何燈,李云杰
(福清第三中學(xué),福建福清350315)
雙曲函數(shù)的Cusa-Huygens型不等式的推廣與改進(jìn)
何燈,李云杰
(福清第三中學(xué),福建福清350315)
本文將雙曲函數(shù)的Cusa-Huygens型不等式作了含參推廣和改進(jìn),由此建立的不等式優(yōu)于現(xiàn)有的諸多結(jié)果,文末導(dǎo)出一條涉及算術(shù)平均、幾何平均、對(duì)數(shù)平均的不等式鏈.
雙曲函數(shù);Cusa-Huygens型不等式;Seiffert平均;不等式
文獻(xiàn)[1-2]建立了著名的Cusa-Huygens不等式,文獻(xiàn)[3]給出了Cusa-Huygens不等式的雙曲函數(shù)形式.針對(duì)文獻(xiàn)[3]所建立的不等式,J.Sándor、朱靈、楊鎮(zhèn)杭、吳善和、陳超平等不等式專家做了大量的研究,現(xiàn)有諸多結(jié)果[4-17].本文在現(xiàn)有研究的基礎(chǔ)上,建立了shx/x的更強(qiáng)的含參上下界形式,將已有的研究結(jié)果做了更進(jìn)一步的推廣和改進(jìn),由此得到了涉及算術(shù)平均、幾何平均、對(duì)數(shù)平均的一條不等式鏈.
Cusa-Huygens不等式[1-2]:設(shè),則有.
雙曲型Cusa-Huygens不等式[3]:設(shè)x∈(0,+∞),則有
朱靈[7]將式(1)推廣為:設(shè)x>0,,則有.
E.Neuman與J.Sándor則改進(jìn)式(1)為:設(shè)x>0,則.
成立當(dāng)且僅當(dāng)q≥3.
朱靈[15]將式(2)推廣為:設(shè)x>0,p>1或p≤8/15,則當(dāng)且僅當(dāng)q≥3(1-p).特別地,令p=1/2,q=3/2,可得
楊鎮(zhèn)杭[11]證得式(3)的如下含參推廣:
結(jié)論1設(shè)p,x>0,雙邊不等式
結(jié)論2設(shè)x>0,則
綜合上述結(jié)論,可得不等式鏈
關(guān)于上述不等式鏈的研究,可參閱文獻(xiàn)[17].
引理1設(shè)t∈(0,0.88),n∈N*,n≥4,則f(n)=t2n(2n+1)關(guān)于n單調(diào)遞減.
證明f(x)=t2x(2x+1)(x∈R,x≥4),可求
則f(x)=t2x(2x+1)關(guān)于x在[4,+∞)上單調(diào)遞減,從而當(dāng)n≥4,f(n)=t2n(2n+1)關(guān)于n單調(diào)遞減.
引理2設(shè)an=180p4-4p2n(20p2-3)(2n+1)-22np2n(3-5p2)(2n+1),n∈N*,n≥3,,則當(dāng)p=p1時(shí)an≥0,當(dāng)p∈[1/2,p2]時(shí)an≤0.
證明當(dāng)p=p1,可求a3=0.當(dāng)n≥4,由引理1得
又
當(dāng)p∈(0,p1],由引理2,當(dāng)p=p1,F(xiàn)(p,x)≥0,結(jié)合引理3,可證.
當(dāng)p∈[p3,+∞),注意到,據(jù)式(5)顯然有F(p3,x)≥0,結(jié)合引理3,可證.當(dāng)p∈[1/2,p2],由引理2,F(xiàn)(p,x)≤0,式(6)反向成立.
注意到
要使F(p,x)≥0,必需有
解之,可得p∈(0,p1]∪[p3,+∞).要使F(p,x)≤0,必需有
解之,可得p∈[1/2,p2].
綜上,定理1得證.
注2計(jì)算得
足見式(6)在x=0附近有較高的逼近精度.
注意到G(p3/2)=G(p3),則可得
定理3設(shè)x>0,則
其中花括號(hào)上下兩個(gè)不等式表示其不分強(qiáng)弱(下同).
