王俊剛,趙婷婷,楊本鵬,王文治,蔡文偉,馮翠蓮,曾軍,熊國(guó)如,張樹珍
(中國(guó)熱帶農(nóng)業(yè)科學(xué)院熱帶生物技術(shù)研究所/中國(guó)熱帶農(nóng)業(yè)科學(xué)院甘蔗研究中心/農(nóng)業(yè)部熱帶作物生物學(xué)與遺傳資源利用重點(diǎn)實(shí)驗(yàn)室,海南???71101)
甘蔗基因組多倍化研究進(jìn)展
王俊剛,趙婷婷,楊本鵬,王文治,蔡文偉,馮翠蓮,曾軍,熊國(guó)如,張樹珍*
(中國(guó)熱帶農(nóng)業(yè)科學(xué)院熱帶生物技術(shù)研究所/中國(guó)熱帶農(nóng)業(yè)科學(xué)院甘蔗研究中心/農(nóng)業(yè)部熱帶作物生物學(xué)與遺傳資源利用重點(diǎn)實(shí)驗(yàn)室,海南???71101)
主要介紹了甘蔗基因組起源、染色體組成,基因組多倍化遺傳機(jī)制,基因組多倍化的優(yōu)點(diǎn):降低基因進(jìn)化選擇的壓力、促進(jìn)優(yōu)良性狀的固定、提高甘蔗的生物量及經(jīng)濟(jì)價(jià)值,以及多倍化育種的研究進(jìn)展,為甘蔗多倍化育種提供理論參考。
甘蔗;基因組;多倍化;遺傳進(jìn)化;分子機(jī)理
甘蔗(Saccharum spp.)屬于禾本科甘蔗屬C4作物,其光飽和點(diǎn)高、二氧化碳補(bǔ)償點(diǎn)低、光呼吸率低且光合強(qiáng)度大,是一年生的全球熱帶、亞熱帶經(jīng)濟(jì)作物[1-2]。甘蔗生產(chǎn)食糖占世界食糖消費(fèi)的75%,占我國(guó)食糖消費(fèi)的90%以上,甘蔗生產(chǎn)酒精達(dá)世界酒精總產(chǎn)量的40%。在漫長(zhǎng)的進(jìn)化過程中甘蔗由單倍體植物進(jìn)化為多倍體植物,多倍化進(jìn)程使得基因組加倍、等位基因數(shù)增加,形成新功能化、亞功能化的重復(fù)基因,增強(qiáng)了甘蔗的適應(yīng)性[3]。對(duì)甘蔗基因組多倍化機(jī)制進(jìn)行分析,有利于對(duì)其遺傳組成、進(jìn)化以及功能基因的解析。本文在總結(jié)前人研究的基礎(chǔ)上,探討了甘蔗多倍化的遺傳效應(yīng),綜述了多倍化形成的分子機(jī)理。
1.1 甘蔗基因組組成
依染色體數(shù)量及基因組大小一般把甘蔗分為6類品種:熱帶種(S.officinarum)、割手密(S.spontaneum)、大莖野生種(S.robustum)、印度種(S.barberi)、中國(guó)種(S.sinense)、食穗種(S.edule)[4-6]。割手密(2n=40~128)和大莖野生種(2n=60或80,以2n=80為主)具有不同的染色體基數(shù)x=8與x=10,是野生原始種[7-9]。印度種(2n=81~120)、中國(guó)種(2n=111~124)、熱帶種(2n=80,x=10)、食穗種(2n=60~122)由人工馴化而成。熱帶種可能是由大莖野生種人工馴化而成[7,10-11];印度種和中國(guó)種可能是熱帶種和割手密雜交的后代[12-13];食穗種可能是熱帶種和大莖野生種的雜交后代[4,14]。
1.2 甘蔗基因組多倍化的進(jìn)程
高粱是二倍體植物,基因組與甘蔗相似性非常高,八百萬年前甘蔗與高粱具有共同的祖先[15-16]。隨后甘蔗祖先由大莖野生種和割手密基因組的兩次多倍化形成八倍體[8-9,17],大莖野生種和割手密品種分化可能發(fā)生在兩百萬年前。在多倍化及雜交過程中,不同的染色單體間可以發(fā)生配對(duì)重組形成嵌合體,基因組同源和異源復(fù)制以及種間雜交的復(fù)雜性,很難分辨甘蔗中的單個(gè)基因組,使甘蔗的基因組成為最為復(fù)雜的植物基因組
之一[2,18-19]。
1.3 甘蔗基因多倍化育種
