馬振勇,杜虎林,劉榮國(guó),嚴(yán)子柱,劉立剛,劉 超,牛金帥
(1.中國(guó)科學(xué)院西北生態(tài)環(huán)境資源研究院 蘭州 730000;2.中國(guó)科學(xué)院大學(xué) 北京 100049;3.寧夏中衛(wèi)沙坡頭國(guó)家級(jí)自然保護(hù)區(qū)管理局 中衛(wèi) 755000;4.甘肅省治沙研究所 蘭州 730070)
沙坡頭區(qū)直插式根灌條件下土壤水分變化分析*
馬振勇1,2,杜虎林1,劉榮國(guó)3,嚴(yán)子柱4,劉立剛3,劉 超3,牛金帥3
(1.中國(guó)科學(xué)院西北生態(tài)環(huán)境資源研究院 蘭州 730000;2.中國(guó)科學(xué)院大學(xué) 北京 100049;3.寧夏中衛(wèi)沙坡頭國(guó)家級(jí)自然保護(hù)區(qū)管理局 中衛(wèi) 755000;4.甘肅省治沙研究所 蘭州 730070)
為提高沙坡頭地區(qū)造林過(guò)程中的水分利用效率,制定最優(yōu)化的灌溉制度,在寧夏中衛(wèi)沙坡頭自然保護(hù)區(qū),兩年生固沙梭梭(Haloxy lonammodendron)林展開(kāi)直插式根灌節(jié)水試驗(yàn),分析和模擬直插式根灌過(guò)程中土壤水分入滲和消退規(guī)律。結(jié)果表明:1)直插式根灌過(guò)程中,土壤含水量隨灌水時(shí)間的變化符合Logistic曲線變化;停灌后,土壤水分消退規(guī)律符合冪函數(shù)模型變化。2)本試驗(yàn)條件下,不同土層土壤水分最大入滲速率依次為60cm>40cm>80cm>100cm>20cm,達(dá)到最大入滲速率的時(shí)間40cm土層最短,平均為1.22 h,100cm土層最長(zhǎng),平均為4.57 h;1 m深土層土壤水分最大入滲速率平均為1.65%·h-1,達(dá)到最大入滲速率的時(shí)間平均為2.16 h。3)根據(jù)模擬結(jié)果,建議沙坡頭區(qū)梭梭林直插式根灌灌溉周期為4 d左右,單次灌水時(shí)間以6~10 h為宜。4)停灌2 h后,各土層土壤含水量消退速率隨土層深度增加而增大,停灌后48 h,各土層土壤水分消退速率基本為零;梭梭全生長(zhǎng)期,1 m深土層土壤水分消退速率在結(jié)實(shí)期最大,為2.20%·h-1,休眠期最小,為1.31%·h-1。5)直插式根灌對(duì)20cm土層土壤水分的影響最小,對(duì)60cm土層土壤水分影響最大;灌溉過(guò)程中,土壤水分等值線以60cm土層等值線為中心,向表層和深層土壤輻射狀分布,灌后各土層平均土壤含水量,20cm和60cm土層與其他各土層之間差異顯著(P<0.05)。研究表明,直插式根灌的土壤水分入滲規(guī)律符合Logistic曲線變化,消退規(guī)律符合冪函數(shù)曲線變化,直插式根灌對(duì)20cm土層土壤水分的影響最小,對(duì)60cm土層土壤水分影響最大,沙坡頭區(qū)梭梭林直插式根灌灌溉周期為4 d左右,單次灌水時(shí)間以6~10 h為宜。
人工固沙梭梭林;直插式根灌;土壤水分;入滲;消退;灌溉周期
在極端干旱荒漠地區(qū),水分是制約生態(tài)格局和過(guò)程的關(guān)鍵非生物限制因子[1],提高作物水分利用效率是解決農(nóng)業(yè)水資源匱乏的重要途徑[2]。節(jié)水灌溉技術(shù)是提高水分利用率的最直接方法,直插式根灌技術(shù)是依托于傳統(tǒng)滴灌設(shè)施,采用直插式滲灌滴頭和導(dǎo)水微管將灌溉水直接輸送至植物根系土壤層,實(shí)現(xiàn)了灌溉水分低蒸發(fā)損失、甚至無(wú)蒸發(fā)損失[3-4]的新型灌溉技術(shù),統(tǒng)稱(chēng)根灌。土壤中水分的運(yùn)動(dòng)、分布和存儲(chǔ)受土壤自身性質(zhì)和地表水、地下水等各種因素的影響而表現(xiàn)出不同的時(shí)空動(dòng)態(tài)特征[5]。研究直插式根灌條件下的土壤水分變化規(guī)律,能夠制定合理的灌溉制度,最大限度地節(jié)約水資源。
直插式根灌技術(shù)屬于地下灌溉技術(shù),其創(chuàng)新之處在于將灌溉水直接引灌到一定深度的植物根系分布層,實(shí)現(xiàn)了土壤的越層灌溉,降低土壤水分蒸發(fā)損失,提高了灌水效率。直插式根灌技術(shù)在灌溉過(guò)程中也存在一些不足,其出水孔為點(diǎn)源,在重力、土壤毛細(xì)管力等共同作用下,土壤濕潤(rùn)體呈不規(guī)則的橢球形分布[4],造成土壤含水量的空間不均勻分布。該技術(shù)需要地表布置供水毛管,地下插入導(dǎo)水微管,所以不適合灌溉小麥等密植型一年生作物,適合灌溉棗樹(shù)、果樹(shù)等疏植型多年生作物。但與其他地下滴灌技術(shù)相比,直插式根灌技術(shù)在節(jié)約成本、工程布置等多方面具有優(yōu)勢(shì)。
目前對(duì)直插式根灌的研究,主要集中于節(jié)水潛力、灌溉制度、土壤水分變化趨勢(shì)分析等方面。杜虎林等[4]在塔里木公路防護(hù)林的試驗(yàn)表明,直插式根灌技術(shù)比地表滴灌節(jié)水30%以上;鮑忠文等[6]在塔里木河下游駿棗(Jun-jujube)林的蒸發(fā)試驗(yàn)表明,在同等氣象和流量條件下,地表滴灌土壤蒸發(fā)損失比直插式根灌高1倍;馬文藝等[7]在新疆棗樹(shù)林的研究表明,直插式根灌周期內(nèi),土壤水分在 40~60cm土層分布穩(wěn)定,灌溉周期前期土壤水分消退集中于20cm土層,后期集中于80cm土層;杜虎林等[8]的研究表明,新疆棗樹(shù)林直插式根灌后土壤水分日平均遞減率為0.69%,平均灌溉周期為22 d。但對(duì)直插式根灌過(guò)程中,土壤水分的變化規(guī)律的分析與模擬研究尚屬空白,而地表滴灌在土壤水鹽運(yùn)移與分布規(guī)律的研究[9-13]、水肥耦合效應(yīng)研究[14-19]、土壤水分運(yùn)移的數(shù)值模擬[20-23]等方面的研究都已相當(dāng)成熟。沙坡頭地區(qū)降雨稀少,蒸發(fā)強(qiáng)烈,地下水水位較深,農(nóng)業(yè)生產(chǎn)和人工固沙林多依靠地下水灌溉,地下水超采嚴(yán)重,最大取水井開(kāi)采深度已達(dá)380 m。目前該區(qū)灌溉方式多采用地表滴灌、漫灌等方式,強(qiáng)烈的蒸發(fā)和滲漏損失使灌溉水分利用效率低下。該區(qū)地處騰格里沙漠東南緣,屬于包蘭鐵路沙坡頭段的人工固沙植被防護(hù)區(qū),為保證鐵路安全運(yùn)營(yíng),維持該區(qū)生態(tài)平衡,培植固沙植物、防風(fēng)固沙是該地區(qū)的首要任務(wù)。為提高造林過(guò)程中的水分利用效率,在兩年生固沙梭梭(Haloxy lonammodendron)林展開(kāi)直插式根灌試驗(yàn),試驗(yàn)于2015年4—11月進(jìn)行,通過(guò)研究人工培植梭梭林不同生長(zhǎng)期土壤水分變化,初步分析和模擬直插式根灌過(guò)程中土壤水分入滲和消退規(guī)律,為該地區(qū)培植防風(fēng)固沙林、維持生態(tài)平衡以及農(nóng)業(yè)生產(chǎn),提供高效節(jié)水的灌溉技術(shù),制定最優(yōu)化的灌溉制度提供理論基礎(chǔ)。
1.1 試驗(yàn)區(qū)概況
試驗(yàn)于2015年4—11月在寧夏中衛(wèi)環(huán)保生態(tài)示范基地進(jìn)行。試驗(yàn)區(qū)位于騰格里沙漠東南緣,中衛(wèi)市沙坡頭區(qū)西(37°52′N(xiāo),105°07′E),迎閆公路旁??偯娣e433.33 hm2,平均海拔1 400 m,處于阿拉善高原荒漠與荒漠草原過(guò)渡地帶,屬草原化荒漠,是我國(guó)典型的荒漠生態(tài)類(lèi)型自然保護(hù)區(qū)[24]。該區(qū)年平均氣溫9.8℃,最高氣溫38.2℃,最低氣溫-25℃,冬夏晝夜溫差大;年平均降雨量185.6 mm,降雨主要集中在7—9月;年蒸發(fā)量2 500~3 000 mm;空氣平均相對(duì)濕度39.1%,最低可到10%;該地區(qū)的年平均風(fēng)速2.7 m·s-1,最大風(fēng)速為19.3 m·s-1,>5 m·s-1的起沙風(fēng)每年有196 d左右(沙坡頭氣象站1956—2013年氣象資料)。土壤基質(zhì)為疏松、貧瘠的流動(dòng)風(fēng)沙土,土壤質(zhì)地為砂土,以粉粒(0.01~0.05 mm)和細(xì)沙(0.05~ 0.25 mm)為主,沙層穩(wěn)定含水量?jī)H2%~3%,田間持水量為14.8%,表層土壤容重1.47 g·cm-3。地下水埋深達(dá)80 m,不能為植物所利用[25],天然植被以花棒(Hedysarum scoparium)、沙米(Agriophyllum squarrosum)和油蒿(Artemisia ordosica)為主。
