嚴(yán)惠云,師義民
(西北工業(yè)大學(xué) 理學(xué)院,陜西 西安 710072)
非線性隨機(jī)參數(shù)模型的Legendre多項(xiàng)式逼近誤差
嚴(yán)惠云,師義民
(西北工業(yè)大學(xué) 理學(xué)院,陜西 西安 710072)
利用均方誤差最小原則研究參數(shù)取值對(duì)Legendre多項(xiàng)式逼近誤差的影響.分析數(shù)值解的均方誤差,結(jié)果表明,模型參數(shù)的選取對(duì)近似逼近精度有顯著影響,其中參數(shù)的標(biāo)準(zhǔn)差σ對(duì)近似逼近的精度影響最大,σ增大10倍時(shí),近似逼近的均方誤差可能會(huì)增加104倍.通過(guò)選取合適的參數(shù)Legendre多項(xiàng)式能有效逼近含有界隨機(jī)參數(shù)的非線性經(jīng)濟(jì)周期模型.
Legendre多項(xiàng)式逼近法;有界隨機(jī)參數(shù);經(jīng)濟(jì)周期模型
在宏觀經(jīng)濟(jì)問(wèn)題研究中,影響經(jīng)濟(jì)運(yùn)行的因素很多,且各因素聯(lián)系緊密.而模型和實(shí)際問(wèn)題間存在誤差,這些誤差在模型中主要以兩種形式存在:一是作為模型的隨機(jī)擾動(dòng)項(xiàng),二是隱含在參數(shù)中,此時(shí)參數(shù)就是隨機(jī)參數(shù).因此,研究隨機(jī)參數(shù)對(duì)經(jīng)濟(jì)周期模型響應(yīng)的影響有重要的理論意義和應(yīng)用價(jià)值.
目前,研究含有界隨機(jī)參數(shù)模型的方法主要有Monte Carlo方法[1-2],隨機(jī)有限元法[3-4]和正交多項(xiàng)式逼近法[5-13].Monte Carlo方法簡(jiǎn)單但費(fèi)時(shí),隨機(jī)有限元法只能解決隨機(jī)參數(shù)是一個(gè)小量的情況,正交多項(xiàng)式逼近法則適用性更強(qiáng).正交多項(xiàng)式逼近法應(yīng)用較多的是第二類Chebyshev多項(xiàng)式.但并不是任何情況下都可以使用第二類Chebyshev多項(xiàng)式對(duì)模型進(jìn)行近似逼近,應(yīng)根據(jù)實(shí)際情況選擇最合適的正交多項(xiàng)式.另外,在現(xiàn)有的研究成果中,很少見(jiàn)到對(duì)多項(xiàng)式近似逼近誤差的討論.沒(méi)有考慮近似誤差的多項(xiàng)式逼近有可能是無(wú)效的,因此,本文根據(jù)模型參數(shù)的實(shí)際意義,選取Legendre多項(xiàng)式作為正交多項(xiàng)式,以非線性經(jīng)濟(jì)周期模型為例,在均方誤差最小的準(zhǔn)則下討論了參數(shù)取值對(duì)Legendre多項(xiàng)式近似逼近誤差的影響.
根據(jù)Puu的投資函數(shù)[14]和Goodwin的消費(fèi)函數(shù)[15],建立如下經(jīng)濟(jì)周期模型
(1)
其中:x表示國(guó)民收入增長(zhǎng)率,α(0≤α≤1)是邊際消費(fèi)率,表示資本市場(chǎng)的供需關(guān)系;v是邊際投資率,滿足v=1/(1-a),u=2α-1+1/(1-α);f與ω均為無(wú)量綱參數(shù),分別表示周期噪聲的強(qiáng)度和頻率.由于不同時(shí)間的邊際消費(fèi)率不同,因此α是一個(gè)有界隨機(jī)參數(shù).
由于ξ的分布沒(méi)有先驗(yàn)信息,一般可以將ξ看作服從(-1,1)上均勻分布的隨機(jī)變量,即ξ的概率密度函數(shù)為
(2)
基于上述的概率密度函數(shù),本文選取Legendre多項(xiàng)式為正交多項(xiàng)式基. 這類多項(xiàng)式的一般表達(dá)式為
(3)
由此可以得到Legendre多項(xiàng)式的具體表達(dá)式,即
P0(ξ)=1,P1(ξ)=ξ,P2(ξ)=(3ξ2-1)/2,P3(ξ)=(5ξ3-3ξ)/2,…
(4)
由Legendre多項(xiàng)式三項(xiàng)式的遞推公式,即
(l+1)Pl+1(ξ)=(2l+1)ξPl(ξ)-lPl-1(ξ),(l≥1),
可以得到
ξPl(ξ)=[(l+1)Pl+1(ξ)+lPl-1(ξ)]/(2l+1),(l≥1).