現(xiàn)代甘蔗雜交育成的絕大部分品種的祖先為熱帶種、割手密種及印度種的原種,經(jīng)過育種過程將割手密的抗性基因整合到熱帶種中,形成栽培種。而甘蔗雜交育種過程中存在母本恢復(fù)現(xiàn)象,熱帶種與割手密雜交過程中,母本二倍體配子起作用形成2n+n模式的F1,然后F1再和母本回交卻以單倍體配子n+n模式遺傳,經(jīng)多次回交,快速恢復(fù)高糖性狀,即高貴化育種,期間割手密染色體數(shù)逐漸減少,而有利的抗性基因得到保留。因此栽培種甘蔗中70%~80%的基因來自熱帶種、10%~20%的基因來自割手密、10%為重組基因[20-22]。但這樣育成的甘蔗品種遺傳背景狹窄,基因多樣性少。我國(guó)甘蔗品種主要來自高貴化育成POJ2878的后代Co290、CP49-50、F134和Co419,這些都是甘蔗栽培種遺傳背景狹窄的例證[23-24]。由于甘蔗品種間血緣關(guān)系近,遺傳背景狹窄,品種易退化,甘蔗基因組的多倍化增強(qiáng)了其對(duì)環(huán)境的適應(yīng)性,彌補(bǔ)了遺傳方面的不足。
多倍化在動(dòng)植物演化進(jìn)程中起了重要作用,新表型產(chǎn)生與異源多倍化和同源多倍化都有關(guān)系?;虻膹?fù)制初始時(shí)可能是功能冗余,但由于基因的重復(fù)減少了基因純化的選擇壓力,因此基因復(fù)制為進(jìn)化和新性狀的產(chǎn)生提供了材料[25-27]。因而相對(duì)于多倍體生物的二倍體祖先,多倍體具有多套基因組遺傳物質(zhì),有更佳的選擇優(yōu)勢(shì)去適應(yīng)環(huán)境的改變。此外,多倍體拓寬了遺傳背景,使其遺傳系統(tǒng)對(duì)生長(zhǎng)發(fā)育以及對(duì)環(huán)境的響應(yīng)具有更強(qiáng)的調(diào)控能力[28-29]。
2.1 多倍化與基因組
多倍體化對(duì)真核生物,尤其是植物基因組結(jié)構(gòu)的進(jìn)化起著重要的作用。已普遍被接受的觀點(diǎn)認(rèn)為,大部分的植物在二倍體后都有一至兩輪的全基因組復(fù)制[30-32]。多倍體化和二倍體化循環(huán)過程形成目前穩(wěn)定的二倍體和多倍體基因組。雖然多倍體優(yōu)勢(shì)的大部分分子機(jī)制仍不清楚,但比較明確的是多倍化過程中復(fù)制基因的功能分化產(chǎn)生了多倍體適應(yīng)優(yōu)勢(shì)[33-34]。維管植物中多倍體現(xiàn)象很常見,種子植物都有多倍體祖先[35-36]。對(duì)植物基因組測(cè)序表明植物進(jìn)化過程中經(jīng)歷多倍化事件,例如番木瓜和菠蘿基因組經(jīng)歷過三倍化[37-38]。而甘蔗也經(jīng)歷全基因組復(fù)制,形成異源多倍體,造就其多倍體優(yōu)勢(shì),形成基因組的劑量效應(yīng),促進(jìn)甘蔗的進(jìn)化[2,39-41]。
2.2 多倍化與基因組劑量
基因等位位點(diǎn)的差異是產(chǎn)生雜種優(yōu)勢(shì)現(xiàn)象原因之一,而等位基因的劑量決定了雜種優(yōu)勢(shì)程度[42-43]。在多倍化后,早期多倍體中可能會(huì)發(fā)生基因組劑量升高導(dǎo)致基因劑量失衡,進(jìn)而可能改變基因的調(diào)控互作和基因網(wǎng)絡(luò)[44-45]。當(dāng)基因組的劑量效應(yīng)對(duì)生物有益時(shí),被復(fù)制的基因可以維持原有的功能或者和維持原來相似的功能[45-46]。與之相反時(shí),復(fù)制的基因有可能演化出新的基因功能,或通過亞功能化部分繼承祖先基因作用,或通過累積有害突變使其退敗為假基因[47-48]。通過對(duì)一系列不同A、C基因組比例的甘藍(lán)型油菜(基因型分別為AA、CC、AC、AAC、CCA、CCAA),采用RNA-Seq技術(shù)測(cè)定全基因組范圍的基因表達(dá)量,分析結(jié)果表明約95%基因的表達(dá)量與劑量呈正相關(guān),其中約60%在統(tǒng)計(jì)學(xué)上呈顯著性(P<0.05),即為劑量效應(yīng);而剩余的相關(guān)性不顯著,表現(xiàn)劑量補(bǔ)償效應(yīng)[46]。