試驗(yàn)地為兩年生人工培植梭梭林,流動(dòng)沙丘經(jīng)平整、麥草方格固定后培植梭梭幼苗,梭梭成活率為95%,成活梭梭長(zhǎng)勢(shì)良好,平均株高為0.5 m。試驗(yàn)區(qū)面積為2.67 hm2,梭梭行距為2 m,株距為2 m。
1.2 試驗(yàn)設(shè)計(jì)
直插式根灌產(chǎn)品由杜虎林發(fā)明專(zhuān)利(專(zhuān)利號(hào):201120255632.4),由中國(guó)常州博力特塑業(yè)有限公司生產(chǎn),材質(zhì)為塑料,試驗(yàn)用滴頭流量為 4 L·h-1,導(dǎo)水微管外徑13.0 mm,內(nèi)徑5.5 mm,長(zhǎng)度40cm,在導(dǎo)水微管30~40cm處均勻分布一定數(shù)量的滲水微孔,滲水微孔直徑1~1.2 mm,灌水結(jié)束后導(dǎo)水管中無(wú)積水。根灌示意圖如圖1。
本試驗(yàn)采用中國(guó)遼寧錦州陽(yáng)光氣象科技有限公司生產(chǎn)的PC-2S型土壤溫濕度監(jiān)測(cè)系統(tǒng)測(cè)定土壤水分,該系統(tǒng)土壤水分傳感器工作原理為時(shí)域反射技術(shù)(TDR)。在距離根灌滴頭10cm處,挖1 m深土壤剖面,在挖好的同一垂直剖面上,距地表 20cm為起點(diǎn),間隔20cm垂直于剖面水平插入5個(gè)土壤水分傳感器,原位不間斷監(jiān)測(cè)土壤體積含水量的動(dòng)態(tài)變化。TDR探針長(zhǎng)度為8.5cm,TDR測(cè)定的土壤水分?jǐn)?shù)值為體積含水量,分辨率為 0.1%,測(cè)量范圍為0~100%,精度為±2%。
根灌試驗(yàn)的滴頭間距與梭梭株距相同,毛管間距與梭梭行距相同,為減少試驗(yàn)誤差,選取長(zhǎng)勢(shì)良好的3株相鄰梭梭進(jìn)行試驗(yàn),試驗(yàn)在相鄰滴頭對(duì)應(yīng)的梭梭生長(zhǎng)剖面上做3個(gè)重復(fù),滴頭之間垂直埋入1.5 m深、2 m寬隔水塑料布,防止相互影響。TDR記錄儀不間斷采集3個(gè)剖面上土壤體積含水量變化數(shù)據(jù),采集時(shí)間間隔為1 h,分析灌溉過(guò)程和消退過(guò)程中土壤含水量的變化規(guī)律。
圖1 直插式根灌示意圖Fig.1 Schematic diagram of the straight-tube root irrigation
試驗(yàn)于2015年4月7日布置,灌溉周期和灌溉時(shí)間依照當(dāng)?shù)卦诘喂喙喔鹊慕?jīng)驗(yàn)進(jìn)行,梭梭每年春秋兩季是生長(zhǎng)的高峰時(shí)段,7—8月經(jīng)歷夏休眠過(guò)程,所以選取梭梭萌芽期4月15日灌溉17 h、5月13日灌溉10 h,花期6月22日灌溉24 h,夏眠期8月7日灌溉23 h,結(jié)實(shí)期9月5日灌溉13 h,種子成熟期10月20日灌溉9 h。其中萌芽期春灌選取兩次灌溉數(shù)據(jù),其余生長(zhǎng)時(shí)期均選取1次灌溉數(shù)據(jù),全生長(zhǎng)期共選取灌溉周期內(nèi)無(wú)降雨的6次根灌試驗(yàn)數(shù)據(jù),試驗(yàn)過(guò)程中梭梭長(zhǎng)勢(shì)良好。對(duì)根灌過(guò)程中土壤水分變化的平均值、極差、標(biāo)準(zhǔn)差及變異系數(shù)進(jìn)行描述性統(tǒng)計(jì),對(duì)平均值進(jìn)行顯著性分析,并繪制灌溉過(guò)程中1 m深土層土壤水分等值線圖,進(jìn)行土壤水分的時(shí)空變異特征和動(dòng)態(tài)分布規(guī)律研究。
1.3 數(shù)據(jù)處理
文中土壤含水量均為土壤體積含水量,平均值計(jì)算采用算術(shù)平均法;表格、散點(diǎn)圖、折線圖均采用Microsoft Excel 2007完成;土壤水分等值線圖繪制采用Surfer13.0完成,用SPSS19.0進(jìn)行數(shù)據(jù)統(tǒng)計(jì)與分析,其他圖件處理用 Auto CAD 2013以及Photoshop CS6完成。
2.1 直插式根灌條件下梭梭不同生長(zhǎng)期土壤水分入滲規(guī)律分析
2.1.1 不同土層土壤含水量變化
6次根灌試驗(yàn)不同土層土壤水分變化表明(圖2),根灌過(guò)程中,各土層土壤含水量的增加趨勢(shì)可分為3個(gè)階段:灌水初期土壤含水量增加比較緩慢;灌水1~5 h,土壤含水量呈直線增加,之后土壤含水量達(dá)最大值,基本保持穩(wěn)定。灌水1 h后,從表土層到深土層,土壤平均含水量依次為1.38%、2.15%、2.47%、1.55%、0.9%;灌水5 h后,依次為2.63%、7.77%、12.27%、9.4%、6.68%。直插式根灌過(guò)程中土壤含水量(y)隨灌水時(shí)間(x)的變化可用Logistic方程擬合:
圖2 梭梭不同生長(zhǎng)期根灌土壤水分入滲變化Fig.2 Soil water infiltration changes at different growth periods ofHaloxylon ammodendronunder straight-tube root irrigation
式中:y為土壤體積含水量(%),x為灌水時(shí)間(h),K、A、B為曲線參數(shù)。梭梭花期和結(jié)實(shí)期生長(zhǎng)最旺盛,故以梭梭花期和結(jié)實(shí)期兩次灌水為例,用 Logistic方程擬合兩次灌溉不同土層土壤體積含水量(y)隨灌水時(shí)間(x)的變化。方程中3個(gè)參數(shù)K、A、B,K的初始值通過(guò)四點(diǎn)法確定,A和B的初始值通過(guò)最小二乘法原理確定[26-27]。不同土層土壤體積含水量隨時(shí)間變化的擬合結(jié)果如表1,經(jīng)檢驗(yàn)?zāi)M方程均達(dá)極顯著水平。根據(jù)模擬方程,可計(jì)算不同土層在某一灌水時(shí)刻的土壤含水量。實(shí)際測(cè)定6次試驗(yàn)的平均滴頭流量為3.63 L·h-1,由于試驗(yàn)地特殊的砂質(zhì)土壤屬性,土壤滲透系數(shù)很大。根灌1~4 h后,除20cm土層外,其余土層的土壤含水量迅速增加,此階段約為 2 h;灌后 4~6 h后各土層土壤含水量達(dá)最大值,40cm土層為8.05%,60cm土層為12.5%,80cm土層為9.58%,100cm土層為7.47%。此后繼續(xù)灌水,各土層土壤含水量基本保持不變。據(jù)此建議在滴頭流量為 4 L·h-1時(shí),該地單次直插式根灌最短灌溉時(shí)間為 6 h,灌水 6 h時(shí)土壤含水量基本達(dá)最大值。由于直插式根灌的出水孔分布在30~40cm深,灌溉水首先到達(dá)地表以下30~40cm的位置,深層土壤水分主要通過(guò)毛細(xì)管力和植物根系吸水力向表層土壤(0~30cm)運(yùn)移,試驗(yàn)地0~100cm土壤均為砂土類(lèi)型,毛管運(yùn)力較弱,加之表層土壤蒸發(fā)強(qiáng)烈,0~20cm土層土壤含水量增加緩慢,灌水后8~9 h達(dá)最大值,平均為3.68%,20cm土層平均土壤最大含水量比其他土層低3.79%~8.28%。