注意到
兩個(gè)正數(shù)a,b的冪平均定義為[18]
A2,A1,A0分別稱為這兩個(gè)數(shù)的平方根平均,算術(shù)平均及幾何平均.
反雙曲正切Seiffert平均(即對(duì)數(shù)平均)定義為
從而定理1等價(jià)于
定理4設(shè)a,b>0,a≠b,p∈R,則
定理5設(shè)a,b>0,a≠b,則如下不等式鏈成立
[1]CAJORI F.A history ofmathematics[M].2nd ed.New York:BibioLife,1929.
[2]CAMPAN F T.The story ofnumber[M].Romania:Ed Albatros,1977.
[3]NEUMAN E,SáNDOR J.On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens,Wilker and Huygens inequalities[J].Math Inequal Appl,2010,13(4):715-723.
[4]ZHU L.New inequalities for means in two variables[J].Math Inequal Appl,2008,11(2):229-235.
[5]ZHU L.Some newinequalitiesformeansin twovariables[J].Math InequalAppl,2008,11(3):443-448.
[6]ZHU L.Some newinequalities ofthe Huygens type[J].Comput Math Appl,2009,58(6):1180-1182.
[7]ZHU L.Inequalities for hyperbolic functions and their applications[J/OL].J Inequal Appl,2010[2013-10-10]. http://www.journalofinequalitiesandapplications.com/content/2010/1/130821.
[8]NEUMAN E,SáNDOR J.Inequalities for hyperbolic functions[J].Appl Math Comp,2012,218(18):9291-9295.
[9]WU SH,DEBNATH L.Wilker-type inequalitiesforhyperbolicfunctions[J].ApplMath Lett,2012,25(5):837-842.
[10]ZHU L.New inequalities for hyperbolic functions and their applications[J/OL].J Inequal Appl,2012 [2013-10-20].http://www.journalofinequalitiesandapplications.com/content/2012/1/303.
[11]YABG Z H.New sharp bounds for logarithmic mean and identric mean[J/OL].J Inequal Appl,2013 [2013-3-20].http://www.journalofinequalitiesandapplications.com/content/2013/1/116.
[12]CHEN C P,SáNDOR J.Inequality chains for Wilker,Huygens and Lazarevitype inequalities[J].J Math Inequal,2014,8(1):55-67.
[13]YANG Z H.Three families of two-parameter means constructed by trigonometric functions[J/OL].J Inequal Appl,2013[2013-11-19].http://www.journalofinequalitiesandapplications.com/content/2013/1/541.
[15]ZHU L.Generalized Lazarevic's inequality and its applications-Part II[J/OL].J Inequal Appl,2009 [2009-12-24].http://www.journalofinequalitiesandapplications.com/content/2009/1/379142.
[16]YANG Z H,CHU Y M.Jordan Type Inequalities for Hyperbolic Functions and Their Applications [J/OL].Journal of Function Spaces,2014[2014-9-2].http://www.hindawi.com/journals/jfs/aip/370979/.
[17]何燈,李云杰.關(guān)于雙曲函數(shù)的Cusa-Huygens型不等式的改進(jìn)[J].汕頭大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,30(2):28-33,+55.
[18]匡繼昌.常用不等式[M].4版.濟(jì)南:山東科學(xué)技術(shù)出版社,2010:53.
[19]NEUMAN E.Bounds for symmetric elliptic integrals[J].J Approx Theory,2003,122(2):249-259.
Extension and Improvement of the Cusa-Huygens Type Inequalities for Hyperbolic Function
HE Deng,LI Yunjie
(Number 3 Middle School,Fuqing350315,Fujian,China)
A parametric extension and improvement on the Cusa-Huygens type inequalities for Hyperbolic function is presented.The establishment of the inequality is superior to the existing results.An inequality chain involving arithmetic mean,geometric mean,logarithmic mean is explored.
hyperbolic function;Cusa-Huygens type Inequalities;Seiffert mean;inequalities
O178
A
1001-4217(2016)04-0049-08
2015-12-21
何燈(1984—),男,福建福清人,學(xué)士,全國(guó)不等式研究會(huì)成員.研究方向:解析不等式及不等式機(jī)器證明.E-mail:hedeng123@163.com