2.3 多倍化與基因表達(dá)
在多倍化過程中部分基因會(huì)表現(xiàn)出加性表達(dá)和親本顯性表達(dá)。在比較新合成的和自然形成的異源四倍體棉花后發(fā)現(xiàn),各亞基因組之間的表達(dá)差異水平也不同,在異源多倍體棉花中,D亞基因組的轉(zhuǎn)錄水平在花瓣、纖維、種子中都和A亞基因組存在明顯的表達(dá)差異,只有少部分非加性表達(dá)基因是在多倍化過程中產(chǎn)生的,而大部分是在進(jìn)化壓力作用下逐漸形成的[26,49-51]。而在種間雜交F1群體中,A基因組表達(dá)優(yōu)勢(shì)高于二倍體雜交植株和自然生長(zhǎng)異源多倍體植株,而在合成異源多倍體植株中變?yōu)榱觿?shì),這種偏向表達(dá)水平優(yōu)勢(shì)主要由“非優(yōu)勢(shì)”親本同源物質(zhì)的上調(diào)或下調(diào)引起,形成親本顯性表達(dá)[52]。而分析不同染色體組成的甘蔗親本熱帶種、割手密種和大莖野生種中蔗糖合成酶、蔗糖轉(zhuǎn)運(yùn)蛋白和果糖激酶表達(dá),各種基因在不同物種中的表達(dá)不一致,且它們單倍型也存在差異性,造就基因功能差異性[53-55]。這些結(jié)果表明,親本顯性表達(dá)和加性表達(dá)調(diào)控對(duì)多倍體后代性狀變化具有很大影響,是多倍體優(yōu)勢(shì)產(chǎn)生的重要原因之一。
2.4 多倍化與microRNA
小分子RNA作為一種非編碼RNA的產(chǎn)物以多種形式調(diào)控多倍體基因表達(dá)。microRNA對(duì)基因的表達(dá)調(diào)控不僅發(fā)生在轉(zhuǎn)錄水平上,也可發(fā)生在microRNA介導(dǎo)的轉(zhuǎn)錄后過程。它們調(diào)控mRNA的翻譯、DNA甲基化和染色質(zhì)重構(gòu)。異源多倍體擬南芥中siRNA的表達(dá)更穩(wěn)定,而miRNA和ta-siRNA的表達(dá)模式卻與親本差異顯著[56]。而在合成異源四倍體子代中的24nt siRNA表達(dá)豐度變化明顯,對(duì)DNA和染色質(zhì)的修飾顯著加強(qiáng)[57]。通過比較二倍體和多倍體水稻花粉發(fā)育過程中miRNA發(fā)現(xiàn),在自交四倍體水稻中發(fā)現(xiàn)了與轉(zhuǎn)座元件相關(guān)的24nt siRNA,然而,在二倍體水稻中它們顯著下降,這表明24nt siRNA可能在花粉發(fā)育中起作用[58]。比較二倍體、三倍體、六倍體小麥中microRNA的表達(dá),發(fā)現(xiàn)與轉(zhuǎn)座子相關(guān)的siRNA表達(dá)隨著倍性的升高而降低,表明小麥進(jìn)化過程中雜交的加倍可能導(dǎo)致基因組的不穩(wěn)定[59-60]。水稻osa-miR5788和osa-miR1432-5p_R+1在減數(shù)分裂中上調(diào),其目標(biāo)顯示與減數(shù)分裂相關(guān)基因的相互作用,表明它們可能涉及與染色體行為相關(guān)的基因調(diào)控[58]?,F(xiàn)代甘蔗品種的形成同樣經(jīng)歷了一個(gè)多倍化的過程,不同倍性的材料在進(jìn)行抗旱microRNA分析時(shí),發(fā)現(xiàn)其有差異表達(dá)和特異性表達(dá),其倍性和microRNA的關(guān)系還有待進(jìn)一步的研究[61-64]。
綜上所述,多倍化在植物進(jìn)化過程中起著非常重要的作用,一方面維持基因組的穩(wěn)定性,另一方面不斷分化出新的基因以應(yīng)對(duì)多變的環(huán)境壓力,從而保證物種的生存和發(fā)展。
