吳至佛,汪靈 綜述 黃俊輝 審校
(中南大學(xué)湘雅醫(yī)院 腫瘤科,湖南 長(zhǎng)沙 410008)
乳腺癌已經(jīng)成為女性最常見(jiàn)的惡性腫瘤,其中,三陰性乳腺癌(triple-negative breast cancer,TNBC)約占乳腺癌中的12%~20%。TNBC是以雌激素受體(estrogen receptor,ER),孕激素受體(progestrone receptor,PR)和人表皮生長(zhǎng)因子受體2(human epidermal growth factor receptor 2,HER-2)均缺失為特征的一類(lèi)乳腺癌亞型,與非TNBC相比,TNBC好發(fā)于年輕女性,具有侵襲性強(qiáng)、易轉(zhuǎn)移、預(yù)后差的特點(diǎn)[1-2]。Lehmann等[3]將TNBC劃分為6種分子亞型,分別是基底細(xì)胞樣1(basal-like 1,BL1)型、基底細(xì)胞樣2(basal-like 2,BL2)型、間充質(zhì)細(xì)胞樣(mesenchymal,ML)型、間充質(zhì)干細(xì)胞樣(mesenchymal stem-like,MSL)型、免疫調(diào)節(jié)(immunomodulatory,IM)型、和腔上皮樣雄激素受體(luminal androgen receptor,LAR)型。乳腺癌的治療方式除了手術(shù)、放射治療和化學(xué)治療外,非TNBC還包括內(nèi)分泌治療和靶向藥物治療,但TNBC對(duì)ER、PR為靶點(diǎn)的內(nèi)分泌治療和以HER-2為靶點(diǎn)的藥物無(wú)效,使得臨床治療陷入困境。為改善TNBC的臨床療效,探索精準(zhǔn)治療和個(gè)體化治療的方法和藥物,學(xué)者們?cè)赥NBC研究中,除HER-2、ER、PR外,目前已發(fā)現(xiàn)的生物標(biāo)記物有聚二磷酸腺苷核糖聚合酶(poly-ADP-ribose polymerase,PARP)、胰島素樣生長(zhǎng)因子結(jié)合蛋白(insulin-like growth factor binding protein,IGFBP)、程序性死亡配體1(programmed cell death 1 ligand 1,PD-L1)、白細(xì)胞介素8(interleukin-8,IL-8)及糖皮質(zhì)激素受體(glucocorticoid receptor,GR)等,均有望成為真正意義上的個(gè)體化治療生物標(biāo)記。
PARP是一類(lèi)廣泛存在于真核細(xì)胞中的核苷酸切除修復(fù)酶,它能識(shí)別并結(jié)合斷裂的DNA鏈,然后募集ADP核糖單位、組蛋白以及各種DNA修復(fù)相關(guān)酶,通過(guò)一系列的催化調(diào)節(jié)反應(yīng),修復(fù)斷裂的單鏈DNA,從而保持染色體結(jié)構(gòu)完整、參與DNA復(fù)制和轉(zhuǎn)錄[4-5]。PARP家族目前已知存在有18種蛋白,其中PARP1對(duì)腫瘤的增值、分裂、分化過(guò)程起相當(dāng)重要的作用,它與乳腺癌易感基因(breast cancer susceptibility gene,BRCA)共同作用于DNA單雙鏈的修復(fù)。BRCA-1和BRCA-2主要通過(guò)同源重組修復(fù)(homologous recombination)途徑修復(fù)損傷的DNA[6],而在BRCA突變的細(xì)胞中,同源重組堿基修復(fù)功能不能完成,細(xì)胞將更多地依賴(lài)PARP來(lái)調(diào)節(jié)DNA修復(fù),但如果PARP同時(shí)缺失,就會(huì)產(chǎn)生合成致死效應(yīng),導(dǎo)致DNA雙鏈損傷無(wú)法進(jìn)行修復(fù)。
