杜 蕾,孫 靜,葛良鵬*,劉作華*
(1.重慶市畜牧科學(xué)院,重慶 402460;2. 西南大學(xué)動物科技學(xué)院,重慶 402460)
腸道菌群對動物免疫系統(tǒng)早期發(fā)育的影響
杜 蕾1,2,孫 靜1,葛良鵬1*,劉作華1*
(1.重慶市畜牧科學(xué)院,重慶 402460;2. 西南大學(xué)動物科技學(xué)院,重慶 402460)
腸道是動物機體最大的免疫器官,腸道菌群是定植在腸道內(nèi)的微生物群落。最早定植在動物體內(nèi)的細(xì)菌源于動物在環(huán)境中隨機接觸的第一類細(xì)菌,并結(jié)合其他環(huán)境因素影響后續(xù)微生物種類的進入。微生物與免疫的互作在免疫系統(tǒng)的早期發(fā)育中起著重要作用,一旦中斷將導(dǎo)致潛在、持久的免疫異常,所以微生物的早期定植有助于提高機體的免疫力。本文主要綜述了腸道菌群對畜禽免疫系統(tǒng)早期發(fā)育的影響,探討在養(yǎng)殖業(yè)中如何促進畜禽健康、提高生產(chǎn)成績。
腸道菌群;免疫系統(tǒng);早期定植;畜禽健康
腸道菌群對動物機體健康的影響是當(dāng)今研究的熱點。腸道是人體主要的黏膜免疫器官,單層腸上皮細(xì)胞(260~300 m2)覆蓋在消化道黏膜層表面,環(huán)境物質(zhì)、營養(yǎng)物和腸道共生細(xì)菌三者互相影響[1]。Sender等[2]研究表明,人體腸道菌群由3×1013的真核細(xì)胞和4×1013的定植細(xì)菌組成,并且真核細(xì)胞的線粒體與葉綠體均起源于細(xì)菌,表明細(xì)菌在早期生物進化中起著重要作用[3]。相關(guān)研究表明,免疫發(fā)生前的免疫球蛋白多樣化發(fā)生在腸道或腸道相關(guān)結(jié)構(gòu)[4]。從動物機體早期發(fā)育到成年階段,腸道微生物均有助于胃腸道免疫系統(tǒng)組織和細(xì)胞的發(fā)育及免疫分子的分泌[3]。嬰兒在出生后,最早定植于體內(nèi)的細(xì)菌源于其隨機接觸的環(huán)境中的第一類細(xì)菌,結(jié)合其他環(huán)境因素從而影響后續(xù)微生物種類的進入。因此,成年的微生物組成在一定程度上反映了其幼年時期所接觸的微生物及外界環(huán)境[5]。本文就腸道菌群定植對動物機體免疫系統(tǒng)早期發(fā)育及畜禽健康影響的研究現(xiàn)狀及展望作一綜述。
無菌動物的發(fā)育缺陷主要在腸道相關(guān)淋巴組織(Gut Associated Lymphoid Tissue,GALTs)、脾臟、胸腺等初級和次級免疫器官,并且無菌動物的盲腸更發(fā)達、絨毛更長、隱窩更窄、派爾淋巴結(jié)(Peyes's Pstches PP)和腸系膜淋巴結(jié)(Mesenteric Lymphnodes,MLNs)更小[6]。黏膜表面的微生物在機體生命早期呈現(xiàn)波動性變化,成年期在沒有外界環(huán)境干擾的情況下保持相對穩(wěn)定的水平[7]。機體在幼年階段接觸微生物會影響其免疫系統(tǒng)形態(tài)和功能的發(fā)育,共生菌的定植有助于黏膜免疫系統(tǒng)的發(fā)育、擴張和調(diào)教,從而直接或間接影響免疫系統(tǒng)的成熟[8]。在無菌鼠及SPF小鼠的空腸和結(jié)腸上的試驗發(fā)現(xiàn),幼年時期的微生物定植如果沒有發(fā)生在關(guān)鍵時期或者沒有接觸微生物,將對宿主產(chǎn)生潛在、不可逆的危害,導(dǎo)致動物成年時免疫系統(tǒng)不能發(fā)育完全[9]。
