Review of Nutrition and Dietetics,2006,83(6):S1505-1519S.
[7] KUHN H,BANTHIYA S,VAN LEYEN K.Mammalian lipoxygenases and their biological relevance[J].Biochimica et Biophysica Acta:Molecular and Cell Biology of Lipids,2015,1851(4):308-330.
[8] ASTUDILLO A M,BALGOMA D,BALBOA M A,et al.Dynamics of arachidonic acid mobilization by inflammatory cells[J].Biochimica et Biophysica Acta:Molecular and Cell Biology of Lipids,2012,1821(2):249-256.
[9] MILNE G L,YIN H Y,HARDY K D,et al.Isoprostane generation and function[J].Chemical Reviews,2011,111(10):5973-5996.
[10] BOUTET P,BUREAU F,DEGAND G,et al.Imbalance between lipoxin A4 and leukotriene B4 in chronic mastitis-affected cows[J].Journal of Dairy Science,2003,86(11):3430-3439.
[11] MAVANGIRA V,GANDY J C,ZHANG C,et al.Polyunsaturated fatty acids influence differential biosynthesis of oxylipids and other lipid mediators during bovine coliform mastitis[J].Journal of Dairy Science,2015,98(9):6202-6215.
[12] RYMAN V E,PIGHETTI G M,LIPPOLIS J D,et al.Quantification of bovine oxylipids during intramammaryStreptococcusuberisinfection[J].Prostaglandins & Other Lipid Mediators,2015,121:207-217.
[13] BAGGA D,WANG L,FARIAS-EISNER R,et al.Differential effects of prostaglandin derived from ω-6 and ω-3 polyunsaturated fatty acids onCOX-2 expression and IL-6 secretion[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(4):1751-1756.
[14] SERHAN C N,CHIANG N.Endogenous pro-resolving and anti-inflammatory lipid mediators:a new pharmacologic genus[J].British Journal of Pharmacology,2008,153(Suppl.1):S200-S215.
[15] SORDILLO L M.Nutritional strategies to optimize dairy cattle immunity[J].Journal of Dairy Science,2016,99(6): 4967-4982.
[16] PATTANAIK U,PRASAD K.Oxygen free radicals and endotoxic shock:effect of flaxseed[J].Journal of Cardiovascular Pharmacology and Therapeutics,1998,3(4):305-318.
[17] SERHAN C N.Systems approach to inflammation resolution:Identification of novel anti-inflammatory and pro-resolving mediators[J].Journal of Thrombosis and Haemostasis,2009,7:44-48.
[18] CHINTHAMANI S,ODUSANWO O,MONDAL N,et al.Lipoxin A4 inhibits immune cell binding to salivary epithelium and vascular endothelium[J].American Journal of Physiology:Cell Physiology,2012,302(7):C968-C978.
[19] ALTMANN R,HAUSMANN M,SP?TTL T,et al.13-Oxo-ODE is an endogenous ligand for PPARγ in human colonic epithelial cells[J].Biochemical Pharmacology,2007,74(4):612-622.
[20] NATARAJAN R,REDDY M A,MALIK K U,et al.Signaling mechanisms of nuclear factor-κB-mediated activation of inflammatory genes by 13-hydroperoxyoctadecadienoic acid in cultured vascular smooth muscle cells[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2001,21(9):1408-1413.
[21] BONOMINI F,TENGATTINI S,FABIANO A,et al.Atherosclerosis and oxidative stress[J].Histology and Histopathology,2008,23(3):381-390.
[22] RAMSDEN C E,RINGEL A,FELDSTEIN A E,et al.Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans[J].Prostaglandins,Leukotrienes and Essential Fatty Acids,2012,87(4/5):135-141.
[23] QUEHENBERGER O,ARMANDO A M,BROWN A H,et al.Lipidomics reveals a remarkable diversity of lipids in human plasma[J].The Journal of Lipid Research,2010,51(11):3299-3305.
[24] SERHAN C N,CLISH C B,BRANNON J,et al.Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing[J].The Journal of Experimental Medicine,2000,192(8):1197-1204.
[25] SERHAN C N,HONG S,GRONERT K,et al.A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals[J].The Journal of Experimental Medicine,2002,196(8):1025-1037.
[26] SERHAN C N,YANG R,MARTINOD K,et al.Maresins:novel macrophage mediators with potent antiinflammatory and proresolving actions[J].The Journal of Experimental Medicine,2009,206(1):15-23.
[27] LEE T H,MENCIA-HUERTA J M,SHIH C,et al.Effects of exogenous arachidonic,eicosapentaenoic,and docosahexaenoic acids on the generation of 5-lipoxygenase pathway products by ionophore-activated human neutrophils[J].Journal of Clinical Investigation,1984,74(6):1922-1933.
