康富標(biāo) 王 玲 孫殿興
(解放軍白求恩國(guó)際和平醫(yī)院全軍肝病診治中心,石家莊050082)
肝細(xì)胞癌免疫檢查點(diǎn)阻斷治療的研究進(jìn)展
康富標(biāo) 王 玲①孫殿興
(解放軍白求恩國(guó)際和平醫(yī)院全軍肝病診治中心,石家莊050082)
肝細(xì)胞癌(Hepatocellular carcinoma,HCC)是我國(guó)高發(fā)的惡性腫瘤之一。據(jù)估計(jì),全球約有50%的新發(fā)病例出現(xiàn)在我國(guó),在腫瘤相關(guān)死亡中僅次于肺癌而位居第2位。HCC起病隱匿、進(jìn)展迅速,早期診斷和外科手術(shù)率較低,且對(duì)放化療反應(yīng)差,亟待探索新的治療手段。免疫檢查點(diǎn)(Immune checkpoint)是指通過(guò)下調(diào)機(jī)體免疫反應(yīng),控制效應(yīng)細(xì)胞過(guò)度激活而避免免疫病理?yè)p傷的分子。腫瘤細(xì)胞利用人體免疫系統(tǒng)特性,通過(guò)過(guò)表達(dá)免疫檢查點(diǎn)分子,抑制抗腫瘤免疫反應(yīng),進(jìn)而逃避免疫監(jiān)視和殺傷,促進(jìn)腫瘤生長(zhǎng)。免疫檢查點(diǎn)阻斷即通過(guò)打破腫瘤免疫逃逸機(jī)制,活化效應(yīng)細(xì)胞,發(fā)揮抗腫瘤作用。本文將初步闡釋免疫檢查點(diǎn)阻斷治療在HCC中的研究進(jìn)展。
肝細(xì)胞癌的傳統(tǒng)免疫治療主要包括細(xì)胞因子治療、腫瘤疫苗及過(guò)繼細(xì)胞治療(Adoptive cell therapy,ACT)等。重組人干擾素α(IFN-α)因其免疫刺激和抗血管生成作用是首個(gè)用于肝細(xì)胞癌的細(xì)胞因子,但研究發(fā)現(xiàn)對(duì)于改善預(yù)后并無(wú)裨益[1]。腫瘤疫苗通過(guò)激活體內(nèi)特異性T細(xì)胞對(duì)腫瘤產(chǎn)生免疫殺傷作用,主要包括多肽、蛋白和核糖核酸疫苗以及樹突狀細(xì)胞(Dendritic cells,DCs)疫苗。來(lái)源于磷脂酰肌醇蛋白聚糖3(Glypican-3,GPC3)的多肽疫苗被發(fā)現(xiàn)可誘導(dǎo)HCC組織內(nèi)CD8陽(yáng)性T細(xì)胞浸潤(rùn),且GPC3特異性CTL反應(yīng)強(qiáng)度與總體生存時(shí)間呈正相關(guān),但總計(jì)33例患者中僅有1例可觀察到腫瘤的客觀反應(yīng)[2]。研究發(fā)現(xiàn),多種DCs疫苗單獨(dú)或聯(lián)合其他抗腫瘤治療用于HCC在多數(shù)患者體內(nèi)可誘導(dǎo)特異性抗腫瘤免疫反應(yīng),并可能延緩復(fù)發(fā)和轉(zhuǎn)移,維持病情穩(wěn)定,但僅有少數(shù)患者可觀察到包括甲胎蛋白降低、腫瘤體積縮小等直接抗腫瘤活性[3,4]。目前用于HCC的ACT主要是細(xì)胞因子誘導(dǎo)的殺傷細(xì)胞(Cytokines induced killer cells,CIKs)治療。腫瘤浸潤(rùn)淋巴細(xì)胞因獲取困難而鮮有系統(tǒng)研究,T細(xì)胞基因編輯技術(shù),包括TCR克隆技術(shù)和嵌合抗原受體(Chimeric antigen receptor,CAR)技術(shù),目前尚未見用于HCC的報(bào)道[5]。CIKs是將患者外周血單個(gè)核細(xì)胞分離,體外采用IL-1、IL-2、IFN-γ和CD3單抗等誘導(dǎo)、增殖而獲得的一群異質(zhì)性細(xì)胞,據(jù)報(bào)道可改善患者生存質(zhì)量、減少術(shù)后復(fù)發(fā)并延長(zhǎng)生存時(shí)間,但具體療效和臨床應(yīng)用價(jià)值尚存爭(zhēng)議。兩項(xiàng)入組患者分別超過(guò)100例的隨機(jī)對(duì)照實(shí)驗(yàn)顯示CIK治療可延緩HCC術(shù)后腫瘤復(fù)發(fā),但對(duì)于總體生存率并無(wú)影響[6,7]。另一項(xiàng)回顧性研究則顯示手術(shù)切除聯(lián)合CIK輔助治療與單獨(dú)手術(shù)組比較,5年生存率可顯著提高(65.9% & 50.2%)[8]。研究結(jié)果的不一致性可能與不同人群腫瘤免疫原性差異、CIK治療操作缺乏規(guī)范等因素有關(guān)。