機體免疫系統(tǒng)由固有免疫和適應(yīng)性免疫2個分支組成。固有免疫系統(tǒng)是宿主抵御病原體的第一道防線;獲得性免疫涉及到感染晚期的病原體的消除,并伴隨著免疫記憶的形成。有學(xué)者發(fā)現(xiàn)無菌動物的免疫細(xì)胞早期發(fā)育存在缺陷:腸內(nèi)淋巴細(xì)胞、分泌性IgA漿細(xì)胞數(shù)量、表達αβT細(xì)胞受體(T Cell Receptor,TCR)的上皮內(nèi)淋巴細(xì)胞、固有層的CD4+和CD8+T淋巴細(xì)胞水平均低于普通動物,但這些形態(tài)學(xué)和細(xì)胞學(xué)的缺陷均可通過盡早引入宿主特異性微生物而得到恢復(fù)[10]。共生菌對宿主免疫結(jié)構(gòu)有深遠影響。Haverson等[11]讓無菌仔豬定植血清型為O83和O86的2株大腸桿菌菌株20 d后,發(fā)現(xiàn)固有層的T淋巴細(xì)胞、樹突細(xì)胞(Dendritic Cells,DCs)和上皮組織廣泛增加,說明特定微生物的定植將促進動物免疫系統(tǒng)早期發(fā)育。
2.1 DCs 微生物通過定植抗力協(xié)助宿主對抗病原菌入侵,而幼年動物需要時間來形成復(fù)雜的微生物群落和成熟的GALT,所以其幼年期間易受共生菌特別是病原菌傷害[12]。腸道內(nèi)的巨噬細(xì)胞會迅速殺滅侵入機體的共生菌,而小部分的土著共生菌之所以能在腸道內(nèi)生存就是依靠DCs細(xì)胞選擇性誘導(dǎo)IgA生成,在保證黏膜免疫系統(tǒng)的前提下又不破壞系統(tǒng)免疫反應(yīng)[13]。DCs細(xì)胞及其亞群可以調(diào)節(jié)固有免疫和適應(yīng)性免疫應(yīng)答,識別共生菌、病原體和自身抗原[1]。Drakes等[14]研究益生菌對人骨髓來源的DCs細(xì)胞表面抗原表達及其細(xì)胞因子分泌的影響,發(fā)現(xiàn)大量的益生菌能上調(diào)DCs表達CD80、CD86、CD40和MHCⅡ類分子。加州理工學(xué)院的研究人員通過檢測小鼠腸道產(chǎn)生的血清素水平,發(fā)現(xiàn)腸道菌群可以調(diào)節(jié)宿主的DCs細(xì)胞分泌的5-羥色胺水平,無菌小鼠產(chǎn)生的血清素水平比擁有正常菌群的小鼠低60%[15]。熊菲等[16]給Balb/c小鼠分別飼喂雙歧桿菌活菌、死菌和培養(yǎng)上清,發(fā)現(xiàn)外源性雙歧桿菌能促進小鼠腸道DCs的發(fā)育成熟,增加其數(shù)量。
2.2 腸上皮細(xì)胞(Intestinal Epithelial Cells,IECs) 腸上皮的特異性減少將破壞上皮屏障,造成組織的自發(fā)性炎癥。研究發(fā)現(xiàn)小鼠在2周齡以前,其IECs的Toll樣受體1(Toll-like Receptors,TLRs)信號會出現(xiàn)特異性下調(diào),過后將不再出現(xiàn)。主要是TLRs信號調(diào)節(jié)分子白細(xì)胞介素受體激酶1(IRAK1)的下調(diào),誘導(dǎo)IECs出現(xiàn)固有免疫耐受,并保護初生動物免受細(xì)菌誘導(dǎo)的上皮損傷[17]。上皮細(xì)胞中的模式識別受體(Pattern Recognition Receptor,PRRs)參與病原菌感染的消除,如TLRs和NOD樣受體NOD1、NOD2與抗菌肽和黏液的產(chǎn)生相關(guān)[18]。上皮NOD1蛋白調(diào)節(jié)孤立淋巴濾泡產(chǎn)生趨化因子CCL20,對腸道細(xì)菌定植穩(wěn)態(tài)至關(guān)重要[19];NOD2在小腸潘氏細(xì)胞中高度表達,被細(xì)菌肽聚糖激活并驅(qū)使細(xì)胞因子分泌、誘導(dǎo)自我吞噬、上皮再生、產(chǎn)生抗菌肽[20]。共生菌在腸道上皮細(xì)胞代謝中起重要作用,可誘導(dǎo)短鏈脂肪酸(Short-chain Fatty Acids,SCFAs)生成,影響耗氧量和缺氧誘導(dǎo)因子(Hypoxia-inducible Factor, HIF)對上皮屏障的作用[21]。