[28] SCHWAB J M,CHIANG N,ARITA M,et al.Resolvin E1 and protectin D1 activate inflammation-resolution programmes[J].Nature,2007,447(7146):869-874.
[29] HASTURK H,KANTARCI A,GOGUET-SURMENIAN E,et al.Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasisinvivo[J].The Journal of Immunology,2007,179(10):7021-7029.
[30] TJONAHEN E,OH S F,SIEGELMAN J,et al.Resolvin E2:identification and anti-inflammatory actions:pivotal role of human 5-lipoxygenase in resolvin E series biosynthesis[J].Chemistry & Biology,2006,13(11):1193-1202.
[31] EICKMEIER O,SEKI H,HAWORTH O,et al.Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury[J].Mucosal Immunology,2013,6(2):256-266.
[32] DONG J J,LIAO Z L,WANG T,et al.Resolvin-D1 inhibits interleukin-8 and hydrogen peroxide production induced by cigarette smoke extract in 16HBE cells via attenuating NF-κB activation[J].Chinese Medical Journal,2014,127(3):511-517.
[33] BOHR S,PATEL S J,SARIN D,et al.Resolvin D2 prevents secondary thrombosis and necrosis in a mouse burn wound model[J].Wound Repair and Regeneration,2013,21(1):35-43.
[34] DEMARQUOY J,BORGNE F L.Biosynthesis, metabolism and function of protectins and resolvins[J].Clinical Lipidology,2014,9(6):683-693.
[35] ARIEL A,SERHAN C N.New lives given by cell death:macrophage differentiation following their encounter with apoptotic leukocytes during the resolution of inflammation[J].Frontiers in Immunology,2012,3:4.
[36] DALLI J,SERHAN C N.Specific lipid mediator signatures of human phagocytes:microparticles stimulate macrophage efferocytosis and pro-resolving mediators[J].Blood,2012,120(15):e60-e72.
[37] NORDGREN T M,BAUER C D,HEIRES A J,et al.Maresin-1 reduces airway inflammation associated with acute and repetitive exposures to organic dust[J].Translational Research,2015,166(1):57-69.
[38] GONG J,WU Z Y,QI H,et al.Maresin 1 mitigates LPS-induced acute lung injury in mice[J].British Journal of Pharmacology,2014,171(14):3539-3550.
[39] DALLI J,ZHU M,VLASENKO N A,et al.The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1),inhibits leukotriene A4hydrolase (LTA4H),and shifts macrophage phenotype[J].The FASEB Journal,2013,27(7):2573-2583.
[40] MARCON R,BENTO A F,DUTRA R C,et al.Maresin 1,a proresolving lipid mediator derived from omega-3 polyunsaturated fatty acids,exerts protective actions in murine models of colitis[J].The Journal of Immunology,2013,191(8):4288-4298.
Author, GONG Jian, associate professor, E-mail: gongjian3021@sina.com
(責任編輯 菅景穎)
The Metabolism of Polyunsaturated Fatty Acids and Its Regulation to Inflammation
GONG Jian XIAO Min
(CollegeofLifeScienceandTechnology,InnerMongoliaNormalUniversity,Huhhot010022,China)
Inflammation is part of protective response to infection or tissue injury. Appropriate or controlled inflammation is necessary to eliminate invading pathogens and repair damaged tissue. However, excessive or uncontrolled inflammation contributes to a range of pathological inflammatory responses, which may result in the increased incidence of both metabolic and infectious diseases. Lipid mediators derived from polyunsaturated fatty acids have important roles in regulating the initiation, development and resolving of inflammatory responses. A better understanding of the metabolism of polyunsaturated fatty acids and its regulation to inflammation will facilitate the development of dietary nutritional strategies to control the incidence of diseases and improve human and animal health. Therefore, the metabolic pathways of polyunsaturated fatty acids and the regulatory mechanism of its metabolic products to inflammation were reviewed in this paper.[ChineseJournalofAnimalNutrition, 2017, 29(1):1-7]
polyunsaturated fatty acids; metabolism; lipid mediators; inflammation
10.3969/j.issn.1006-267x.2017.01.001
2016-07-14
國家自然科學(xué)基金項目(31560644);內(nèi)蒙古自然科學(xué)基金項目(2015MS0367);引進高層次人才科研啟動經(jīng)費項目(2015YJRC005)
弓 劍(1975—),男,內(nèi)蒙古涼城人,副教授,博士,主要從事反芻動物微量元素營養(yǎng)與飼料資源開發(fā)利用研究。E-mail: gongjian3021@sina.com
Q547;Q493.5
A
1006-267X(2017)01-0001-07