因此,雖然HCC的免疫治療備受關(guān)注,但仍然存在療效不確定、特異性較差等問題,亟待尋求更為規(guī)范、有效的治療策略,免疫檢查點(diǎn)阻斷無(wú)疑為此提供了新的方向[5,9]。
免疫檢查點(diǎn)阻斷是目前腫瘤免疫治療的熱點(diǎn)之一,針對(duì)CTLA-4和PD-1分子的阻斷抗體在多種惡性腫瘤中取得突破性療效并已進(jìn)入臨床應(yīng)用[10-12]。CTLA-4抑制劑主要包括Ipilimumab和Tremelimumab,其中IgG1亞型抗體Ipilimumab是首個(gè)用于臨床的免疫檢查點(diǎn)抑制劑,目前已被美國(guó)食品和藥品管理局(FDA)批準(zhǔn)用于轉(zhuǎn)移性惡性黑色素瘤,表現(xiàn)出良好的抗腫瘤效果和可接受的耐受性[13]。IgG4亞型完全人源化PD-1抗體Nivolumab被批準(zhǔn)用于治療BRAF野生型及采用Ipilimumab和BRAF抑制劑治療無(wú)效的BRAF突變型惡性黑色素瘤患者和晚期非小細(xì)胞肺癌患者,與CTLA-4抑制劑相比,Nivolumab療效更好且副作用更低,具有明顯的臨床推廣優(yōu)勢(shì)[14-16]。另一種PD-1抑制劑Pembrolizumab也被批準(zhǔn)用于晚期惡性黑色素瘤,被發(fā)現(xiàn)對(duì)Ipilimumab治療無(wú)效的患者仍然起作用[17]。
針對(duì)腎癌、膀胱癌、前列腺癌、霍奇金淋巴瘤等多種腫瘤的檢查點(diǎn)阻斷治療的臨床研究也在進(jìn)行中。Ansell等[18]采用Nivolumab對(duì)23例復(fù)發(fā)或難治性霍奇金淋巴瘤患者的治療研究發(fā)現(xiàn),PD-1阻斷抗體表現(xiàn)出持續(xù)的治療活性和可接受的副作用,該藥也因此獲得FDA突破性療法認(rèn)定,用于自體干細(xì)胞移植和Brentuximab Vedotin治療失敗的霍奇金淋巴瘤患者的治療。另一項(xiàng)入組60例復(fù)發(fā)/轉(zhuǎn)移性頭頸部腫瘤患者接受Pembrolizumab單藥治療后,客觀緩解率可達(dá)20%[19]。B7-H1阻斷抗體BMS-936559用以治療非小細(xì)胞肺癌、黑色素瘤和腎細(xì)胞癌的研究發(fā)現(xiàn),患者在開始投藥后24周可出現(xiàn)腫瘤消退并且疾病維持穩(wěn)定[20]。另一項(xiàng)臨床實(shí)驗(yàn)應(yīng)用B7-H1阻斷抗體MPDL3280A同樣在轉(zhuǎn)移性膀胱癌患者表現(xiàn)出客觀的臨床收益[21]。此外,針對(duì)CTLA-4和PD-1/B7-H1位點(diǎn)聯(lián)合阻斷或免疫檢查點(diǎn)阻斷聯(lián)合化療、靶向治療等多種治療策略也在研究中,有望獲得更高的治療反應(yīng)率和更長(zhǎng)的生存時(shí)間。
3.1 CTLA-4 細(xì)胞毒性T淋巴細(xì)胞相關(guān)抗原4 (Cytotoxic T-lymphocyte associated protein 4,CTLA-4/CD152)誘導(dǎo)性表達(dá)于活化的效應(yīng)性T細(xì)胞(Effector T cells,Teffs)或組成性表達(dá)于調(diào)節(jié)性T細(xì)胞 (Regulatory T cells,Tregs)表面。CTLA-4通過(guò)競(jìng)爭(zhēng)性結(jié)合抗原提呈細(xì)胞表面的CD80和CD86分子,負(fù)向調(diào)控T細(xì)胞的活化狀態(tài),抑制免疫反應(yīng)。阻斷CTLA-4信號(hào)可導(dǎo)致腫瘤組織Teffs的大量擴(kuò)增、活化,進(jìn)而增強(qiáng)抗腫瘤作用。CTLA-4阻斷抗體還可解除Tregs對(duì)殺傷細(xì)胞的接觸性抑制,并降低轉(zhuǎn)化生長(zhǎng)因子β(Transforming growth factor,TGF-β)和白細(xì)胞介素10(Interleukin-10,IL-10)等細(xì)胞因子的分泌水平[22]。此外,CTLA-4抗體還可能通過(guò)抗體依賴性細(xì)胞介導(dǎo)的細(xì)胞毒作用(Antibody-dependent cell-mediated cytotoxicity,ADCC)介導(dǎo)了腫瘤微環(huán)境中巨噬細(xì)胞或NK細(xì)胞對(duì)Tregs的選擇性刪除[23]。