表1 梭梭花期、結(jié)實(shí)期不同土層土壤含水量(y)隨灌水時(shí)間(x)變化的Logistic擬合方程[y=K/(1+A·e-Bx)]Table1 Logistic regression equations [y=K/(1+A·e-Bx)]of soil water content (y) and irrigation time (x) in different soil layers during florescence and grain filling stages ofHaloxylon ammodendronunder straight-tube root irrigation
2.1.2 土壤水分入滲速率變化
對(duì)式(1)求導(dǎo)可得到土壤水分入滲速率方程:
代入各參數(shù)(K、A、B),可得出土壤水分入滲速率隨時(shí)間變化的方程。以花期和結(jié)實(shí)期為例,灌水時(shí)間為橫坐標(biāo),土壤水分入滲速率為縱坐標(biāo),得到單次灌水不同土層土壤水分入滲速率變化曲線(圖3)。從圖3可知,根灌過(guò)程中20cm土層土壤水分入滲速率變化較小,花期灌水 2.37 h達(dá)到最大值0.36%·h-1,結(jié)實(shí)期灌水3.44 h達(dá)到最大值0.49%·h-1。花期灌水10 h土壤水分入滲速率下降到0.09%·h-1,之后逐漸降低,至灌水末期基本為零;結(jié)實(shí)期灌水10 h下降到0.12%·h-1,灌水末期下降到0.03%·h-1。其余土層土壤水分入滲速率呈尖銳的拋物線變化,60cm土層最大入滲速率均高于其他土層,花期出現(xiàn)在灌水1.34 h,達(dá) 9.84%·h-1,結(jié)實(shí)期出現(xiàn)在灌水2.41 h,達(dá)12.55%·h-1。6次根灌試驗(yàn),不論灌水時(shí)間長(zhǎng)短,1 m 深土層平均土壤水分入滲速率,在灌水0~10 h變化明顯,灌水1~6 h各土層均達(dá)最大值,之后逐漸降低,灌水 10 h后入滲速率均小于0.01%·h-1。說(shuō)明根灌10 h后,各土層土壤水分基本不再增加,結(jié)合試驗(yàn)地砂質(zhì)土壤特性,當(dāng)灌溉時(shí)間超過(guò)10 h時(shí),灌溉水分基本100%損失。據(jù)此,建議10 h為試驗(yàn)區(qū)直插式根灌最大灌溉時(shí)間。
對(duì)式(2)進(jìn)行求導(dǎo)可得式(3),據(jù)式(3)可求得土壤水分入滲的最大速率。
當(dāng) 0y′= 時(shí),對(duì)應(yīng)的x=(lnA)/B為土壤水分最大入滲速率出現(xiàn)的時(shí)間,x對(duì)應(yīng)的y為最大入滲速率。據(jù)式(3)計(jì)算花期和結(jié)實(shí)期兩次灌溉不同土層土壤水分入滲速率及其出現(xiàn)的時(shí)間,并計(jì)算6次根灌試驗(yàn),1 m深土層土壤水分入滲速率及其出現(xiàn)的時(shí)間。結(jié)果表明(表 2),花期和結(jié)實(shí)期兩次灌溉,不同土層土壤水分達(dá)到最大入滲速率的時(shí)間長(zhǎng)短依次為 40cm<60cm<20cm<80cm<100cm;40cm土層最短,花期為0.82 h,結(jié)實(shí)期為1.64 h;100cm土層最長(zhǎng),花期為3.49 h,結(jié)實(shí)期為5.65 h。各土層最大入滲速率依次為60cm>40cm>80cm>100cm>20cm,60cm土層最大,花期為9.84%·h-1,結(jié)實(shí)期為12.55%·h-1;20cm土層最小,花期為0.36%·h-1,結(jié)實(shí)期為0.49%·h-1。6次根灌試驗(yàn),1 m深土層土壤水分達(dá)到最大入滲速率的時(shí)間平均為2.16 h,最大入滲速率平均為1.65%·h-1。
圖3 梭梭根灌土壤不同土層水分入滲速率變化(A,B)及不同日期(月-日)1 m深土層平均水分入滲速率變化(C)Fig.3 Changes of infiltration rates of soil water in different soil layers (A,B) and average infiltration rate of soil water in1 m deep soil layer at different dates (month-day) (C) ofHaloxylon ammodendronforest under straight-tube root irrigation
表2 梭梭根灌土壤不同土層水分最大入滲速率及其出現(xiàn)時(shí)間及1 m深土層平均水分最大入滲速率及其出現(xiàn)時(shí)間Table 2 Maximum infiltration rate of soil water in different layers and its occurrence time,and the average maximum infiltration rate of soil water in1 m deep soil layer and its occurrence time ofHaloxylon ammodendronforest under straight-tube root irrigation
2.2 直插式根灌條件下梭梭土壤水分消退規(guī)律
根據(jù)TDR數(shù)據(jù),分析停灌后48 h內(nèi)各土層土壤含水量及1 m深土層土壤平均含水量消退規(guī)律(圖4),除20cm土層變化不明顯外,其余土層土壤含水量在停灌后0~12 h迅速消退,之后消退減緩,停灌后48 h各土層土壤含水量均消退到5%以下。除20cm土層變化不明顯外,其余土層土壤含水量隨時(shí)間變化的消退趨勢(shì)明顯呈“L”型分布(圖 4),所以根灌后土壤含水量(y)隨時(shí)間(x)變化的消退趨勢(shì)可用冪函數(shù)方程模擬。
圖4 梭梭不同生長(zhǎng)期根灌停止后的土壤水分消退變化Fig.4 Soil water regression changes in different growth periods ofHaloxylon ammodendronafter root straight-tube irrigation stopping
2.2.1 不同土層土壤水分消退規(guī)律分析
冪函數(shù)方程的一般表達(dá)式為:
以梭梭花期和結(jié)實(shí)期兩次根灌為例,對(duì)停灌后48 h內(nèi)不同土層土壤含水量(y)隨灌水時(shí)間(x)的變化,進(jìn)行冪函數(shù)方程擬合,用F檢驗(yàn)法驗(yàn)證模擬方程的顯著性。擬合結(jié)果表明(表3),停灌后48 h內(nèi),不同土層土壤含水量隨時(shí)間的變化存在冪函數(shù)關(guān)系,R2均大于0.96。生長(zhǎng)期6次根灌試驗(yàn),土壤水分消退模擬結(jié)果表明(表4),1 m深土層平均土壤水分消退變化也符合冪函數(shù)分布規(guī)律,R2均大于0.98。經(jīng)F檢驗(yàn),模擬方程均達(dá)極顯著水平。根據(jù)模擬方程,可以計(jì)算出根灌后土壤水分消退過(guò)程中,不同土層在某一時(shí)刻的土壤含水量;計(jì)算兩個(gè)時(shí)刻土壤水分的差值,可得到某一段時(shí)間內(nèi)的土壤水分消退量。據(jù)表3模擬方程計(jì)算,停灌后48 h,20cm和40cm土層土壤水分均在1%以下,60cm、80cm、100cm土層土壤水分,花期分別為1.53%、1.71%和2.34%,結(jié)實(shí)期分別為1.32%、1.7%和1.24%。據(jù)表4模擬方程計(jì)算,停灌84 h后,6次根灌試驗(yàn)1 m深土層土壤平均含水量均小于1%,隨生長(zhǎng)期推進(jìn),6次根灌試驗(yàn)依次為0.58%、0.54%、0.92%、0.96%、0.74%和 0.62%,此時(shí)土壤含水量已接近沙生植物萎蔫系數(shù)。所以在不考慮降雨、夜間凝結(jié)等環(huán)境因素影響下建議灌水周期為4 d。
表3 梭梭不同生長(zhǎng)期根灌停止后不同土層土壤水分(y)隨時(shí)間(t)變化的擬合方程(y=C×xb)Table3 Fitting equations (y=C×xb) for relationship between soil water after stopping straight-tube root irrigation (y) and time (t) of different soil layers ofHaloxylon ammodendronfroest