一些前期臨床試驗(yàn)表明,BRCA1/BRCA2突變的腫瘤細(xì)胞株對(duì)PARP抑制劑是敏感的,在一項(xiàng)II期臨床試驗(yàn)[7]中,PARP抑制劑olaparib被用于治療有BRCA1/2突變的進(jìn)展期乳腺癌患者,其結(jié)果數(shù)據(jù)顯示患者在客觀緩解率(objective response rate,ORR)及無(wú)進(jìn)展生存期(progressionfree survival,PFS)上有明顯獲益。然而,在另一項(xiàng)樣本數(shù)量相當(dāng)?shù)腎I期臨床實(shí)驗(yàn)[8],而對(duì)象為無(wú)BRCA突變的TNBC患者時(shí),其結(jié)果未示明顯獲益。O'Shaughnessy等[9]將吉西他濱聯(lián)合卡鉑添加PARP抑制iniparib作為試驗(yàn)組與吉西他濱聯(lián)合卡鉑添加安慰劑對(duì)比用于TNBC患者,試驗(yàn)組客觀緩解率顯著提高(52%vs.33%),PFS(5.9個(gè)月vs.3.6個(gè)月)以及總生存期(overall survival,OS)(12.3個(gè)月vs.7.7個(gè)月)延長(zhǎng)。但在隨后的一項(xiàng)多中心III期臨床試驗(yàn)中,iniparib與吉西他濱聯(lián)合卡鉑對(duì)比單純GC方案化療,兩組患者的PFS及OS并無(wú)明顯統(tǒng)計(jì)學(xué)差異,與前期實(shí)驗(yàn)結(jié)果不符[10]。而更新的一項(xiàng)III期臨床試驗(yàn)中,共302例有BRCA突變的TNBC受試者,口服PARP抑制劑olaparib作為試驗(yàn)組,相對(duì)接受標(biāo)準(zhǔn)化療的患者在中位PFS(7.0個(gè)月vs.4.2個(gè)月)和ORR(59.9%vs.28.8%)上均表現(xiàn)出統(tǒng)計(jì)學(xué)差異[11]。這可能說(shuō)明,PARP抑制劑無(wú)論作為單一療法還是與其他化療藥物聯(lián)合應(yīng)用都沒(méi)有對(duì)未經(jīng)篩選的TNBC患者帶來(lái)明顯獲益,但對(duì)于有BRCA突變或二線治療以上的TNBC患者,PARP仍是最有潛力的治療靶點(diǎn)之一。Domagala等[12]利用特異性PARP抗體在179例TNBC組織中檢測(cè)到,PARP1高表達(dá)比例達(dá)86%。一項(xiàng)Meta分析結(jié)果顯示,對(duì)比非TNBC組,TNBC中PARP1的表達(dá)顯著升高[13]。隨著研究的繼續(xù)深入,PARP有望成為一項(xiàng)預(yù)測(cè)性的生物標(biāo)記物,幫助篩選獲益患者并提供與之相關(guān)的靶向治療選擇。
IGFBP是胰島素樣生長(zhǎng)因子(IGF)的配體結(jié)合蛋白,是一個(gè)包括IGFBP1至IGFBP6的系列家族標(biāo)記物,IGFBP通過(guò)增加游離的IGF數(shù)量及延長(zhǎng)IGF半衰期來(lái)調(diào)節(jié)腫瘤的發(fā)生發(fā)展[14]。IGF又經(jīng)與胰島素樣生長(zhǎng)因子受體1(IGF-R1)結(jié)合激活PIK3/AKT通路啟動(dòng)腫瘤增值及抗凋亡效應(yīng)[15]。IGFBP2是一種在新生細(xì)胞中過(guò)表達(dá)的生長(zhǎng)因子,尤其是HER-2陰性的乳腺癌細(xì)胞中[16]。迄今為止對(duì)于IGFBP2在TNBC中的作用機(jī)制探索尚未完全清楚,作為T(mén)NBC的標(biāo)記物的探討也有不同的解釋?zhuān)袑W(xué)者[17]認(rèn)為IGFBP2通過(guò)與α雌激素受體(ER-α)結(jié)合使細(xì)胞內(nèi)同源性磷酸酶-張力蛋白(PTEN)水平上升,負(fù)性調(diào)控PI3K通路以促進(jìn)腫瘤細(xì)胞增殖。有研究[18]指出,在接受新輔助化療的TNBC患者中,IGFBP2可作為預(yù)測(cè)無(wú)復(fù)發(fā)生存期(recurrence-free survival,RFS)的一項(xiàng)單獨(dú)指標(biāo)。然而,Hernandez等[19]在2015年的一項(xiàng)調(diào)查中否定了這一觀點(diǎn),調(diào)查測(cè)試了不同人種中IGF和IGFBP表達(dá)情況與生存率的關(guān)系,包括亞洲人、太平洋島民及高加索人種,調(diào)查結(jié)果為IGFBP的表達(dá)與乳腺癌患者的生存率呈負(fù)相關(guān)關(guān)系,且IGFBP2的表達(dá)在不同種族人種間有差異性,同時(shí)調(diào)查表明,TNBC的發(fā)生與IGF1及IGFBP2表達(dá)下降相關(guān)。但此測(cè)試中TNBC高發(fā)的非裔美洲人群卻未包含在試驗(yàn)對(duì)象人群內(nèi)。因此,IGFBP2有希望在與其他標(biāo)記物結(jié)合分析的情況下成為個(gè)別群體預(yù)后的生物標(biāo)記物,但要使之成為更有力的證據(jù)判斷需要更大規(guī)模的人群測(cè)試。