2.3 固有淋巴細(xì)胞(Innate Lymphoid Cells,ILCs)有研究證明,微生物對早期生命的影響甚至可能發(fā)生在妊娠期,妊娠期間母體的微生物組成將調(diào)節(jié)后代的固有免疫細(xì)胞的數(shù)量和活性[22]。ILCs是最近發(fā)現(xiàn)的固有免疫細(xì)胞的新亞群,在缺乏微生物的情況下發(fā)育正常,但功能受細(xì)菌定植的影響[23]。ILCs除了在發(fā)育與功能方面與CD4+T細(xì)胞相似外,還與腸上皮細(xì)胞反應(yīng)的調(diào)節(jié)、腸道穩(wěn)態(tài)密切相關(guān)[24]。目前研究最多的就是ILC3,腸系膜淋巴結(jié)中ILC3豐度很高,可以表達MHC-Ⅱ、呈遞抗原,限制T細(xì)胞對共生菌的特異性作用,并且ILC3還有助于B淋巴細(xì)胞和T淋巴細(xì)胞的分化[25]。ILC3對IL-23和 IL-1β的刺激敏感,刺激后產(chǎn)生IL-17A和IL-22[24],分泌的TNF-β對于IgA的產(chǎn)生和維持宿主腸道微生物平衡至關(guān)重要[26]。CD103+CD11b+腸道樹突細(xì)胞表面的TLR5受體識別細(xì)菌的鞭毛蛋白,刺激IL-23的表達,驅(qū)使ILC3分泌IL-22[27]。通過這些因子的產(chǎn)生,ILC3可以參與細(xì)胞外細(xì)菌誘導(dǎo)的免疫反應(yīng),促進腸道內(nèi)炎癥及組織損傷的修復(fù)[28]。
2.4 B淋巴細(xì)胞 較普通動物而言,無菌動物分泌抗菌肽和IgA的功能受損。Cukrowska等[29]給新生無菌小豬接種非致病性大腸桿菌O86,發(fā)現(xiàn)接種4 d后,黏膜局部產(chǎn)生抗大腸桿菌IgA抗體,小豬脾、MLNs和PP中IgM、IgG和IgA分泌細(xì)胞的數(shù)量明顯升高。小鼠B細(xì)胞的早期發(fā)育在腸道黏膜固有層內(nèi)進行,由共生菌群的胞外信號控制,進而影響腸道免疫蛋白的形成[30]。Potockova等[31]進一步研究發(fā)現(xiàn)B細(xì)胞雖未在回腸內(nèi)發(fā)育但卻大量存在,表明菌群定植利于B細(xì)胞在回腸內(nèi)大量存在,并刺激小腸淋巴細(xì)胞增殖。Butler等[32]給無菌小豬移植非致病性大腸桿菌G85-1和腸出血性大腸桿菌933D后,發(fā)現(xiàn)血清中IgG、IgA和IgM水平增高,其中定植933D的動物血清中總IgG、IgM及特異性IgG抗體的水平明顯高于G85-1,表明抗體產(chǎn)生水平受定植細(xì)菌的性質(zhì)的影響。
2.5 T淋巴細(xì)胞 研究發(fā)現(xiàn)新生兒免疫細(xì)胞與成人免疫細(xì)胞在功能方面存在差異,主要體現(xiàn)在T細(xì)胞發(fā)育所處環(huán)境,T細(xì)胞本質(zhì)上并無差別[33]。T細(xì)胞發(fā)育環(huán)境很大一部分取決于微生物環(huán)境,共生菌通過產(chǎn)生小分子物質(zhì)調(diào)節(jié)宿主-微生物的交互反應(yīng)[34],比較經(jīng)典的例子是SCFAs作為細(xì)胞能源物質(zhì),調(diào)節(jié)細(xì)胞因子的產(chǎn)生和誘導(dǎo)調(diào)節(jié)性T細(xì)胞的增殖[35]。特定微生物可以調(diào)節(jié)固有層內(nèi)的T細(xì)胞的穩(wěn)態(tài)。Mazmanian等[36]發(fā)現(xiàn)脆弱擬桿菌(Bacteroides Fragilis)通過激活細(xì)菌多糖A(PSA)影響系統(tǒng)性Th1免疫反應(yīng);進一步研究發(fā)現(xiàn),PSA的存在可誘導(dǎo)IL-10依賴性的T細(xì)胞反應(yīng),進而保護小鼠抵御肝螺桿菌誘導(dǎo)的結(jié)腸炎[37]。