2.2.2 土壤水分消退速率變化
對(duì)式(4)求導(dǎo),可得土壤水分消退速率方程,考慮到速率的實(shí)際意義,求出導(dǎo)函數(shù)的絕對(duì)值,即:
以花期、結(jié)實(shí)期為例,梭梭單次灌水后,不同土層土壤水分消退速率隨時(shí)間變化趨勢(shì)如圖5 A、圖5 B所示;6次根灌試驗(yàn)后,1 m深土層平均土壤水分消退速率變化趨勢(shì)如圖5C所示。單次根灌后,各土層土壤水分消退速率隨時(shí)間變化逐漸減小。停灌后2 h,各土層土壤水分消退速率依次為100cm>80cm>60cm>40cm>20cm,消退速率100cm 土層最大,為3.17%·h-1,20cm土層最小,為0.33%·h-1;停灌后24 h,花期和結(jié)實(shí)期各土層土壤水分消退速率均小于0.06%·h-1,從表土層到深土層,花期依次為 0.02%·h-1、0.02%·h-1、0.04%·h-1、0.05%·h-1和0.04%·h-1,結(jié)實(shí)期依次為0.02%·h-1、0.03%·h-1、0.05%·h-1、0.05%·h-1和0.05%·h-1;停灌后48 h,各土層土壤水分消退速率基本為零。6次根灌試驗(yàn)停灌后2 h,1 m深土層土壤水分平均消退速率在結(jié)實(shí)期最大,為 2.20%·h-1,休眠期最小,為1.31%·h-1;1 m深土層土壤水分平均消退速率停灌后10 h驟降,平均從1.84%·h-1下降至0.17%·h-1,下降率超過(guò)90%;停灌24 h后土壤水分平均消退速率均小于0.1%·h-1,隨梭梭生長(zhǎng)期推進(jìn),6次根灌試驗(yàn)依次為 0.03%·h-1、0.03%·h-1、0.09%·h-1、0.03%·h-1、0.04%·h-1和0.03%·h-1,停灌48 h后消退速率基本為零。
2.3 直插式根灌條件下梭梭不同生育時(shí)期土壤水分垂直變化分析
對(duì)梭梭全生長(zhǎng)期6次根灌試驗(yàn)不同土層土壤水分變化進(jìn)行描述性統(tǒng)計(jì),并對(duì)不同土層平均土壤含水量進(jìn)行單因素ANOVA方差分析(表5)。結(jié)果表明,根灌試驗(yàn)前后,各土層土壤含水量變異系數(shù)大小次序?yàn)?00cm>80cm>60cm>20cm>40cm,100cm土層最大,平均為 59.45%,40cm土層最小,平均為31.04%;灌溉過(guò)程中土壤水分變化極差大小依次為60cm>80cm>100cm>40cm>20cm;灌后,各土層平均土壤含水量之間的差異顯著性表明,20cm和60cm土層與其他各土層之間差異顯著(P<0.05),40cm與 80cm土層之間差異不顯著(P<0.05)。6次根灌試驗(yàn)過(guò)程中,不同土層土壤含水量的等值線分布圖(圖6)表明,60cm土層附近土壤含水量等值線最密集,20cm土層附近土壤含水量等值線最稀疏,土壤水分等值線在60cm處形成斑塊,等值線呈現(xiàn)出以60cm土層為中心,向表層和深層土壤輻射狀分布。說(shuō)明根灌過(guò)程中60cm土層土壤含水量的空間異質(zhì)性最高,20cm土層土壤含水量的空間異質(zhì)性最低。
圖5 梭梭根灌土壤停灌后不同土層土壤水分消退速率變化(A,B)及1 m深土層土壤水分平均消退速率(C)變化Fig.5 Changes for regression rates of soil water in different soil layers (A,B) and average regression rate of soil water at1 m deep soil layer (C) after stopping straight-tube root irrigation ofHaloxylon ammodendron
表5 梭梭不同根灌時(shí)間各土層土壤含水量描述性統(tǒng)計(jì)結(jié)果Table 5 Descriptive statistics of soil water content at each soil layer in different straight-tube root irrigation times ofHaloxylon ammodendron
土壤水分的變化和運(yùn)移規(guī)律,是地表滴灌、膜下滴灌以及地下滴灌技術(shù)研究的熱點(diǎn)課題,受環(huán)境氣象因子、立地條件、灌水方式、灌水時(shí)間及灌水量等多種因素的影響[12,26-28]。研究?jī)?nèi)容多集中在地表滴灌和膜下滴灌,研究方法主要集中在室內(nèi)條件下對(duì)灌溉土壤水分運(yùn)移、分布規(guī)律以及對(duì)外界環(huán)境影響因子進(jìn)行數(shù)值模擬和計(jì)算[29],野外等水頭供水條件下不同土質(zhì)土壤水分入滲模型研究[30],以及模擬農(nóng)田土壤水分入滲模型參數(shù)的研究[31]。在大田條件下,針對(duì)灌溉土壤水分入滲規(guī)律的研究較少,直插式根灌是一種新的根灌技術(shù),在砂質(zhì)土壤研究直插式根灌條件下的土壤水分變化規(guī)律具有重要意義。沙土具有毛細(xì)管力弱、表層土壤蒸發(fā)強(qiáng)、滲透性大的特性。沙坡頭區(qū)1 m深土層均為典型的砂質(zhì)土壤,灌水前土壤背景含水量極低,灌后土壤水分迅速向周?chē)\(yùn)移,各層土壤水分緩慢增加;之后由于土壤濕潤(rùn)體的擴(kuò)展,各層土壤毛細(xì)管力增強(qiáng),土壤水分運(yùn)移能力增強(qiáng),土壤水分迅速增加;由于砂質(zhì)土壤滲透性弱、保水性差,之后繼續(xù)灌水,土壤水分完全滲漏損失,各層土壤水分基本不再變化,這種變化規(guī)律符合Logistic曲線變化,可用Logistic模型對(duì)根灌過(guò)程中土壤水分變化進(jìn)行模擬。停灌后土壤水分除20cm土層消退不明顯外,其余土層土壤含水量在停灌后10 h內(nèi)均迅速消退,之后消退量和消退率均大幅減小,土壤含水量的消退趨勢(shì)呈明顯的“L”型分布,這種分布可用冪函數(shù)模型進(jìn)行模擬,這與張志剛等[28]在滴灌條件下土壤水分消退規(guī)律研究結(jié)果一致。而對(duì)于滴灌土壤水分的入滲與再分布過(guò)程,假設(shè)土壤各項(xiàng)均質(zhì)時(shí),符合達(dá)西定律和質(zhì)量守恒定律,一般以Richards方程和hydrus模型為基礎(chǔ)進(jìn)行點(diǎn)源入滲數(shù)值模擬研究[32-33]。
圖6 梭梭全生長(zhǎng)期6次根灌土壤水分垂直分布等值線Fig.6 Isoline maps of vertical distribution of soil water in whole growth period ofHaloxylon ammodendronof 6 straight-tube root irrigations
土壤水分入滲速率,能夠表征在一定滴頭流量下,各層土壤達(dá)到最大濕潤(rùn)程度的時(shí)間快慢,對(duì)制定合理的灌水時(shí)間具有重要意義,該指標(biāo)由流量、灌水技術(shù)、土壤質(zhì)地、環(huán)境要素等主要因素決定。試驗(yàn)表明,直插式根灌過(guò)程中,各土層土壤水分達(dá)到最大入滲速率的時(shí)間40cm土層最短,100cm土層最大,這是因?yàn)橹辈迨礁嗟膶?dǎo)水管出水孔分布在30~40cm,灌溉水首先到達(dá)40cm土層,最后入滲到100cm土層;不同土層最大入滲速率依次為60cm>40cm>80cm>100cm>20cm。這種變化,可能是因?yàn)榈晤^流量一定時(shí),砂質(zhì)土壤滲透性大,灌水后土壤水分迅速滲透到60cm土層,土壤水分充滿(mǎn) 60cm土層包氣帶,土壤結(jié)合水、薄膜水、毛細(xì)管水均增加。被 60cm土層攔截后,灌溉水重力勢(shì)降低,基質(zhì)勢(shì)增加,土壤水分下滲速率減小,土壤水分入滲速率60cm土層最大,表土層由于蒸發(fā)強(qiáng)烈,土壤毛細(xì)管力弱,水分向 20cm土層運(yùn)移能力弱,故20cm土層土壤水分入滲速率最小。