IGFBP3與IGFBP2作用機(jī)制類(lèi)似,它能綁定IGF-1以及IGF-2延長(zhǎng)其半衰期,IGF又同IGF-1R結(jié)合導(dǎo)致腫瘤發(fā)展。另有研究[20-21]結(jié)果表明,在TNBC患者中IGFBP3可以經(jīng)由激活神經(jīng)鞘氨醇激酶1引起EGFR表達(dá)升高,進(jìn)而誘發(fā)腫瘤細(xì)胞增殖、血管生成及轉(zhuǎn)移。血液中高濃度IGFBP-3的患者可能有更高的死亡風(fēng)險(xiǎn)[19]。
經(jīng)由對(duì)其機(jī)制的探討,IGFBP有可能作為T(mén)NBC的一項(xiàng)預(yù)后生物標(biāo)記物[22],IGFs、IGFBP、IGF-1R以及有相互作用的其他信號(hào)系統(tǒng)也都能作為潛在的治療作用靶點(diǎn),對(duì)胰島素樣生長(zhǎng)因子/胰島素系統(tǒng)、配體、配體蛋白和受體相關(guān)抑制劑雖然還未有相關(guān)的正式報(bào)道,但其探索價(jià)值值得期待。
PD-L1(B7-H1,CD274)是被CD274基因編碼的一類(lèi)跨膜蛋白,也是機(jī)體免疫應(yīng)答的關(guān)鍵調(diào)控位點(diǎn)[23-24]。PD-L1主要表達(dá)于B細(xì)胞、NK細(xì)胞及血管內(nèi)皮細(xì)胞的細(xì)胞膜,通過(guò)與PD-1結(jié)合在T細(xì)胞的活化增殖過(guò)程中發(fā)揮負(fù)調(diào)作用[25]。PD-L1/PD-1結(jié)合能產(chǎn)生抑制白細(xì)胞介素2(IL-2)、T細(xì)胞活化及增值的生物學(xué)作用,以此來(lái)負(fù)性調(diào)控機(jī)體免疫應(yīng)答,導(dǎo)致腫瘤細(xì)胞免疫逃避的發(fā)生[23]。TNBC中PD-L1的表達(dá)預(yù)計(jì)高于20%,這一數(shù)值普遍認(rèn)為高于非TNBC中的表達(dá)[26-27]。PD-L1在TNBC中表達(dá)上調(diào)的具體機(jī)制還有待進(jìn)一步探索,目前研究[27]內(nèi)容表明PD-L1表達(dá)可能與PTEN的缺失相關(guān)。另一說(shuō)法是γ-干擾素(interferon-γ,IFN-γ)可以上調(diào)腫瘤細(xì)胞表面的PD-L1[28-29]。
不久前,一項(xiàng)臨床路徑[30]顯示,PD-L1陽(yáng)性的轉(zhuǎn)移性TNBC患者接受高親和力的PD-L1抗體pembrolizumab治療,使用單藥療法的患者OS達(dá)到18.5%。在另一項(xiàng)I期臨床試驗(yàn)中[31],應(yīng)用PD-L1單克隆抗體atezolizumab治療PD-L1陽(yáng)性TNBC患者,其客觀有效率為33%,這些實(shí)驗(yàn)提示PD-L1可以作為T(mén)NBC個(gè)體化免疫治療中的預(yù)測(cè)性生物標(biāo)記物。也有研究[32-33]表明,組織中高表達(dá)PD-L1的TNBC患者往往獲得更長(zhǎng)的DFS,雖然這些研究中PD-L1的表達(dá)與否還未在OS上表現(xiàn)出差異,PD-L1仍有可能作為預(yù)后性的生物標(biāo)記物應(yīng)用于TNBC的臨床工作。