Chen等[24]通過(guò)射頻消融聯(lián)合瘤內(nèi)注射粒-巨噬細(xì)胞集落刺激因子(Granulocyte-macrophagecolony-stimulating factor,GM-CSF)和CTLA-4阻斷抗體可使肝癌荷瘤小鼠原發(fā)病灶完全清除,50%遠(yuǎn)隔病灶消失,再次荷瘤90%個(gè)體因腫瘤排斥而失敗,提示阻斷CTLA-4強(qiáng)化了機(jī)體抗腫瘤免疫反應(yīng)。研究發(fā)現(xiàn),HCC組織CTLA-4陽(yáng)性Tregs的浸潤(rùn)水平明顯升高,且與疾病的進(jìn)展和預(yù)后密切相關(guān)[25]。通過(guò)CTLA-4抗體可解除腫瘤微環(huán)境中Tregs細(xì)胞的抑制作用,重建殺傷細(xì)胞的數(shù)量和功能。
Tremelimumab是IgG2a亞型的CTLA-4抗體,一項(xiàng)入組21例旨在探討Tremelimumab用于慢性丙型肝炎相關(guān)HCC的Ⅰ期臨床實(shí)驗(yàn)表明,17.6%的患者出現(xiàn)部分應(yīng)答,45%病情穩(wěn)定超過(guò)6個(gè)月,且患者耐受性良好,未出現(xiàn)治療相關(guān)的死亡事件。值得注意的是,治療期間穩(wěn)定的干擾素γ(IFN-γ)水平可預(yù)示更好的抗腫瘤免疫反應(yīng),提示腫瘤免疫原性對(duì)CTLA-4阻斷抗體治療的療效至關(guān)重要[26]。目前,采用Tremelimumab聯(lián)合化療栓塞或射頻消融(NCT01853618)和Ipilimumab聯(lián)合立體定位放療(NCT02239900)用于HCC的臨床研究正在進(jìn)行中。
3.2 PD-1和B7-H1 程序性死亡受體1(Progra-mmed death 1,PD-1/CD279)屬于CD28家族成員,主要表達(dá)于活化的T細(xì)胞、B細(xì)胞、樹突狀細(xì)胞和巨噬細(xì)胞表面。B7-H1 (B7 homolog 1)作為PD-1介導(dǎo)免疫抑制最主要的配體,在抗原提呈細(xì)胞組成性表達(dá),而在幾乎所有活化淋巴細(xì)胞和外周組織細(xì)胞表面可誘導(dǎo)性表達(dá)。B7-H1/PD-1途徑在T細(xì)胞活化的負(fù)性調(diào)節(jié)上扮演關(guān)鍵角色并在腫瘤免疫抑制機(jī)制上發(fā)揮重要作用。PD-1作為抑制性受體表達(dá)于活化的T細(xì)胞表面,負(fù)向調(diào)節(jié)T細(xì)胞功能。高表達(dá)PD-1的抗原活化CD8陽(yáng)性T細(xì)胞表型被定義為“T細(xì)胞耗竭(T cell exhaustion)”表型,該表型的T細(xì)胞往往失去增殖能力并傾向于發(fā)生凋亡,同時(shí)細(xì)胞因子和效應(yīng)分子的分泌能力也明顯下降。
B7-H1/PD-1分子途徑是目前已知腫瘤發(fā)揮免疫逃逸的主要機(jī)制之一。B7-H1在腫瘤微環(huán)境中表達(dá)水平明顯上調(diào),與之對(duì)應(yīng),腫瘤浸潤(rùn)淋巴細(xì)胞(TILs)則高表達(dá)PD-1分子[27]。TILs在接受腫瘤細(xì)胞表達(dá)的B7-H1信號(hào)后喪失殺傷功能,進(jìn)而凋亡,使腫瘤逃避了免疫攻擊而得以保存、生長(zhǎng)甚至轉(zhuǎn)移。B7-H1分子如同在腫瘤細(xì)胞表面的一層“保護(hù)網(wǎng)”,不僅保護(hù)腫瘤免受攻擊,而且會(huì)誘導(dǎo)接觸的殺傷細(xì)胞失能,被稱為“分子篩”[28]。B7-H1/PD-1分子通路在HCC的進(jìn)展中扮演重要角色。多項(xiàng)研究表明,HCC患者腫瘤細(xì)胞B7-H1的表達(dá)、腫瘤浸潤(rùn)T細(xì)胞PD-1的表達(dá)和外周血T細(xì)胞PD-1的表達(dá),均與患者腫瘤分期、術(shù)后復(fù)發(fā)率和預(yù)后呈顯著相關(guān)性[29,30]。