土壤水分消退速率是表征灌溉停止后,土壤中的水分以蒸騰、蒸發(fā)、滲漏等方式損失的速率,減少蒸發(fā)、滲漏等無(wú)效損失,可降低水分消退速率,提高土體貯水量,間接提高水分利用效率。灌水后各土層都已完全濕潤(rùn),此時(shí)土壤水分重力勢(shì)大于基質(zhì)勢(shì),100cm土層消退速率最大。在不考慮蒸發(fā)情況下,土壤水分消退速率應(yīng)該是 20cm土層最小,但是沙坡頭區(qū)蒸發(fā)強(qiáng)烈,對(duì) 20cm表層土壤影響最大,導(dǎo)致20cm土層土壤水分消退速率大于40cm。故各土層土壤水分消退速率大小依次為100cm>80cm>60cm>20cm>40cm。模擬結(jié)果表明,停灌后4 d,土壤含水量已在1%以下,需要再一次灌水。研究土壤水分消退速率變化,可以制定直插式根灌條件下的灌溉周期,為高效節(jié)水的灌溉制度提供支持。
明確灌溉水垂直變異性和時(shí)空分布,可定量地描述灌水過(guò)程中和不同土層土壤水分變化程度。灌溉過(guò)程中土壤含水量的空間異質(zhì)性60cm土層最高,20cm土層最低。土壤平均含水量20cm和60cm土層與其他各土層之間差異達(dá)顯著水平,灌溉水對(duì)20cm土層影響最小,對(duì) 60cm土層影響最大。直插式根灌產(chǎn)品成本低廉,田間布置簡(jiǎn)單,本研究通過(guò)對(duì)直插式根灌條件下土壤水分變化的分析,初步揭示了沙坡頭區(qū)砂質(zhì)土壤條件下,滴頭流量為 4 L·h-1時(shí),梭梭林土壤水分變化規(guī)律,初步制定了灌溉制度,可為該地區(qū)直插式根灌技術(shù)的推廣、改進(jìn)提供理論依據(jù),并為將來(lái)研究直插式根灌條件下土壤鹽分、溶質(zhì)等的運(yùn)移規(guī)律提供參考。但該區(qū)直插式根灌條件下的實(shí)際節(jié)水效率、蒸發(fā)規(guī)律等需要進(jìn)一步研究。
本研究表明,直插式根灌過(guò)程中,土壤含水量隨灌水時(shí)間的變化可用 Logistic方程擬合,停灌后,土壤水分的消退規(guī)律符合冪函數(shù)模型變化;不同土層土壤水分達(dá)到最大入滲速率的時(shí)間40cm土層最短,平均為1.22 h,100cm土層最長(zhǎng),平均為4.57 h;6次根灌試驗(yàn),1 m深土層土壤水分達(dá)到最大入滲速率的平均時(shí)間為 2.16 h,最大入滲速率平均為1.65%·h-1。根據(jù)模型模擬結(jié)果,建議沙坡頭區(qū)梭梭林直插式根灌灌溉周期為 4 d左右,單次灌水時(shí)間以6~10 h為宜;土壤水分入滲速率60cm土層最大,20cm土層最小,土壤水分消退速率100cm土層最大,20cm土層最小。
直插式根灌過(guò)程中,20cm土層土壤水分的入滲、分布和消退變化都不明顯,60cm土層土壤水分的入滲、消退變化最符合模擬結(jié)果,直插式根灌對(duì)20cm土層土壤水分的影響最小,對(duì)60cm土層土壤水分影響最大;灌水過(guò)程中,土壤水分等值線呈現(xiàn)出以 60cm土層為中心,向表層和深層土壤輻射狀分布。
References
[1]Kidron G J.Analysis of dew precipitation in three habitats within a small arid drainage basin,Negev Highlands,Israel[J].Atmospheric Research,2000,55(3/4):257–270
[2]張喜英.提高農(nóng)田水分利用效率的調(diào)控機(jī)制[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2013,21(1):80–87 Zhang X Y.Regulating mechanisms for improving farmland water use efficiency[J].Chinese Journal of Eco-Agriculture,2013,21(1):80–87
[3]Bao Z W,Du H L,Jin X J.Water-saving potential in Aeolian sand soil under straight tube and surface drip irrigation in Taklimakan Desert in Northwest China[J].Science in Cold and Arid Regions,2011,3(3):243–251
[4]杜虎林,王濤,肖洪浪,等.塔里木沙漠公路防護(hù)林帶根灌節(jié)水試驗(yàn)研究[J].中國(guó)沙漠,2010,30(3):522–527 Du H L,Wang T,Xiao H L,et al.Root irrigation experiments used in the protective forest belt along the Tarim desert highway[J].Journal of Desert Research,2010,30(3):522–527
[5]邵立威,孫宏勇,陳素英,等.根土系統(tǒng)中的根系水力提升研究綜述[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2011,19(5):1080–1085 Shao L W,Sun H Y,Chen S Y,et al.An overview of root hydraulic lift in root-soil systems[J].Chinese Journal of Eco-Agriculture,2011,19(5):1080–1085
[6]鮑忠文,杜虎林,史學(xué)斌,等.用微型蒸滲儀測(cè)驗(yàn)根灌節(jié)水潛力的田間試驗(yàn)研究[J].中國(guó)沙漠,2013,33(1):160–166 Bao Z W,Du H L,Shi X B,et al.A comparison between the rhizospheric irrigation and the drip irrigation by monitoring the soil evaporation with micro-lysimeters[J].Journal of Desert Research,2013,33(1):160–166
[7]馬文藝,杜虎林,史學(xué)斌.塔里木河下游棗樹(shù)根灌需水量與灌溉制度研究[J].西北農(nóng)業(yè)學(xué)報(bào),2014,23(11):92–99 Ma W Y,Du H L,Shi X B.Water demand and irrigation scheduling of root-zone irrigation for Jujube tree in the downstream area of Tarim River[J].Acta Agriculturae Boreali-occidentalis Sinica,2014,23(11):92–99
[8]杜虎林,馬文藝,馮起,等.塔里木河下游墾區(qū)棗樹(shù)灌溉土壤水分變化分析[J].中國(guó)沙漠,2014,34(3):773–779 Du H L,Ma W Y,Feng Q,et al.Soil moisture variation after irrigation inZizipubs jujubefield in the lower reaches of Tarim River[J].Journal of Desert Research,2014,34(3):773–779
[9]陳佰鴻,曹建東,王利軍,等.不同滴灌條件下土壤水分分布與運(yùn)移規(guī)律[J].節(jié)水灌溉,2010(7):6–9 Chen B H,Cao J D,Wang L J,et al.Research on distribution and movement rules of soil water under different drip irrigation conditions[J].Water Saving Irrigation,2010(7):6–9