I L-8或稱(chēng)C X C L 8是由I L-8基因在染色體4q13-q21上編碼的一類(lèi)趨化因子。Bendrik等[34]發(fā)現(xiàn)IL-8在ER陰性的乳腺癌細(xì)胞株中呈過(guò)度表達(dá),而在ER陽(yáng)性的乳腺癌細(xì)胞株中則表達(dá)較低。另外,Choi等[35]報(bào)道IL-8在TNBC細(xì)胞中有更高分泌量,而于此對(duì)應(yīng)的患者預(yù)后相對(duì)較差。IL-8是TNBC細(xì)胞在缺氧條件下產(chǎn)生的物質(zhì),它可以向腫瘤區(qū)域補(bǔ)充間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSC)[36]。MSC通常在骨髓和脂肪組織中,但當(dāng)它被TNBC誘導(dǎo)時(shí),它會(huì)定位于乳腺腫瘤并在周?chē)纬梢粋€(gè)仿腫瘤干細(xì)胞特性的微環(huán)境[37],與受體結(jié)合后IL-8能促進(jìn)癌細(xì)胞增殖、血管生長(zhǎng),同時(shí)調(diào)控血管內(nèi)皮細(xì)胞生長(zhǎng)因子分化,而腫瘤生長(zhǎng)和轉(zhuǎn)移有賴(lài)于血管生成,因此TNBC的轉(zhuǎn)移風(fēng)險(xiǎn)增加[19]。
TNBC患者常常對(duì)TNBC的標(biāo)準(zhǔn)化療蒽環(huán)類(lèi)藥物產(chǎn)生耐藥,這也許歸因于IL-8可以上調(diào)TNBC細(xì)胞表面的乳腺癌耐藥蛋白(BCRP)數(shù)量。BCRP是一類(lèi)72 kDa的跨膜蛋白,它具有將蒽環(huán)類(lèi)藥物從腫瘤細(xì)胞表面移除的能力[38-40]。一些體外試驗(yàn)的數(shù)據(jù)表明,TNBC細(xì)胞表面的BCRP呈高水平表達(dá),并且經(jīng)過(guò)藥物處理后能夠進(jìn)一步上調(diào)表達(dá)。值得注意的是,在蒽環(huán)類(lèi)藥物作用于腫瘤細(xì)胞后,BCRP的上調(diào)僅維持短暫的數(shù)小時(shí),但I(xiàn)L-8將在接下來(lái)的幾天內(nèi)持續(xù)表達(dá)[41-42]。Chen等[36]進(jìn)行的一項(xiàng)研究發(fā)現(xiàn)IL-8能夠在不影響其他蛋白標(biāo)記表達(dá)的情況下提升BCRP的表達(dá),這使得IL-8有可能成為一項(xiàng)潛在代理性生物標(biāo)記物,代替BCRP在TNBC中的表達(dá)水平,也將提示TNBC對(duì)化療藥物的耐藥程度。
GR是由一段由9個(gè)外顯子組成的DNA片段在染色體5p31q上編碼的,其配體——糖皮質(zhì)激素,則是腎上腺皮質(zhì)興奮狀態(tài)下釋放的一類(lèi)血漿蛋白結(jié)合激素。配體激活狀態(tài)下的糖皮質(zhì)激素受體成為二聚物,移動(dòng)至細(xì)胞核內(nèi),并增加糖皮質(zhì)誘導(dǎo)基因的轉(zhuǎn)錄[43-44]。這一過(guò)程將導(dǎo)致TNBC的抗凋亡作用被激活,引起化療藥物的耐藥[45-46]。GR具體的作用機(jī)制還未有明確的定論,已有臨床前期證據(jù)提示,GR的抗凋亡作用可由BRCA1調(diào)節(jié),BRCA1的活化可引起MAPK p38下游磷酸化[44]。但另一些研究提示GR長(zhǎng)時(shí)間活化將導(dǎo)致BRCA1表達(dá)下降,而短時(shí)間游離的GR則上調(diào)BRCA1表達(dá)[47-48]。要闡明GR的作用機(jī)制需要更多深入研究,但GR仍能作為一個(gè)藥效動(dòng)力學(xué)生物標(biāo)記物在TNBC診治中發(fā)揮作用。
TNBC是所有乳腺癌類(lèi)型中異質(zhì)性高,亞型眾多的一種,其復(fù)雜的生理生化特性導(dǎo)致其臨床治療治療困難重重,生物標(biāo)記物與TNBC的發(fā)生發(fā)展密切相關(guān),其在腫瘤細(xì)胞的增殖、抵抗凋亡、血管生成和轉(zhuǎn)移中發(fā)揮了重要作用,至今為止,還沒(méi)有已明確應(yīng)用于TNBC的生物標(biāo)記物,因此對(duì)分子靶標(biāo)的深入、徹底的研究以及對(duì)分子水平的尖端技術(shù)鉆研就顯得更為重要,對(duì)生物標(biāo)記物作用機(jī)制的探索將提供對(duì)TNBC更具針對(duì)性的治療路徑,為T(mén)NBC的治療突破帶來(lái)更多希望。
[1]Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer[J]. N Engl J Med, 2010, 363(20):1938–1948. doi: 10.1056/NEJMra1001389.