Nivolumab是一種全長(zhǎng)人IgG4亞型PD-1阻斷抗體。一項(xiàng)旨在評(píng)價(jià)Nivolumab對(duì)于進(jìn)展期HCC的國(guó)際多中心Ⅰ/Ⅱ期臨床實(shí)驗(yàn)表明,總計(jì)39例患者中,完全應(yīng)答2例,部分應(yīng)答7例,72%的患者生存期超過(guò)6個(gè)月[31]。研究發(fā)現(xiàn),PD-1阻斷治療可能靶向多激酶抑制劑索拉菲尼耐藥的肝癌細(xì)胞而與后者具有協(xié)同作用[32]。目前,針對(duì)進(jìn)展期肝癌采用Nivolumab單藥或聯(lián)合Ipilimumab的臨床研究(NCT01658878),以及Nivolumab與TGF-β受體激酶抑制劑Galunisertib(NCT02423343)和多激酶抑制劑索拉菲尼(NCT02576509)的臨床研究均在進(jìn)行中。PD-1阻斷劑Pembrolizumab用于HCC或包括HCC的實(shí)體瘤的臨床研究已有多項(xiàng)注冊(cè)開展。B7-H1阻斷抗體MEDI4736用于包括HCC在內(nèi)的26例實(shí)體瘤患者均表現(xiàn)出良好的耐受性和可見的治療反應(yīng),3級(jí)以上的副作用發(fā)生率僅為7%,且沒有中斷治療病例[33]。MEDI4736與Tremelimumab聯(lián)合或單藥治療無(wú)法切除的HCC的臨床實(shí)驗(yàn)也正在進(jìn)行中(NCT02519348)。
多數(shù)對(duì)PD-1或B7-H1阻斷治療產(chǎn)生應(yīng)答的患者,均存在腫瘤組織B7-H1的高表達(dá)。B7-H1基因啟動(dòng)子區(qū)域有IFN-γ反應(yīng)元件,因此炎癥性細(xì)胞因子IFN-γ是B7-H1表達(dá)上調(diào)的關(guān)鍵因素。在我國(guó),HCC多發(fā)于炎癥性肝病的基礎(chǔ)上,提示HCC較其他腫瘤有更高的B7-H1表達(dá)傾向,可能更適宜采用B7-H1/PD-1阻斷治療。
3.3 TIM-3 T細(xì)胞免疫球蛋白及黏蛋白分子-3(T cell immunoglobulin and mucin-3,TIM-3)主要表達(dá)于活化的T細(xì)胞以及樹突狀細(xì)胞、單核-巨噬細(xì)胞、NK細(xì)胞等固有免疫細(xì)胞。研究發(fā)現(xiàn),PD-1和TIM-3的基因多態(tài)性與HBV相關(guān)HCC的預(yù)后有關(guān)[34]。TIM-3通過(guò)與其配體Galectin-9結(jié)合可誘導(dǎo)Th1細(xì)胞發(fā)生凋亡,并可降低Th17細(xì)胞活性進(jìn)而誘導(dǎo)免疫抑制。腫瘤浸潤(rùn)C(jī)D8陽(yáng)性T細(xì)胞多共表達(dá)TIM-3和PD-1,較單獨(dú)表達(dá)PD-1的細(xì)胞細(xì)胞因子分泌能力更低,殺傷功能更差,提示存在更為嚴(yán)重的功能耗竭。通過(guò)封閉性抗體或小干擾RNA抑制TIM-3信號(hào)通路可逆轉(zhuǎn)腫瘤組織中T細(xì)胞、NK細(xì)胞的功能耗竭,聯(lián)合阻斷PD-1和TIM-3信號(hào)通路可顯著恢復(fù)殺傷細(xì)胞的抗腫瘤效應(yīng)[35,36]。Li等[37]報(bào)道,在HBV相關(guān)HCC患者中,TIM-3陽(yáng)性T細(xì)胞的浸潤(rùn)水平與患者預(yù)后呈負(fù)相關(guān),TIM-3/galectin-9信號(hào)通路介導(dǎo)了腫瘤微環(huán)境中T細(xì)胞的功能障礙。TIM-3還可通過(guò)增強(qiáng)TGF-β介導(dǎo)的HCC組織腫瘤相關(guān)巨噬細(xì)胞(TAMs)的M2亞型極化,進(jìn)而促進(jìn)腫瘤生長(zhǎng)[38]。因此,在HCC中,針對(duì)TIM-3或聯(lián)合B7-H1/PD-1的阻斷治療可能成為一個(gè)新的免疫治療模式。
3.4 B7-H3 B7-H3是由316個(gè)氨基酸組成的Ⅰ型跨膜糖蛋白,最初是通過(guò)對(duì)人樹突狀細(xì)胞來(lái)源的cDNA庫(kù)進(jìn)行核酸序列分析得到的B7家族同源基因,屬于免疫球蛋白超家族。B7-H3在機(jī)體正常組織基本不表達(dá),而在包括前列腺癌、惡性黑色素瘤、肺癌、乳腺癌等多種腫瘤組織中均顯著高表達(dá)。研究發(fā)現(xiàn),HCC組織B7-H3的表達(dá)水平也明顯升高,且與腫瘤分期、侵襲轉(zhuǎn)移和預(yù)后密切相關(guān),B7-H3可通過(guò)JAK-2/Stat-3/Slug通路介導(dǎo)肝癌細(xì)胞的上皮間質(zhì)轉(zhuǎn)化,進(jìn)而影響腫瘤的侵襲、轉(zhuǎn)移能力[39]。此外,HCC細(xì)胞還可通過(guò)B7-H3誘導(dǎo)TAMs發(fā)生M2亞型極化,有助于維持腫瘤組織中抑制性免疫環(huán)境[40]。