[10]張志剛,李宏,李疆,等.地表滴灌條件下滴灌量對(duì)土壤水分入滲、再分布過(guò)程的影響[J].農(nóng)業(yè)現(xiàn)代化研究,2016,37(1):174–181 Zhang Z G,Li H,Li J,et al.Effects of irrigation amount on soil water infiltration and redistribution under drip irrigation[J].Research of Agricultural Modernization,2016,37(1):174–181
[11]陳小三.地面滴灌及地下滴灌土壤水分運(yùn)移規(guī)律室內(nèi)試驗(yàn)研究[D].長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2011:13–39 Chen X S.Laboratory experimental study on soil-water movement of surface drip irrigation and subsurface drip irrigation[D].Changchun:Jilin Agricultural University,2011:13–39
[12]Liu M X,Yang J S,Li X M,et al.Distribution and dynamics of soil water and salt under different drip irrigation regimes in northwest China[J].Irrigation Science,2013,31(4):675–688
[13]張金珠,王振華,虎膽·吐馬爾白.秸稈覆蓋對(duì)滴灌棉花土壤水鹽運(yùn)移及根系分布的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2013,21(12):1467–1476 Zhang J Z,Wang Z H,Hudan·TUMAREI.Influence of straw mulching on soil water/salt movement and cotton root distribution under drip irrigation[J].Chinese Journal of Eco-Agriculture,2013,21(12):1467–1476
[14]Min W,Hou Z A,Ma L J,et al.Effects of water salinity and N application rate on water- and N-use efficiency of cotton under drip irrigation[J].Journal of Arid Land,2014,6(4):454–467
[15]黃耀華,王侃,楊劍虹.滴灌施肥條件下土壤水分和速效氮遷移分布規(guī)律[J].水土保持學(xué)報(bào),2014,28(5):87–94 Huang Y H,Wang K,Yang J H.Distribution of soil water and available nitrogen in purple soil under drip fertilization[J].Journal of Soil and Water Conservation,2014,28(5):87–94
[16]王虎,王旭東.滴灌施肥條件下土壤水分和速效磷的分布規(guī)律[J].西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2007,35(5):141–146 Wang H,Wang X D.Distribution of soil water and available phosphorus under drip fertigation[J].Journal of Northwest A&F University:Natural Science Edition,2007,35(5):141–146
[17]尹飛虎,劉洪亮,謝宗銘,等.棉花滴灌專(zhuān)用肥氮磷鉀元素在土壤中的運(yùn)移及其利用率[J].地理研究,2010,29(2):235–243 Yin F H,Liu H L,Xie Z M,et al.Movement of N,P and K of cotton drip irrigation special fertilizer in soil and the fertilizer use efficiency[J].Geographical Research,2010,29(2):235–243
[18]王靜,葉壯,褚貴新.水磷一體化對(duì)磷素有效性與磷肥利用率的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2015,23(11):1377–1383 Wang J,Ye Z,Chu G X.Coupling effects of water and phosphate fertilizer supply on soil P availability and use efficiency[J].Chinese Journal of Eco-Agriculture,2015,23(11):1377–1383
[19]陳劍,張澤,Yunger J A,等.滴灌精準(zhǔn)施肥裝置棉田施氮配肥能力研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(12):62–68 Chen J,Zhang Z,Yunger J A,et al.Distribution and application of urea with precision fertilization device of drip irrigation in cotton fields[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(12):62–68
[20]Phogat V,Mahadevan M,Skewes M,et al.Modelling soil water and salt dynamics under pulsed and continuous surface drip irrigation of almond and implications of system design[J].Irrigation Science,2012,30(4):315–333
[21]Zhou Q Y,Kang S Z,Zhang L,et al.Comparison of APRI and Hydrus-2D models to simulate soil water dynamics in a vineyard under alternate partial root zone drip irrigation[J].Plant and Soil,2007,291(1/2):211–223
[22]李紅.地下滴灌條件下土壤水分運(yùn)動(dòng)試驗(yàn)及數(shù)值模擬[D].武漢:武漢大學(xué),2005:24–68 Li H.Experiments and numerical simulations of soil-water movement in subsurface drip irrigation[D].Wuhan:Wuhan University,2005:24–68
[23]池寶亮,黃學(xué)芳,張冬梅,等.點(diǎn)源地下滴灌土壤水分運(yùn)動(dòng)數(shù)值模擬及驗(yàn)證[J].農(nóng)業(yè)工程學(xué)報(bào),2005,21(3):56–59 Chi B L,Huang X F,Zhang D M,et al.Numerical simulation and validation of soil water movement under subsurface drip irrigation with point-source emitter[J].Transactions of the Chinese Society of Agricultural Engineering,2005,21(3):56–59