[2]Podo F, Buydens LM, Degani H, et al. Triple-negative breast cancer: present challenges and new perspectives[J]. Mol Oncol,2010, 4(3):209–229. doi: 10.1016/j.molonc.2010.04.006.
[3]Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies[J]. J Clin Invest, 2011, 121(7):2750–2767. doi: 10.1172/JCI45014.
[4]Rouleau M, Aubin RA, Poirier GG. Poly (ADP-ribosyl) ated chromatindomains: access granted[J]. J Cell Sci, 2004, 117(Pt 6):815–825.
[5]Andrabi SA, Kim NS, Yu SW, et al. Poly( ADP-ribose) (PAR)polymer is a death signal[J]. Proc Natl Acad Sci U S A, 2006,103(48):18308–18313.
[6]Amir E, Seruga B, Serrano R, et al. Targeting DNA repair inbreast cancer: a clinical and translational update[J]. CancerTreat Rev,2010, 36(7):557–565. doi: 10.1016/j.ctrv.2010.03.006.
[7]Tutt A, Robson M, Garber JE, et al. Oral poly(ADP-ribose)polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial[J]. Lancet, 2010, 376(9737):235–244. doi: 10.1016/S0140–6736(10)60892–6.
[8]Gelmon KA, Tischkowitz M, Mackay H, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre,open-label, non-randomised study[J]. Lancet Oncol, 2011,12(9):852–861. doi: 10.1016/S1470–2045(11)70214–5.
[9]O'Shaughnessy J, Osborne C, Pippen JE, et al. Iniparib plus chemotherapy inmetastatic triple-negative breast cancer[J]. N Engl J Med, 2011, 364(3)205–214. doi: 10.1056/NEJMoa1011418.
[10]O'Shaughnessy J,Schwartzberg LS, Danso MA, et al. Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triplenegative breast cancer[J]. J Clin Oncol, 2014, 32(34):3840–3847.doi: 10.1200/JCO.2014.55.2984.
[11]Robson M, Im SA, Senkus E, et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation[J]. N Engl J Med, 2017, 377(6):523–533. doi: 10.1056/NEJMoa1706450.
[12]Domagala P, Huzarski T, Lubinski J, et al. PARP-1 expression in breast cancer including BRCA1-associated, triple negative and basal-like tumors: possible implications for PARP-1 inhibitor therapy[J]. Breast Cancer Res Treat, 2011, 127(3):861–869. doi:10.1007/s10549–011–1441–2.
[13]張秀偉, 鐘文, 魏士博, 等. 三陰性乳腺癌與PARP1表達(dá)相關(guān)性的Meta分析[J]. 現(xiàn)代腫瘤醫(yī)學(xué), 2017, 25(6):893–896. doi:10.3969/j.issn.1672–4992.2017.06.014.Zhang XW, Zhong W, Wei SB, et al. Correlation between triple-negative breast cancer and PARP 1 expression:A Meta -a na lysis[J]. Journal of Modern Oncology, 2017, 25(6):893–896.doi:10.3969/j.issn.1672–4992.2017.06.014.