植物進(jìn)化過程中頻繁發(fā)生的多倍體化事件、自然界中多倍體植物的廣泛分布以及大量具有優(yōu)良農(nóng)藝性狀多倍體農(nóng)作物的出現(xiàn),使多倍化研究成為全世界關(guān)注的熱點(diǎn)。甘蔗是典型的多倍體植物,其高生物量和高糖分是多倍化的結(jié)果。多倍化會(huì)導(dǎo)致甘蔗基因復(fù)雜性的增加,一個(gè)基因座上的多個(gè)等位基因提高了基因位點(diǎn)的變異潛力,而劑量平衡在這些變異中起著非常重要的作用,在維持基因組穩(wěn)定性的同時(shí),不斷分化出新的基因以應(yīng)對(duì)多變的環(huán)境壓力,從而保證物種的生存優(yōu)勢(shì)。如何利用現(xiàn)有的其它物種的研究基礎(chǔ),解析甘蔗多倍體和雜種優(yōu)勢(shì)的分子機(jī)制,深入探索劑量平衡是如何調(diào)控基因表達(dá)以及引起相應(yīng)的表型變化的遺傳及表觀遺傳機(jī)理,不僅可以為甘蔗分子育種提供理論支持,也具有對(duì)多倍體研究的普通生物學(xué)意義。
[1]Heichel GH.Comparative efficiency of energy use in crop production comparative efficiency of energy use in crop production[J]. Bulletin Connecticut Agricultural Experiment Station,1974,739:1-26
[2]de Setta N,Monteiro-Vitorello CB,Metcalfe CJ,et al.Building the sugarcane genome for biotechnology and identifying evolutionary trends[J].BMC Genomics,2014,15(1):540
[3]Renny-Byfield S,Wendel JF.Doubling down on genomes:polyploidy and crop plants[J].Am J Bot,2014,101(10):1711-1725
[4]Daniels J,Roach BT.Taxonomy and evolution in sugarcane[M].In:Heinz DJ.(ed),Sugarcane improvement through breeding, Elsevier Press,Amsterdam,1987:7-84
[5]彭紹光.甘蔗育種學(xué)[M].北京:農(nóng)業(yè)出版社,1990
[6]鄧紹同.現(xiàn)代甘蔗栽培[M].廣州:廣東科技出版社,1992
[7]D’Hont A,LuP,Feldmann,JC,et al.Cytoplasmic diversity in sugarcane revealed by heterologous probes[J].Sugar Cane,1993,1:12-15
[8]Ha S,Moore PH,Heinz D,et al.Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods[J].Plant Mol Biol,1999,39(6):1165-1173
[9]Aitken KS,McNeil MD,Berkman PJ,et al.Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane[J].BMC Plant Biol,2014,14(1):190
[10]Brandes EW.Origin,dispersal and use in breeding of the Melanesian garden sugarcanes and their derivatives,Saccharum officinarum L.[J].Proc Int Soc Suagr Cane Technol,1956,9:709-750.