(5)
另外,Legendre多項(xiàng)式的正交性可表示為
(6)
為方便后續(xù)推導(dǎo),給式(1)兩邊同時(shí)乘以(1-α),得到
(7)
模型(7)的響應(yīng)是關(guān)于時(shí)間t和ξ的函數(shù)
x=x(t,ξ).
(8)
由隨機(jī)函數(shù)的正交分解法,模型(7)的響應(yīng)可表示為
其中,Pl(ξ)是第l個(gè)Legendre多項(xiàng)式.在實(shí)際計(jì)算中,選取滿足計(jì)算精度的有限項(xiàng)近似,即
(9)
以N=4為例給出詳細(xì)計(jì)算過(guò)程,N等于其他值的情況可以做類似推導(dǎo).當(dāng)N=4時(shí),將式(9)代入式(7),得到
根據(jù)公式(5),有
式(10)兩端同乘以p0(ξ),p1(ξ),p2(ξ),p3(ξ),p4(ξ), 關(guān)于ξ求期望得模型(7)的近似確定性系統(tǒng)(11),即
一個(gè)好的近似逼近應(yīng)該有較小的近似誤差.由于原模型和近似模型的解析解難以得到,因此本文用數(shù)值解分析參數(shù)取值對(duì)近似誤差的影響.表1~5列出了N=2,3,4,5時(shí)近似確定性模型(11)與原模型(1)數(shù)值解的均方誤差.
表 1 f=0時(shí)的均方誤差表
由表1可以看出,當(dāng)模型(1)沒(méi)有周期性噪聲擾動(dòng),即f=0時(shí),不論Legendre近似逼近項(xiàng)數(shù)取多少,在其他參數(shù)不變的情況下,隨著σ的增大,Legendre近似逼近的均方誤差迅速增大.當(dāng)σ增大10倍時(shí),均方誤差增加了104倍.由此看見(jiàn)σ的取值顯著影響著Legendre近似逼近的精度,因此,在實(shí)際應(yīng)用中應(yīng)該選取較小的σ,以提高近似逼近精度.
表 2 σ=0.2, ω=0.43時(shí)的均方誤差表
表 3 σ=0.1, ω=0.43時(shí)的均方誤差表
表 4 σ=0.01, ω=0.43時(shí)的均方誤差表
表 5 ω取值不同時(shí)的均方誤差表
正交多項(xiàng)式逼近法使用簡(jiǎn)單而且應(yīng)用廣泛,但在實(shí)際應(yīng)用中需要注意選擇合適的正交多項(xiàng)式和近似項(xiàng)數(shù).本文在均方誤差最小的準(zhǔn)則下討論了參數(shù)取值對(duì)Legendre多項(xiàng)式近似逼近項(xiàng)數(shù)選取的影響.數(shù)值分析結(jié)果發(fā)現(xiàn),模型參數(shù)取值對(duì)近似逼近誤差有顯著影響.隨機(jī)參數(shù)的方差越大,均方誤差越大,模型的周期擾動(dòng)強(qiáng)度越大,均方誤差越大.因此,在實(shí)際應(yīng)用中,應(yīng)根據(jù)參數(shù)的取值情況選取均方誤差最小的近似逼近項(xiàng)數(shù),且在滿足精度要求的情況下,為了后續(xù)計(jì)算簡(jiǎn)便,盡可能選取項(xiàng)數(shù)較少的近似逼近.
[1] SHINO ZUKA M.Probability modeling of concrete structures[J].J Eng Mech Div ASCE,1972,98: 1433-1451.
[2] 杜永恩,王生楠,閆曉中.基于Neumann 展開(kāi)的Monte-Carlo隨機(jī)擴(kuò)展有限元法[J].西北工業(yè)大學(xué)學(xué)報(bào),2013,31(3):413-416.
DU Yong′en,WANG Shengnan,YAN Xiaozhong.Stochastically extended finite element method based on neumann expansion [J].Journal of Northwestern Polytechnical University,2013,31(3):413-416.
[3] 張義民,劉巧伶,聞邦椿.多自由度非線性隨機(jī)參數(shù)振動(dòng)系統(tǒng)響應(yīng)分析的概率攝動(dòng)有限元法[J].計(jì)算力學(xué)學(xué)報(bào),2003,20(1):8-11.
ZHANG Yimin,LIU Qiaoling,WEN Bangchun.Probability perturbation finite element method for response analysis of multi-degree of freedom nonlinear vibration[J].Chinese Journal of Computational Mechanics,2003,20(1): 8-11.
[4] LIU W K,BEST ERFIED G H,BELYT S CHKO P.Variational approach to probabilistic finite elements[J].J Engng Mech,1988,114(12): 2115-2133.
[5] 侯璟,馬少娟,沈瓊.分?jǐn)?shù)階隨機(jī)Duffing系統(tǒng)的Hopf分岔[J].動(dòng)力學(xué)與控制,2014,12(4):310-314.
HOU Jing,MA Shaojuan,SHEN Qiong.Hopf bifurcation of fractional-order stochastic duffing system[J].Joural of Dynamics and Control,2014,12(4):310-314.