[14]Marzec KA, Baxter RC, Martin JL. Targeting insulin-like growth factor binding protein-3 signaling in triple-negative breast cancer[J].BioMed Res Int, 2015, 2015:638526. doi: 10.1155/2015/638526.
[15]Zha J, Lackner MR. Targeting the insulin-like growth factor receptor-1R pathway for cancer therapy[J]. Clin Cancer Res, 2010,16(9):2512–2517. doi: 10.1158/1078–0432.CCR-09–2232.
[16]Wang C, Gao C, Meng K, et al. Human adipocytes stimulate invasion of breast cancer MCF -7 cells by secreting IGFBP-2[J]. PLoS One, 2015, 10(3):e0119348. doi: 10.1371/journal.pone.0119348.
[17]Foulstone EJ, Zeng L, Perks CM, et al. Insulin-like growth factor binding protein 2 (IGFBP-2) promotes growth and survival of breast epithelial cells: novel regulation of the estrogen receptor[J].Endocrinology, 2013, 154(5):1780–1793. doi: 10.1210/en.2012–1970.
[18]Sohn J, Do KA, Liu S, et al. Functional proteomics characterization of residual triple-negative breast cancer after standard neoadjuvant chemotherapy[J]. Ann Oncol, 2013, 24(10):2522–2526. doi:10.1093/annonc/mdt248.
[19]Hernandez BY, Wilkens LR, Le Marchand L, et al. Differences in IGF-axis protein expression and survival among multiethnic breast cancer patients[J]. Cancer Med, 2015, 4(3):354–362. doi: 10.1002/cam4.375.
[20]Li J, Song Z, Wang Y, et al. Overexpression of SphK1 enhances cell proliferation and invasion in triple-negative breast cancer via the PI3K/ AKT signaling pathway[J]. Tumour Biol, 2016, 37(8):10587–10593. doi: 10.1007/s13277–016–4954–9.
[21]Martin JL, de Silva HC, Lin MZ, et al. Inhibition of insulin-like growth factor-binding protein-3 signaling through sphingosine kinase-1 sensitizes triple-negative breast cancer cells to EGF receptor blockade[J]. Mol Cancer Ther, 2014, 13(2):316–328. doi:10.1158/1535–7163.MCT-13–0367.
[22]Roberti MP, Arriaga JM, Bianchini M, et al. Protein expression changes during human triple negative breast cancer cell line progression to lymph node metastasis in a xenografted model in nude mice[J]. Cancer Biol Ther, 2012, 13(11):1123–1140. doi:10.4161/cbt.21187.
[23]Soliman H, Khalil F, Antonia S. PD-L1 expression is increased in asubset of basal type breast cancer cells[J]. PLoS One, 2014,9(2):e88557. doi: 10.1371/journal.pone.0088557.
[24]Muenst S, Schaerli AR, Gao F, et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer[J]. Breast Cancer Res Treat, 2014, 146(1):15–24. doi:10.1007/s10549–014–2988–5.
[25]Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity[J]. Immunol Rev, 2010, 236:219–242. doi:10.1111/j.1600–065X.2010.00923.x.
[26]張偉, 徐國(guó)祥, 李佳嘉, 等. PD-1/PD-L1在三陰性乳腺癌中的表達(dá)及其意義[J]. 中華病理學(xué)雜志, 2017, 46(1):20–24. doi:10.3760/cma.j.issn.0529–5807.2017.01.005.Zhang W, Xu GX, Li JJ, et al. Expression of PD-1/PD-L1 in triple-negative breast carcinoma and its significance[J]. Chinese Journal of Pathology, 2017, 46(1):20–24. doi:10.3760/cma.j.issn.0529–5807.2017.01.005.
[27]Mittendorf EA, Philips AV, Meric-Bernstam F, et al. PD-L1 expression in triple-negative breast cancer[J]. Cancer Immunol Res,2014, 2(4):361–370. doi: 10.1158/2326–6066.CIR-13–0127.
[28]Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26:677–704.doi: 10.1146/annurev.immunol.26.021607.090331.
[29]Hirano F, Kaneko K, Tamura H, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity[J]. Cancer Res, 2005, 65(3):1089–1096.
[30]Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study[J]. J Clin Oncol, 2016, 34(21):2460–2467. doi: 10.1200/JCO.2015.64.8931.
[31]Gibson J. Anti-PD-L1 for metastatic triple-negative breast cancer[J]. Lancet Oncol, 2015, 16(6):e264. doi: 10.1016/S1470–2045(15)70208–1.