[24]張志山,何明珠,譚會(huì)娟,等.沙漠人工植被區(qū)生物結(jié)皮類(lèi)土壤的蒸發(fā)特性——以沙坡頭沙漠研究試驗(yàn)站為例[J].土壤學(xué)報(bào),2007,44(3):404–410 Zhang Z S,He M Z,Tan H J,et al.Evaporation from soils covered with biological crusts in revegetated desert-A case study in Shapotou Desert Research and Experiment Station[J].Acta Pedologica Sinica,2007,44(3):404–410
[25]Li X R,Ma F Y,Xiao H L,et al.Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China[J].Journal of Arid Environments,2004,57(1):1–16
[26]汪志榮,王文焰,王全九,等.點(diǎn)源入滲土壤水分運(yùn)動(dòng)規(guī)律實(shí)驗(yàn)研究[J].水利學(xué)報(bào),2000(6):39–44 Wang Z R,Wang W Y,Wang Q J,et al.Experimental study on soil water movement from a point source[J].Journal of Hydraulic Engineering,2000(6):39–44
[27]朱德蘭,汪志農(nóng),王得祥,等.不同土壤中滴灌水分分布與設(shè)計(jì)參數(shù)的確定[J].西北農(nóng)業(yè)大學(xué)學(xué)報(bào),2000,28(2):45–49 Zhu D L,Wang Z N,Wang D X,et al.The principles of water distribution and design parameters of drip irrigation in different soils[J].Acta Universitatis Agriculturalis Boreali-Occidentalis,2000,28(2):45–49
[28]張志剛,李宏,李疆,等.地表滴灌條件下滴頭流量對(duì)土壤水分入滲—再分布過(guò)程的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2016,34(2):225–231 Zhang Z G,Li H,Li J,et al.Effects of different dripper discharges on soil water infiltration/redistribution under drip irrigation[J].Agricultural Research in the Arid Areas,2016,34(2):225–231
[29]鄭園萍.滴灌條件下土壤水分入滲過(guò)程模擬試驗(yàn)研究[D].楊凌:西北農(nóng)林科技大學(xué),2008 Zheng Y P.The simulation research on the soil water infiltration process under the drip irrigation[D].Yangling:Northwest A&F University,2008
[30]趙文舉,李曉萍,范嚴(yán)偉,等.西北旱區(qū)壓砂地土壤水分入滲規(guī)律研究[J].土壤通報(bào),2016,47(1):150–155 Zhao W J,Li X P,Fan Y W,et al.A study on soil water infiltration of gravel-mulched field in northwestern arid area[J].Chinese Journal of Soil Science,2016,47(1):150–155
[31]蔡煥杰,徐家屯,王健,等.基于 WinSRFR模擬灌溉農(nóng)田土壤入滲參數(shù)年變化規(guī)律[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):92–98 Cai H J,Xu J T,Wang J,et al.Yearly variation of soil infiltration parameters in irrigated field based on WinSRFR4.1[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(2):92–98
[32]董曉華,劉瀟鈞,彭濤,等.利用Hydrus-1D模擬分層土壤剖面的水流運(yùn)動(dòng)[J].安徽農(nóng)業(yè)科學(xué),2016,44(4):29–31 Dong X H,Liu X J,Peng T,et al.Hydrus-1D modeling water flow transport in a layered soil profile[J].Journal of Anhui Agricultural Sciences,2016,44(4):29–31
[33]馬海燕,王昕,張展羽,等.基于HYDRUS-3D的微咸水膜孔溝灌水鹽分布數(shù)值模擬[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):137–145 Ma H Y,Wang X,Zhang Z Y,et al.Numerical simulation of water-salt distribution under brackish water film hole furrow irrigation based on HYDRUS-3D model[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(2):137–145
Variation in soil water in Shapotou Area under straight-tube root irrigation*
MA Zhenyong1,2,DU Hulin1,LIU Rongguo3,YAN Zizhu4,LIU Ligang3,LIU Chao3,NIU Jinshuai3
(1.Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China;2.University of Chinese Academy of Sciences,Beijing100049,China;3.Ningxia Shapotou National Nature Reserve Administration,Zhongwei 755000,China;4.Gansu Desert Control Research Institute,Lanzhou 730070,China)
In order to improve water use efficiency of afforestation drive in Shapotou Area,straight-tube root irrigation test was carried out on biennial sand-fixationHaloxy lonammodendronin Shapotou Nature Reserve Area in Zhongwei,Ningxia.Thetest aimed to study the variation rules of soil moisture in the 0-100cm soil profile under straight-tube root irrigation.The aqueduct length of straight-tube root irrigation was 40cm and water seepage micro-porous were distributed at30-40cm end section of the aqueduct.Soil water content was measured by the TDR soil moisture recorder at a time interval of1 h.Based on the recorded