[11]Racedo J,Gutierrez L,Perera MF et al.Genome-wide association mapping of quantitative traits in a breeding population of sugarcane[J].BMC Plant Biol,2016,16(1):142
[12]Price S.Cytology of Chinese and North Indian sugarcanes[J].Economic Botany,1968,22(2):155-164
[13]D'Hont A,Paulet F,Glaszmann JC.Oligoclonal interspecific origin of'North Indian'and'Chinese'sugarcanes[J].Chromosome Res, 2002,10(3):253-262
[14]Huang Y,Wu J,Wang P,et al.Characterization of Chromosome Inheritance of the Intergeneric BC2 and BC3 Progeny between Saccharum spp.and Erianthus arundinaceus[J].PLoS One,2016,10(7):e0133722
[15]Jannoo N,Grivet L,Chantret N,et al.Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome[J].Plant Journal,2007,50(4):574-585.
[16]Wang J,Roe B,Macmil S,et al.Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes[J].BMC Genomics,2010,11(1):261
[17]D’Hont A D,Ison K,Alix C,et al.Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes[J].Genome,1998,41(2):221-225.
[18]Piperidis G,D’Hont A.Chromosome composition analysis of various Saccharum inter-specific hybrids by genome in situ hybridization(GISH)[J].Proc.Int.Soc.Sugar Cane Technol,2011,11:565-566
[19]Cuadrado AR,Acevedo S,Moreno Dias de la Espina N,et al.Genome remodeling in three modern S.officinarum x S.spontaneum sugarcane cultivars[J].J.Exp.Bot,2004,55(398):847-854.
[20]Hoarau JY,Grivet L,Offmann B,Raboin LM,et al.Genetic dissection of a modern sugarcane cultivar(Saccharum spp.).II.Detection of QTLs for yield components[J].Theor Appl Genet,2002,105(6):1027-1037
[21]Ming R,Moore PH,Wu KK,et al.Sugarcane improvement through breeding and biotechnology[J].Plant Breeding Reviews,2006, 27:15-118.
[22]Nishiyama MYJ,Ferreira SS,Tang PZ,et al.Full-length enriched cDNA libraries and ORFeome analysis of sugarcane hybrid and ancestor genotypes[J].Plos One,2014,9(9):e107351.
[23]陳如凱,等.現(xiàn)代甘蔗育種的理論與實(shí)踐[M].北京:中國(guó)農(nóng)業(yè)出版社,2003
[24]Jackson PA.Breeding for improved sugar content in sugarcane[J].Field Crops Research,2005,92(2–3):277-290
[25]Prince VE,Pickett FB.Splitting pairs:the diverging fates of duplicated genes[J].Nature Reviews:Genetics,2002,3(11):827-837
[26]Flagel LE,Wendel JF.Evolutionary rate variation,genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation[J].New Phytol,2010,186(1):184–193
[27]Schinkel CC,Kirchheimer B,Dellinger AS,et al.Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant[J].AoB Plants,2016,8:1-16
[28]Rapp RA,Udall JA,Wendel JF.Genomic expression dominance in allopolyploids[J].BMC Biol,2009,7(1):18
[29Vlasova A,Capella-Gutierrez S,Rendon-Anaya M,et al.Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes[J].Genome Biol,2016,17(1):32
[30]Comai L.The advantages and disadvantages of being polyploidy[J].Nat.Rev.Genet,2005,6(11):836-846.