[32]Li X, Wetherilt CS, Krishnamurti U, et al. Stromal PD-L1 Expression Is Associated With Better Disease-Free Survival in Triple-Negative Breast Cancer[J]. Am J Clin Pathol, 2016,146(4):496–502. doi: 10.1093/ajcp/aqw134.
[33]Botti G, Collina F, Scognamiglio G, et al. Programmed Death Ligand 1 (PD-L1) Tumor Expression Is Associated with a Better Prognosis and Diabetic Disease in Triple Negative Breast Cancer Patients[J]. Int J Mol Sci, 2017, 18(2). pii: E459. doi: 10.3390/ijms18020459.
[34]Bendrik C, Dabrosin C. Estradiol increases IL-8 secretion o f normal human breast tissue and breast cancer in vivo[J]. J Immunol,2009, 182(1):371–378.
[35]Choi J, Kim DH, Jung WH, et al. Differential expression of immune-related markers in breast cancer by molecular phenotypes[J]. Breast Cancer Res Treat, 2013, 137(2):417–429. doi:10.1007/s10549–012–2383-z.
[36]Chen DR, Lu DY, Lin HY, et al. Mesenchymal stem cell-induced doxorubicin resistance in triple negative breast cancer[J]. Biomed Res Int, 2014, 2014:532161. doi: 10.1155/2014/532161.
[37]Houthuijzen JM, Daenen LG, Roodhart JM, et al. The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression[J]. Br J Cancer, 2012, 106(12):1901–1906. doi:10.1038/bjc.2012.201.
[38]Natarajan K, Xie Y, Baer MR, et al. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance[J].Biochem Pharmacol, 2012, 83(8):1084–1103. doi: 10.1016/j.bcp.2012.01.002.
[39]Finn RS, Bengala C, Ibrahim N, et al. Dasatinib as a single agent in triple-negative breast cancer: results of an open-label phase 2 study[J]. Clin Cancer Res, 2011, 17(21):6905–6913. doi:10.1158/1078–0432.CCR–11–0288.
[40]Komeili-Movahhed T, Fouladdel S, Barzegar E, et al. PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy[J]. Iran J Basic Med Sci, 2015, 18(5):472–477.
[41]Dufour R, Daumar P, Mounetou E, et al. BCRP and P-gp relay overexpression in triple negative basal-like breast cancer cell line: a prospective role in resistance to Olaparib[J]. Sci Rep, 2015, 5:12670.doi: 10.1038/srep12670.
[42]Villarete LH, Remick DG. Transcriptional and post-transcriptional regulation of interleukin-8[J]. Am J Pathol, 1996, 149(5):1685–1693.
[43]Mitre-Aguilar IB, Cabrera-Quintero AJ, Zentella-Dehesa A.Genomic and non-genomic effects of glucocorticoids: implications for breast cancer[J]. Int J Clin Exp Pathol, 2015, 8(1):1–10.
[44]Vilasco M, Communal L, Hugon-Rodin J, et al. Loss of glucocorticoid receptor activation is a hallmark of BRCA1-mutated breast tissue[J]. Breast Cancer Res Treat, 2013, 142(2):283–296.doi: 10.1007/s10549–013–2722–8.
[45]Reeder A, Attar M, Nazario L, et al. Stress hormones reduce the efficacy of paclitaxel in triple negative breast cancer through induction of DNA damage[J]. Br J Cancer, 2015, 112(9):1461–1470. doi: 10.1038/bjc.2015.133.
[46]Skor MN, Wonder EL, Kocherginsky M, et al. Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer[J]. Clin Cancer Res, 2013, 19(22):6163–6172 . doi:10.1158/1078–0432.CCR-12–3826.
[47]Antonova L, Mueller CR. Hydrocortisone down-regulates the tumor suppressor gene BRCA1 in mammary cells: a possible molecular link between stress and breast cancer[J]. Genes Chromosomes Cancer, 2008, 47(4):341–352. doi: 10.1002/gcc.20538.
[48]Ritter HD, Antonova L, Mueller CR. The unliganded glucocorticoid receptor positively regulates the tumor suppressor gene BRCA1 through GABP beta[J]. Mol Cancer Res, 2012, 10(4):558–569. doi:10.1158/1541–7786.MCR-11–0423-T.