B7-H3的表達(dá)水平還與腫瘤細(xì)胞對(duì)化療藥物的敏感性有關(guān)。比如,下調(diào)多種人乳腺癌細(xì)胞系的B7-H3的表達(dá)會(huì)導(dǎo)致其對(duì)紫杉醇的敏感性增加而發(fā)生藥物誘導(dǎo)的凋亡,過(guò)表達(dá)B7-H3則顯著提升腫瘤耐藥閾值[41]。Zhao等[42]也發(fā)現(xiàn)慢病毒介導(dǎo)的B7-H3沉默增加了人胰腺癌細(xì)胞系Patu8988對(duì)吉西他濱的敏感性。8H9是一種抗B7-H3單克隆抗體,通過(guò)ADCC和補(bǔ)體依賴性細(xì)胞毒機(jī)制發(fā)揮作用。8H9(Fv)-PE38是采用8H9的Fv亞單位和假單胞菌毒素PE38構(gòu)建的嵌合蛋白,在乳腺癌、骨肉瘤和神經(jīng)母細(xì)胞瘤模型中可導(dǎo)致腫瘤的明顯消退[43]。另一種B7-H3單克隆抗體MJ18,被發(fā)現(xiàn)在胰腺癌模型中可誘導(dǎo)強(qiáng)大的抗腫瘤效應(yīng)并明顯抑制腫瘤生長(zhǎng)[44]。鑒于B7-H3在HCC中與病程和預(yù)后顯著相關(guān)的高表達(dá),B7-H3阻斷治療或聯(lián)合化療作為增敏劑、聯(lián)合其他免疫治療,如CTLA-4阻斷劑等,可能作為HCC免疫治療研究的有效突破點(diǎn)。
3.5 其他免疫檢查點(diǎn)分子 B7-H4是新發(fā)現(xiàn)的T細(xì)胞共抑制分子,在多種腫瘤組織高表達(dá),可通過(guò)影響細(xì)胞生長(zhǎng)和調(diào)節(jié)免疫反應(yīng)兩種機(jī)制介導(dǎo)腫瘤免疫逃逸[45]。研究發(fā)現(xiàn),B7-H4表達(dá)強(qiáng)度與腫瘤患者臨床轉(zhuǎn)歸密切相關(guān)并可能作為預(yù)后不良的有效預(yù)測(cè)指標(biāo)[46]。Zhang等[47]報(bào)道,HCC患者血清高B7-H4水平預(yù)示更差的臨床轉(zhuǎn)歸和更高的復(fù)發(fā)可能。采用三氧化二砷可降低肝癌細(xì)胞系MHCC97-H的B7-H4表達(dá),進(jìn)而影響了細(xì)胞的成瘤和腫瘤生長(zhǎng)能力,提示阻斷B7-H4可能是HCC有效的治療靶點(diǎn)[48]。
HVEM(Herpesvirus entry mediator)是TNF受體超家族成員,廣泛表達(dá)于T細(xì)胞、B細(xì)胞、NK細(xì)胞、樹突狀細(xì)胞及多種腫瘤細(xì)胞。HVEM可與LIGHT分子結(jié)合,刺激T細(xì)胞增殖并促進(jìn)其分泌IFN-γ,還可與BTLA(B and T lymphocyte attenuator,CD272)和CD160結(jié)合,降低T細(xì)胞增殖能力和IL-2產(chǎn)生水平,負(fù)向調(diào)控免疫反應(yīng)[49]。在惡性T淋巴細(xì)胞增殖性疾病中,BTLA和PD-1均可下調(diào)臨近T細(xì)胞的受體信號(hào)級(jí)聯(lián)反應(yīng)。其中,PD-1廣泛負(fù)性調(diào)節(jié)免疫反應(yīng),而BTLA主要抑制CD8陽(yáng)性腫瘤特異性T細(xì)胞,且二者可能發(fā)揮協(xié)同效應(yīng),提示B7-H1/PD-1和HVEM/BTLA聯(lián)合阻斷可能作為免疫檢查點(diǎn)治療的優(yōu)化策略[50]。研究發(fā)現(xiàn),HCC組織高表達(dá)HVEM,且與術(shù)后復(fù)發(fā)和生存率有關(guān),HVEM表達(dá)水平與腫瘤浸潤(rùn)T細(xì)胞的數(shù)量和顆粒酶、穿孔素及IFN-γ的產(chǎn)生能力呈反相關(guān),提示HVEM可能與BTLA和/或CD160結(jié)合,抑制T細(xì)胞功能,參與腫瘤免疫逃逸機(jī)制,靶向HVEM/BTLA/CD160通路可能有效恢復(fù)抗腫瘤免疫[51]。