[31]Jiao Y,Wickett NJ,Ayyampalayam S,et al.Ancestral polyploidy in seed plants and angiosperms[J].Nature,2011,473:97-100
[32]Jiao Y,Li J,Tang H,et al.Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots[J]. Plant Cell,2014,26(7):2792-2802
[33]Anssour S,Krugel T,Sharbel TF,et al.Phenotypic,genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia[J].Ann Bot,2009,103(8):1207-1217
[34]Gao R,Wang H,Dong B,et al.Morphological,Genome and Gene Expression Changes in Newly Induced Autopolyploid Chrysanthemum lavandulifolium(Fisch.ex Trautv.)Makino[J].Int J Mol Sci,2016,17(10):1690
[35]Wood TE,Takebayashi N,Barker MS,et al.The frequency of polyploid speciation in vascular plants[J].Proc Natl Acad Sci USA,2009,106(33):13875-13879.
[36]McCarthy EW,Arnold SE,Chittka L,et al.The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae)[J].Ann Bot,2015,115(7):1117-1131
[37]Ming R,Hou S,Feng Y,et al.The draft genome of the transgenic tropical fruit tree papaya(Carica papaya Linnaeus)[J].Nature, 2008,452(7190):991-996
[38]Ming R,VanBuren R,Wai CM,et al.The pineapple genome and the evolution of CAM photosynthesis[J].Nat Genet,2015,47(12): 1435-1442
[39]Zhang J,Arro J,Chen Y,et al.Haplotype analysis of sucrose synthase gene family in three Saccharum species[J].BMC Genomics, 2013,14(1):314
[40]Vanneste K,Baele G,Maere S,et al.Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary[J].Genome Res,2014,24(8):1334-1347
[41]Niu S,Wang Y,Zhao Z,et al.Transcriptome and Degradome of microRNAs and Their Targets in Response to Drought Stress in the Plants of a Diploid and Its Autotetraploid Paulownia australis[J].PLoS One,2016,11(7):e0158750
[42]Birchler JA,Yao S,Chudalayandi D,et al.Heterosis[J].Plant Cell,2010,22(7):2105-2112
[43]Panchy N,Lehti-Shiu M,Shiu SH.Evolution of Gene Duplication in Plants[J].Plant Physiol,2016,171(4):2294-2316
[44]Veitia RA,Bottani S,Birchler JA.Cellular reactions to gene dosage imbalance:genomic,transcriptomic and proteomic effects[J]. Trends Genet,2008,24(8):390-397
[45]Birchler JA,Veitia RA.The Gene Balance Hypothesis:dosage effects in plants[J].Methods Mol Biol,2014,1112:25-32
[46]Tan C,Pan Q,Cui C,et al.Genome-Wide Gene/Genome Dosage Imbalance Regulates Gene Expressions in Synthetic Brassica napus and Derivatives(AC,AAC,CCA,CCAA)[J].Front Plant Sci,2016,7:1432
[47]Birchler JA.Interploidy hybridization barrier of endosperm as a dosage interaction[J].Frontiers in Plant Science,2014,5:281
[48]Henry IM,Zinkgraf MS,Groover AT,et al.System for Dosage-Based Functional Genomics in Poplar[J].Plant Cell,2015,27(9): 2370-2383
[49]Flagel L,Udall J,Nettleton D,et al.Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution[J].BMC Biol,2008,6(1):16
[50]Chaudhary B,Flagel L,Stupar RM,et al.Reciprocal silencing,transcriptional bias and functional divergence of homeologs in polyploid cotton(gossypium)[J].Genetics,2009,182(2):503-517
[51]Hu G,Houston NL,Pathak D,et al.Genomically biased accumulation of seed storage proteins in allopolyploid cotton[J].Genetics, 2011,189(3):1103-1115