data,the variations in soil water under straight-tube root irrigation was analyzed.The results showed that:1) for the period of root irrigation,the Logistic curve well described the variations in soil water content with irrigation time.After the stop of irrigation,however,the variation in soil water content degeneration was best described by power function model.2) The maximum soil water infiltration rates of different layers were in the ranked sequence of 60cm >40cm >80cm >100cm >20cm.The shortest time needed to reach the maximum infiltration rate was in the 40cm soil layer (with an average time of1.22 h) and the longest time was in the100cm soil layer (with an average time of 4.57 h).The average maximum infiltration rate of1 m soil profile was1.65%·h-1and the average time needed to reach the maximum infiltration rate of1 m soil profile was 2.16 h.3) Based on the fitted curves,it was suggested that the optimum straight-tube root irrigation cycle ofH.lonammodendronforest in Shapotou was approximately 4 d and each single irrigation time was 6-10 h.4) After stopping irrigating for 2 h,the rate of recession of soil moisture increased with increasing soil depth.Also after stopping irrigation for 48 h,the rate of degeneration of soil water content in all soil layers was almost zero.During the growing period ofH.lonammodendron,the rate of degeneration of soil water in the1 m soil layer reached the maximum of 2.20%·h-1during grain-filling period and reached the minimum of1.31%·h-1during aestivation period.5) The straight-tube root irrigation had the minimal effect on soil water content in the 20cm soil layer,but the biggest influence on the 60cm soil layer.During irrigation,the constant value line of soil water content centered on the 60cm deep line which radially distributed into the surface and deep soil layers.After irrigation,average soil water contents in the 20cm and 60cm soil layers were significantly different (P<0.05) from those of the other layers.The research showed that the law of soil water infiltration in straight-tube root irrigation followed the Logistic curve,the regression rule followed the power function curve,and the straight-tube root irrigation had the minimum impact on soil water in the 20cm layer and had the maximum impact on soil water in the 60cm layer.The irrigation cycle of straight-tube root irrigation forH.lonammodendronin Shapotou Area was approximately 4 days and the recommended single irrigation time was 6-10 h.
Artificial sand fixation forest;Straight-tube root irrigation;Soil water;Infiltration;Regression;Irrigation cycle
,MA Zhenyong,E-mail:mzyzhx@163.com
S275.6
:A
:1671-3990(2017)01-0104-14
10.13930/j.cnki.cjea.160596
馬振勇,杜虎林,劉榮國(guó),嚴(yán)子柱,劉立剛,劉超,牛金帥.沙坡頭區(qū)直插式根灌條件下土壤水分變化分析[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2017,25(1):104-117
Ma Z Y,Du H L,Liu R G,Yan Z Z,Liu L G,Liu C,Niu J S.Variations in soil water in Shapotou Area under straight-tube root irrigation[J].Chinese Journal of Eco-Agriculture,2017,25(1):104-117
* 寧夏回族自治區(qū)環(huán)境保護(hù)廳“寧夏環(huán)保生態(tài)示范基地根灌節(jié)水技術(shù)研究與示范”項(xiàng)目(Y490L61001)和甘肅省科技支撐計(jì)劃項(xiàng)目(1304JKCA170)資助
馬振勇,主要從事干旱區(qū)生態(tài)水文、節(jié)水灌溉及水肥耦合等方面的研究。E-mail:mzyzhx@163.com
2016-07-05接受日期:2016-09-14
* The study was supported by the Research and Demonstration Project of the Environmental Protection Department of Ningxia Hui Autonomous Region “Root Irrigation Water-saving Technology in the Environmental and Ecological Demonstration Base in Ningxia”(Y490L61001) and the Science and Technology Support Project of Gansu Province (1304JKCA170).
Received Jul.5,2016;accepted Sep.14,2016
中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文)2017年1期