此外,LAG-3 (Lymphocyte activation gene-3)、TIGIT(T cell immunoglobulin and ITIM domain)、VISTA(V-domain immunoglobulin-containing suppre-ssor of T cell activation)等多種抑制性分子也作為腫瘤檢查點(diǎn)治療的靶向分子進(jìn)行實(shí)驗(yàn)和臨床前期研究,但這些分子在HCC中的表達(dá)和作用有賴于進(jìn)一步的深入研究[10]。
免疫檢查點(diǎn)治療策略并非完美無(wú)瑕。首先,研究發(fā)現(xiàn),免疫檢查點(diǎn)治療的療效與腫瘤的免疫原性有關(guān)[52]。強(qiáng)免疫原性及在治療過(guò)程中存在持續(xù)、高強(qiáng)度的特異性免疫反應(yīng)預(yù)示更高的應(yīng)答率和更好的臨床效果。免疫原性較強(qiáng)的腫瘤,如惡性黑色素瘤、前列腺癌等,往往更適用于免疫治療。第二,在對(duì)PD-1或B7-H1阻斷治療的研究中發(fā)現(xiàn),腫瘤細(xì)胞對(duì)免疫治療可發(fā)生適應(yīng)性改變,導(dǎo)致針對(duì)免疫治療制劑發(fā)生耐藥或部分耐藥。第三,腫瘤組織往往通過(guò)多種機(jī)制發(fā)生免疫逃逸,多種負(fù)性調(diào)控分子如CTLA-4、PD-1、B7-H1、B7-H3等均可能參與了特定的過(guò)程。腫瘤細(xì)胞可能通過(guò)不同機(jī)制之間的相互協(xié)同對(duì)抗單信號(hào)通路阻斷的免疫治療,從而降低臨床療效。PD-1和CTLA-4阻斷抗體聯(lián)合應(yīng)用或檢查點(diǎn)阻斷聯(lián)合靶向治療可能會(huì)發(fā)揮更好的抗腫瘤作用[53,54]。第四,由于多種檢查點(diǎn)分子并非腫瘤組織特異性表達(dá),阻斷特定分子通路勢(shì)必改變機(jī)體免疫穩(wěn)態(tài),可能存在發(fā)生自身免疫性疾病或?qū)е旅庖卟±頁(yè)p傷的潛在風(fēng)險(xiǎn)。腫瘤組織局部投藥可能適當(dāng)減少副作用,但特定制劑的應(yīng)用風(fēng)險(xiǎn)尚需通過(guò)動(dòng)物實(shí)驗(yàn)和臨床實(shí)驗(yàn)的謹(jǐn)慎觀察評(píng)估[55,56]。
免疫檢查點(diǎn)治療無(wú)疑為人類對(duì)抗腫瘤性疾病提供了新的強(qiáng)有力的工具,如何最大限度發(fā)揮效應(yīng)并規(guī)避風(fēng)險(xiǎn),需要對(duì)腫瘤免疫逃逸機(jī)制的進(jìn)一步理解,以及對(duì)特定制劑單藥治療或聯(lián)合治療的完善的臨床前實(shí)驗(yàn)和臨床研究。雖然HCC發(fā)生和進(jìn)展機(jī)制復(fù)雜,但免疫系統(tǒng)無(wú)疑在其中扮演了關(guān)鍵角色。免疫檢查點(diǎn)治療在實(shí)驗(yàn)和臨床研究中取得令人鼓舞的效果,為HCC的免疫檢查點(diǎn)治療提供了可靠的理論和實(shí)踐基礎(chǔ),相信更多的免疫治療制劑必將脫穎而出,為HCC患者帶來(lái)新的希望。
[1] Chen LT,Chen MF,Li LA,etal.Long-term results of a randomized,observation-controlled,phase Ⅲ trial of adjuvant interferon Alfa-2b in hepatocellular carcinoma after curative resection[J].Ann Surg,2012,255(1):8-17.
[2] Sawada Y,Yoshikawa T,Nobuoka D,etal.Phase Ⅰ trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma:immunologic evidence and potential for improving overall survival[J].Clin Cancer Res,2012,18(13):3686-3696.
[3] Tada F,Abe M,Hirooka M,etal.Phase Ⅰ/Ⅱ study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma[J].Int J Oncol,2012,41(5):1601-1609.