[52]Yoo MJ,Szadkowski E,Wendel JF.Homoeolog expression bias and expression level dominance in allopolyploid cotton.Heredity (Edinb)[J],2013,110(2):171-180
[53]朱琳.甘蔗中蔗糖代謝途徑關(guān)鍵基因和糖轉(zhuǎn)運(yùn)蛋白的系統(tǒng)發(fā)育研究[D].長(zhǎng)春:吉林大學(xué),2013
[54]Zhang Q,Li Y,Xu T,et al.The chromatin remodeler DDM1.promotes hybrid vigor by regulating salicylic acid metabolism[J]. Cell Discov,2016,2:16027
[55]Zhang Q,Hu W,Zhu F,et al.Structure,phylogeny,allelic haplotypes and expression of sucrose transporter gene families in Saccharum[J].BMC Genomics,2016,17(1):1-18
[56]Ha M,Lu J,Tian L,et al.Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids[J].Proc Natl Acad Sci USA,2009,106(42):17835-17840
[57]Ng DW,Lu J,Chen ZJ.Big roles for small RNAs in polyploidy,hybrid vigor,and hybrid incompatibility[J].Current Opinion in Plant Biology,2012,15(2):154-161.
[58]Li X,Shahid MQ,Wu J,et al.Comparative Small RNA Analysis of Pollen Development in Autotetraploid and Diploid Rice[J].Int J Mol Sci,2016,17(4):499
[59]Kenan-Eichler M,Leshkowitz D,Tal L,et al.Wheat hybridization and polyploidization results in deregulation of small RNAs[J]. Genetics,2011,188(2):263-272
[60]Gentile A,Dias LI,Mattos RS,et al.MicroRNAs and drought responses in sugarcane[J].Front Plant Sci,2015,6:58
[61]Ferreira TH,Gentile A,Vilela RD,et al.microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.)[J].PLoS One,2012,7(10):e46703
[62]Gentile A,Ferreira TH,Mattos RS,et al.Effects of drought on the microtranscriptome of field-grown sugarcane plants[J].Planta, 2013,237(3):783-798
[63]Carnavale Bottino M,Rosario S,Grativol C,et al.High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane[J].PLoS One,2013,8(3):e59423
[64]Khan MS,Khraiwesh B,Pugalenthi G,et al.Subtractive hybridization-mediated analysis of genes and in silico prediction of associated microRNAs under waterlogged conditions in sugarcane(Saccharum spp.)[J].FEBS Open Bio,2014,4(1):533-541
Research Progress of Sugarcane Genome Polyploidy
WANG Jun-gang,ZHAO Ting-ting,YANG Ben-peng,WANG Wen-zhi,CAI Wen-wei,FENG Cui-lian,
ZENG Jun,XIONG Guo-ru,ZHANG Shu-zhen*
(Institute of Tropical Biotechnology,Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops,Ministry of Agriculture,Haikou 571101,Hainan)
The developments in the origin of sugarcane genome,chromosome composition,polyploidy genetic mechanism and breeding were summarized.The advantages of genome polyploidy were as follows:it reduced the gene selective pressure,accelerated the excellent traits fixation and improved biomass and economic value of sugarcane,in addition,it would provide theoretical basis for sugarcane polyploidy breeding.
sugarcane;genome;polyploidy;genetic evolution;molecular mechanism
S566.103
B
1007-2624(2017)05-0041-04
10.13570/j.cnki.scc.2017.05.015
2017-04-05
“863”計(jì)劃(2013AA102604-1);中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)(ITBB2015RC04,ITBB2015ZY12);海南省自然科學(xué)基金(20163124)。
王俊剛(1982-),博士研究生,助理研究員,研究方向:甘蔗生物技術(shù),E-mail:wangjungang@itbb.org.cn。
張樹珍(1965-),博士,研究員,博士生導(dǎo)師,主要從事甘蔗生物學(xué)的研究,E-mail:zhangsz2007@163.com。