Ivanov等[38]發(fā)現(xiàn),細(xì)菌Cytophaga-Flavobacter-Bacteroidetes的存在與固有層內(nèi)的Th17細(xì)胞的分化及Foxp3+ 標(biāo)記的T細(xì)胞數(shù)量相關(guān),通過Th17細(xì)胞和Treg細(xì)胞的平衡影響腸道免疫、耐受和炎性腸疾病的敏感性;Wu等[39]還發(fā)現(xiàn)單一定植分節(jié)絲狀菌(Segmented Filamentous Bacteria , SFB)可增強動物自身抗體的產(chǎn)生,通過形成Th17加速疾病進程。
免疫系統(tǒng)成熟是一個宿主、病原菌、共生菌三方交互作用、精心協(xié)調(diào)的過程。腸道微生物的刺激可誘導(dǎo)免疫系統(tǒng)成熟,進而保護宿主免受感染、維持腸道內(nèi)穩(wěn)態(tài)、促進畜禽健康[15]。機體的腸道屏障主要由物理屏障、化學(xué)屏障、微生物屏障以及免疫屏障組成,各自具有不同的分子調(diào)控機制和生物學(xué)功能,共同防御外來抗原物質(zhì)對機體的侵襲。Bocourt等[40]研究發(fā)現(xiàn),鼠李糖乳桿菌(Lactobacillus Rhamnosus, LGG)可提高仔豬日增重、總重量,降低腹泄率和腹瀉持續(xù)時間,進而提高仔豬的生產(chǎn)性能和健康指數(shù)。天然腸道細(xì)菌對于機體對抗病毒和細(xì)菌來說非常有效。Ganal等[41]用不同的過濾性病毒感染正常和無菌2組小鼠,相比正常小鼠來說,無菌小鼠的免疫效應(yīng)大幅降低、產(chǎn)生嚴(yán)重疾病,但給無菌小鼠接種正常小鼠的體內(nèi)腸道微生物菌群后,其免疫效應(yīng)便可恢復(fù)。Vatanen等[42]研究揭示,擬桿菌屬的脂多糖( Lipopolysaccharide,LPS)是有效的固有免疫激活劑,幼年時期接觸微生物有助于免疫系統(tǒng)的訓(xùn)練,不易患自身免疫疾病。
腸道微生物是調(diào)節(jié)免疫反應(yīng)的重要因素,腸道微生物紊亂與異常的免疫反應(yīng)密切相關(guān)。An等[43]研究發(fā)現(xiàn),在出生后前2周內(nèi)定植脆弱擬桿菌標(biāo)準(zhǔn)菌株可治療人工誘導(dǎo)的結(jié)腸炎,細(xì)菌定植的關(guān)鍵時期是在出生后14 d內(nèi)。Xavier等[44]認(rèn)為,雖然目前還不知道腸道菌群與免疫應(yīng)答關(guān)系中的所有參與成分,但腸道菌群的差異會改變代謝物的產(chǎn)生;而代謝物的變化會進一步引導(dǎo)或影響免疫細(xì)胞,導(dǎo)致免疫細(xì)胞在暴露于不同感染的時候產(chǎn)生不同的結(jié)果,這也為今后的研究提供了一些思路和方向。
微生物與免疫系統(tǒng)的相互作用在免疫系統(tǒng)的早期發(fā)育中起著重要作用,微生物具有高度多樣化發(fā)展的特點,可誘導(dǎo)、訓(xùn)練宿主免疫系統(tǒng);另一方面免疫系統(tǒng)可維持與微生物的共生關(guān)系。這種關(guān)系一旦中斷將導(dǎo)致潛在、持久的免疫異常,所以增加早期有益微生物的定植有助于提高機體免疫力。因此,明確微生物定植的關(guān)鍵時期,深入了解腸道菌群的結(jié)構(gòu)、組分及其作用,將進一步揭示腸道菌群和疾病間的關(guān)系,利于增加細(xì)菌的有益定植,為動物疾病的個性化預(yù)防和治療奠定基礎(chǔ)。
[1] Niess J H, Reinecker H C. Dendritic cells in the recognition of intestinal microbiota[J]. Cell Microbiol, 2006, 8(4) : 558-564.