[4] Lee JH,Lee Y,Lee M,etal.A phase I/IIa study of adjuvant immunotherapy with tumour antigen-pulsed dendritic cells in patients with hepatocellular carcinoma[J].Br J Cancer,2015,113(12):1666-1676.
[5] Prieto J,Melero I,Sangro B.Immunological landscape and immunotherapy of hepatocellular carcinoma[J].Nat Rev Gastroenterol Hepatol,2015,12(12):681-700.
[6] Takayama T,Sekine T,Makuuchi M,etal.Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma:a randomised trial[J].Lancet,2000,356(9232):802-807.
[7] Hui D,Qiang L,Jian W,etal.A randomized,controlled trial of postoperative adjuvant cytokine-induced killer cells immunotherapy after radical resection of hepatocellular carcinoma[J].Dig Liver Dis,2009,41(1):36-41.
[8] Pan K,Li YQ,Wang W,etal.The efficacy of cytokine-induced killer cell infusion as an adjuvant therapy for postoperative hepatocellular carcinoma patients[J].Ann Surg Oncol,2013,20(13):4305-4311.
[9] Hato T,Goyal L,Greten TF,etal.Immune checkpoint blockade in hepatocellular carcinoma:current progress and future directions[J].Hepatology,2014,60(5):1776-1782.
[10] Baumeister SH,Freeman GJ,Dranoff G,etal.Coinhibitory pathways in immunotherapy for cancer[J].Annu Rev Immunol,2016,34:539-573.
[11] Jing W,Li M,Zhang Y,etal.PD-1/PD-L1 blockades in non-small-cell lung cancer therapy[J].Onco Targets Ther,2016,9:489-502.
[12] Buchbinder EI,McDermott DF.Cytotoxic T-lymphocyte antigen-4 blockade in melanoma[J].Clin Ther,2015,37(4):755-763.
[13] Hodi FS,O′Day SJ,McDermott DF,etal.Improved survival with ipilimumab in patients with metastatic melanoma[J].N Engl J Med,2010,363(8):711-723.
[14] Weber JS,D′Angelo SP,Minor D,etal.Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037):a randomised,controlled,open-label,phase 3 trial[J].Lancet Oncol,2015,16(4):375-384.
[15] Robert C,Long GV,Brady B,etal.Nivolumab in previously untreated melanoma without BRAF mutation[J].N Engl J Med,2015,372(4):320-330.
[16] Brahmer J,Reckamp KL,Baas P,etal.Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer[J].N Engl J Med,2015,373(2):123-135.
[17] Ribas A,Puzanov I,Dummer R,etal.Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002):a randomised,controlled,phase 2 trial[J].Lancet Oncol,2015,16(8):908-918.
[18] Ansell SM,Lesokhin AM,Borrello I,etal.PD-1 blockade with nivolumab in relapsed or refractory Hodgkin′s lymphoma[J].N Engl J Med,2015,372(4):311-319.
[19] Starr P.Encouraging results for pembrolizumab in head and neck cancer[J].Am Health Drug Benefits,2015,8(Spec Issue):16.
[20] Brahmer JR,Tykodi SS,Chow LQ,etal.Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J].N Engl J Med,2012,366(26):2455-2465.
[21] Powles T,Eder JP,Fine GD,etal.MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer[J].Nature,2014,515(7528):558-562.
[22] Linterman MA,Denton AE.Treg cells and CTLA-4:the ball and chain of the germinal center response[J].Immunity,2014,41(6):876-878.
[23] Selby MJ,Engelhardt JJ,Quigley M,etal.Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells[J].Cancer Immunol Res,2013,1(1):32-42.
[24] Chen Z,Shen S,Peng B,etal.Intratumoural GM-CSF microspheres and CTLA-4 blockade enhance the antitumour immunity induced by thermal ablation in a subcutaneous murine hepatoma model[J].Int J Hyperthermia,2009,25(5):374-382.
[25] Kalathil S,Lugade AA,Miller A,etal.Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality[J].Cancer Res,2013,73(8):2435-2444.
[26] Sangro B,Gomez-Martin C,de la Mata M,etal.A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C[J].J Hepatol,2013,59(1):81-88.
[27] Mandai M.PD-1/PD-L1 blockage in cancer treatment-from basic research to clinical application[J].Int J Clin Oncol,2016,21(3):447.
[28] Zou W,Chen L.Inhibitory B7-family molecules in the tumour microenvironment[J].Nat Rev Immunol,2008,8(6):467-477.
[29] Shi F,Shi M,Zeng Z,etal.PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients[J].Int J Cancer,2011,128(4):887-896.
[30] Umemoto Y,Okano S,Matsumoto Y,etal.Prognostic impact of programmed cell death 1 ligand 1 expression in human leukocyte antigen class I-positive hepatocellular carcinoma after curative hepatectomy[J].J Gastroenterol,2015,50(1):65-75.
[31] Kudo M.Immune checkpoint blockade in hepatocellular carcin-oma[J].Liver Cancer,2015,4(4):201-207.