[6] 許勇,馬少娟,張慧清.帶有隨機(jī)參數(shù)的隨機(jī)Brusselator 系統(tǒng)的穩(wěn)定性分析[J].中國(guó)科學(xué):物理學(xué),力學(xué),天文學(xué),2011,41(10): 1203-1209.
XU Yong,MA Shaojuan,ZHANG Huiqing.The stability analysis in stochastic brusselator system with random parameter[J].Cientia Sinica:Phys,Mech & Astron,2011,41(10): 1203-1209.
[7] 羅瑞芬,張建剛,杜文舉.一個(gè)帶有隨機(jī)參數(shù)的新的二維混沌系統(tǒng)的隨機(jī)Hopf分岔分析[J].溫州大學(xué)學(xué)報(bào):自然科學(xué)版,2016,37(1):26-35.
LUO Ruifen,ZHANG Jiangang,DU Wenju.Stochastic hopf bifurcation analysis of a novel two-dimensional chaotic system with random parameters[J].Journal of Wenzhou University:Natural Sciences,2016,37(1):26-35.
[8] SPANOS P D,GHANEM R G.Stochastic finite expansion for random media[J].J Engng Mech,1989,115(5): 1035-1053.
[9] JENSEN H,IWAN W D.Response of systems with uncertain parameters to stochastic excitation[J].J Engng Mech ASCE,1992,118(5): 1012-1025.
[10] LI J,LIAO S.Response analysis of stochastic parameter structure under non-stationary random excitation[J].Computational Mechanics,2001,27(1): 61-68.
[11] FANG T,LENG X L,SONG C Q.Chebyshev polynomial approximation for dynamic response problems of random structures[J].J Sound & Vibration,2003,266(1): 198-206.
[12] FANG T,LENG X L,MA X P,et al.K-PDF and gegenbauer polynomial approximation for dynamic response problems of random structure[J].Acta Mech Sinica,2004,20(3):292-298.
[13] 蔣水華,張曼,李典慶.基于Hermite 正交多項(xiàng)式逼近法的重力壩可靠度分析[J].武漢大學(xué)學(xué)報(bào):工學(xué)版,2011,44(2):170-174.
JIANG Shuihua,ZHANG Man,LI Dianqing.Reliability analysis of gravity dam using hermite orthogonal polynomials approximation method[J].Engineering Journal of Wuhan University,2011,44(2):170-174.
[14] PUU T,SUSHKO I.A business cycle model with cubic non-linearity[J].Chaos,Solitons and Fractals,2004,19(3):597-612.
[15] 李偉,徐偉,趙俊峰.一個(gè)經(jīng)濟(jì)周期模型的穩(wěn)定性及其近似計(jì)算[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2008,38(12):120-124.
LI Wei,XU Wei,ZHAO Junfeng.The stability and approximate solution of a business cycle model[J].Mathematics in Practice and the Theory,2008,38(12):120-124.
編輯、校對(duì):師 瑯
Study on approximation error of a nonlinear business cycle model with bounded random parameters
YANHuiyun,SHIYimin
(School of Science, Northwestern Polytechnical University, Xi′an 710072,China)
Based on the principle of minimum mean square error, the influence of parameters selection on the approximation error of Legendre polynomial approximation method is investigated.Analyzing the mean-square error of numerical solution,the results show that the selections of model parameters have great influence on approximate accuracy,and the standard deviation of parameter σ has the greatest influence on accuracy of approximation approach, whenσincreased 10 times, the mean square error of approximation approach is likely to increase 104times.By selecting suitable parameters, the Legendre polynomial approximation is an effective approach in equivalent approximation of a nonlinear business cycle model with bounded random parameters.
Legendre polynomial approximation; bounded random parameters; business cycle model
1006-8341(2016)04-0501-07
10.13338/j.issn.1006-8341.2016.04.015
2016-06-20
國(guó)家自然科學(xué)基金資助項(xiàng)目(71171164);陜西省教育廳科學(xué)研究計(jì)劃項(xiàng)目(2014JK1276);陜西省統(tǒng)計(jì)研究中心基金資助項(xiàng)目(14DJ04)
嚴(yán)惠云(1977—),女,陜西省寶雞市人,西北工業(yè)大學(xué)博士研究生,研究方向?yàn)榉蔷€性動(dòng)力學(xué)方法及其應(yīng)用.E-mail:yanhuiyun@sina.com
嚴(yán)惠云,師義民.非線性隨機(jī)參數(shù)模型的Legendre多項(xiàng)式逼近誤差[J].紡織高?;A(chǔ)科學(xué)學(xué)報(bào),2016,29(4):501-506.
YAN Huiyun,SHI Yimin.Study on approximation error of a nonlinear business cycle model with bounded random parameters[J].Basic Sciences Journal of Textile Universities,2016,29(4):501-506.
O 242.2
A