[2] Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans[J]. Cell, 2016, 164(3) : 337-340.
[3] Lee Y K, Mazmanian S K. Has the microbiota played a critical role in the evolution of the adaptive immune system?[J]. Science, 2010, 330 (6012): 1768-1773.
[4] Ratcliffe M J. Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development[J]. Dev Comp Immunol , 2006, 30(1-2) : 101-118.
[5] Gensollen T, Iyer S S, Kasper D L, et al. How colonization by microbiota in early life shapes the immune system[J]. Science, 2016, 352(6285) : 539-544.
[6] Umesaki Y, Setoyama H, Matsumoto S, et al. Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus[J]. Immunology, 1993, 79(1) : 32-37.
[7] Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome[J]. Nat Rev Microbiol, 2011, 9(4) : 279-290.
[8] Geuking M B, Cahenzli J, Lawson M A, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses[J]. Immunity, 2011, 34(5) : 794-806.
[9] El Aidy S, Hooiveld G, Tremaroli V, et al. The gut microbiota and mucosal homeostasis: colonized at birth or at adulthood, does it matter?[J]. Gut microbes, 2013, 4(2) : 118-124.
[10] Yanagibashi T, Hosono A, Oyama A, et al. IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells[J]. Immunobiology, 2013, 218(4) : 645-651.
[11] Haverson K, Rehakova Z, Sinkora J, et al. Immune development in jejunal mucosa after colonization with selected commensal gut bacteria: a study in germ-free pigs[J]. Vet Immunol Immunopathol, 2007, 119(3-4) : 243-253.
[12] Bauer E, Williams B A, Smidt H, et al. Influence of the gastrointestinal microbiota on development of the immune system in young animals[J]. Curr Issues Intest Microbiol, 2006, 7(2) : 35-51.
[13] Macpherson A J, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria[J]. Science, 2004, 303 : 1662-1665.
[14] Drakes M, Blanchard T, Czinn S. Bacterial probiotic modulation of dendritic cells[J]. Infect Immun, 2004, 72(6) : 3299-3309.
[15] Yano J M, Yu K, Donaldson G P, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2) : 264-276.
[16] 熊菲, 程茜, 劉明方, 等. 雙歧桿菌對小鼠腸道樹突狀細(xì)胞數(shù)量的影響[J]. 中國微生態(tài)學(xué)雜志, 2005, 17(6): 405-407.
[17] Chassin C, Kocur M, Pott J, et al. miR-146a mediates protective innate immune tolerance in the neonate intestine[J]. Cell Host Microbe, 2010, 8(4) : 358-368.
[18] Thaiss C A, Zmora N, Levy M, et al. The microbiome and innate immunity[J]. Nature, 2016, 535(7610) : 65-74.
[19] Bouskra D, Brezillon C, Berard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis[J]. Nature, 2008, 456(7221) : 507-510.
[20] Ramanan D, Tang M S, Bowcutt R, et al. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus[J]. Immunity, 2014, 41(2) : 311-324.
[21] Smith M B, Kelly C R, Alm E J. How to regulate faecal transplants[J]. Nature, 2014, 506 (7488): 290-291.
[22] De Agüero M G, Ganal-Vonarburg S C, Fuhrer T, et al. The maternal microbiota drives early postnatal innate immune development[J]. Science, 2016, 351(6279): 1296-1302.
[23] Sanos S L, Bui V L, Mortha A, et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells[J]. Nat Immunol, 2009, 10(1) : 83-91.
[24] Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function[J]. Annu Rev Immunol, 2012, 30: 647-675.
[25] Hepworth M R, Fung T C, Masur S H, et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells[J]. Science, 2015, 348(6238): 1031-1035.
[26] Kruglov A A, Grivennikov S I, Kuprash D V, et al. Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis[J]. Science,2013, 342(6163) : 1243-1246.
[27] Hughes T, Becknell B, Freud A G, et al. Interleukin-1beta selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue[J]. Immunity, 2010, 32(6): 803-814.