[32] Chen J,Ji T,Zhao J,etal.Sorafenib-resistant hepatocellular carcinoma stratified by phosphorylated ERK activates PD-1 immune checkpoint[J].Oncotarget,2016,7(27):41274-41284.
[33] Zielinski CC.A phase I study of MEDI4736,NNT-PD-L1 antibody in patients with advanced solid tumors[J].Transl Lung Cancer Res,2014,3(6):406-407.
[34] Li Z,Li N,Li F,etal.Genetic polymorphisms of immune checkpoint proteins PD-1 and TIM-3 are associated with survival of patients with hepatitis B virus-related hepatocellular carcinoma[J].Oncotarget,2016,7(28):26168-26180.
[35] da Silva IP,Gallois A,Jimenez-Baranda S,etal.Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade[J].Cancer Immunol Res,2014,2(5):410-422.
[36] Sakuishi K,Apetoh L,Sullivan JM,etal.Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity[J].J Exp Med,2010,207(10):2187-2194.
[37] Li H,Wu K,Tao K,etal.Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma[J].Hepatology,2012,56(4):1342-1351.
[38] Yan W,Liu X,Ma H,etal.Tim-3 fosters HCC development by enhancing TGF-beta-mediated alternative activation of macrophages[J].Gut,2015,64(10):1593-1604.
[39] Kang FB,Wang L,Jia HC,etal.B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway[J].Cancer Cell Int,2015,15:45.
[40] Kang FB,Wang L,Li D,etal.Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7-H3 expression[J].Oncol Rep,2015,33(1):274-282.
[41] Liu H,Tekle C,Chen YW,etal.B7-H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation[J].Mol Cancer Ther,2011,10(6):960-971.
[42] Zhao X,Zhang GB,Gan WJ,etal.Silencing of B7-H3 increases gemcitabine sensitivity by promoting apoptosis in pancreatic carcinoma[J].Oncol Lett,2013,5(3):805-812.
[43] Onda M,Wang QC,Guo HF,etal.In vitro and in vivo cytotoxic activities of recombinant immunotoxin 8H9(Fv)-PE38 against breast cancer,osteosarcoma,and neuroblastoma[J].Cancer Res,2004,64(4):1419-1424.
[44] Yamato I,Sho M,Nomi T,etal.Clinical importance of B7-H3 expression in human pancreatic cancer[J].Br J Cancer,2009,101(10):1709-1716.
[45] Ceeraz S,Nowak EC,Noelle RJ.B7 family checkpoint regulators in immune regulation and disease[J].Trends Immunol,2013,34(11):556-563.
[46] Leung J,Suh WK.The CD28-B7 family in anti-tumor immunity:emerging concepts in cancer immunotherapy[J].Immune Netw,2014,14(6):265-276.
[47] Zhang C,Li Y,Wang Y.Diagnostic value of serum B7-H4 for hepatocellular carcinoma[J].J Surg Res,2015,197(2):301-306.
[48] Cui L,Gao B,Cao Z,etal.Downregulation of B7-H4 in the MHCC97-H hepatocellular carcinoma cell line by arsenic trioxide[J].Mol Med Rep,2016,13(3):2032-2038.
[49] Murphy TL,Murphy KM.Slow down and survive:Enigmatic immunoregulation by BTLA and HVEM[J].Annu Rev Immunol,2010,28:389-411.
[50] Karakatsanis S,Bertsias G,Roussou P,etal.Programmed death 1 and B and T lymphocyte attenuator immunoreceptors and their association with malignant T-lymphoproliferative disorders:brief review[J].Hematol Oncol,2014,32(3):113-119.
[51] Hokuto D,Sho M,Yamato I,etal.Clinical impact of herpesvirus entry mediator expression in human hepatocellular carcinoma[J].Eur J Cancer,2015,51(2):157-165.
[52] Chen L,Han X.Anti-PD-1/PD-L1 therapy of human cancer:past,present,and future[J].J Clin Invest,2015,125(9):3384-3391.
[53] Drake CG.Combined immune checkpoint blockade[J].Semin Oncol,2015,42(4):656-662.
[54] Hato T,Zhu AX,Duda DG.Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma[J].Immuno Therapy,2016,8(3):299-313.
[55] Michot JM,Bigenwald C,Champiat S,etal.Immune-related adverse events with immune checkpoint blockade:a comprehensive review[J].Eur J Cancer,2016,54:139-148.
[56] Naidoo J,Page DB,Li BT,etal.Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies[J].Ann Oncol,2015,26(12):2375-2391.
[收稿2016-05-04 修回2016-06-12]
(編輯 倪 鵬)
康富標(biāo)(1977年-),男,醫(yī)學(xué)博士,主治醫(yī)師,主要從事肝臟疾病的免疫學(xué)研究和臨床診治工作,E-mail:kangfb@hotmail.com。
R735.7
A
1000-484X(2017)02-0313-06
①河北醫(yī)科大學(xué)第四醫(yī)院腫瘤研究所,石家莊050011。