[28] Sawa S, Lochner M, Satoh-Takayama N, et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota[J]. Nat Immunol, 2011, 12: 320-326.
[29] Cukrowska B, Kozakova H, Rehakova Z, et al. Specific antibody and immunoglobulin responses after intestinal colonization of germ-free piglets with non-pathogenic Escherichia coli O86[J]. Immunobiology, 2001, 204(4): 425-433.
[30] Wesemann D R, Portuguese A J, Meyers R M, et al. Microbial colonization influences early B-lineage development in the gut lamina propria[J]. Nature, 2013, 501: 112-115.
[31] Potockova H, Sinkorova J, Karova K, et al. The distribution of lymphoid cells in the small intestine of germ-free and conventional piglets[J]. Dev Comp Immunol, 2015, 51(1): 99-107.
[32] Butler J E, Sun J, Weber P, et al. Antibody repertoire development in fetal and newborn piglets, III. Colonization of the gastrointestinal tract selectively diversifies the preimmune repertoire in mucosal lymphoid tissues[J]. Immunology, 2000, 100(1): 119-130.
[33] Ridge J P, Fuchs E J, Matzinger P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells[J]. Science, 1996, 271(5256): 1723-1726.
[34] Donia M S, Fischbach M A. Human Microbiota. Small molecules from the human microbiota[J]. Science, 2015, 349(6246): 1254766.
[35] Smith P M, Howitt M R, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573.
[36] Mazmanian S K, Liu C H, Tzianabos A O, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system[J]. Cell, 2005, 122: 107-118.
[37] Mazmanian S K, Round J L, Kasper D L. A microbial symbiosis factor prevents intestinal inflammatory disease[J]. Nature, 2008, 453(7195): 620-625.
[38] Ivanov I I, De Llanos Frutos R, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine[J]. Cell Host Microbe, 2008, 4(4): 337-349.
[39] Wu H J, Ivanov I I, Darce J, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells[J]. Immunity, 2010, 32(6) : 815-827.
[40] Bocourt R, Savon L, Diaz J, et al. Effect of the probiotic activity of Lactobacillus rhamnosus on productive and health indicators of piglets[J]. Cuban J Agr Sci, 2004, 38(4): 75-79.
[41] Ganal S C, Sanos S L, Kallfass C, et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota[J]. Immunity, 2012, 37(1): 171-186.
[42] Vatanen T, Kostic A D, d’Hennezel E, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans[J]. Cell, 2016, 165(4) : 842-853.
[43] An D, Oh S F, Olszak T, et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells[J]. Cell, 2014, 156(1-2): 123-133.
[44] Schirmer M, Smeekens S P, Vlamakis H, et al. Linking the human gut microbiome to inflammatory cytokine production capacity[J]. Cell, 2016, 167(4): 1125-1136.
Effect of Intestinal Flora on Animal Early Development of Immune System
DU Lei1,2, SUN Jing1, GE Liang-peng1*, LIU Zuo-hua1*
(1. Chongqing Academy of Animal Science, Chongqing 402460, China; 2. College of Animal Science and Technology Southwest University, Chongqing 402460, China)
Gastrointestine was viewed as the largest immune organ of animals, intestinal flora was the microbial communities which was inhabited in. The earliest colonized bacteria in animals was primarily determined by its randomly contact the first bacteria in the environment, and then combining other environmental factors influenced the subsequent microbial species. However, microbes and immune system interactions play a crucial role in the early immune system development, once was interrupted which would cause potential and lasting immune abnormalities. Therefore microbes, especially probiotics original inoculation will obviously enhance the immune system level. This review mainly summarized the interaction of intestinal flora and the early immune system development, in order to promote the animal’s health and improve the production performance.
Intestinal microbiota; Immune system; Early colonization; Animal’s health
S852.4
A
10.19556/j.0258-7033.2017-06-010
2016-12-20;
2017-01-17
重慶市基本科研業(yè)務(wù)費計劃項目(16422);重慶市博士后科研項目特別資助(Xm2016031)
杜蕾(1992-),重慶長壽人,碩士研究生,主要從事動物營養(yǎng)與飼料科學(xué)研究,E-mail:dulei127899@163.com
* 通訊作者:劉作華,研究員,E-mail:liuzuohua66@163.com;葛良鵬,研究員,E-mail: geliangpeng1982@163.com