鄒貴軍,王 迪,胡遠(yuǎn)亮,馮 奇,胡時(shí)棟,杜曉輝
結(jié)直腸癌肝轉(zhuǎn)移機(jī)制研究新進(jìn)展
鄒貴軍,王 迪,胡遠(yuǎn)亮,馮 奇,胡時(shí)棟,杜曉輝
近年來我國結(jié)直腸癌發(fā)病率呈上升趨勢(shì),肝臟轉(zhuǎn)移是影響結(jié)直腸癌患者預(yù)后和長(zhǎng)期生存的主要原因。結(jié)直腸癌肝臟轉(zhuǎn)移是多因素參與、多步驟的復(fù)雜生物學(xué)過程,其作用機(jī)制目前仍不清楚。作者旨在對(duì)結(jié)直腸癌肝臟轉(zhuǎn)移的機(jī)制及新進(jìn)展作一綜述。
結(jié)直腸癌;藥物療法;腫瘤轉(zhuǎn)移;繼發(fā)性肝腫瘤
結(jié)直腸癌(colorectal cancer,CRC)是消化道常見的惡性腫瘤之一[1],肝臟轉(zhuǎn)移是影響CRC患者預(yù)后的主要原因。因此,對(duì)結(jié)直腸癌肝臟轉(zhuǎn)移(colorectal cancer liver metastases,CRCLM)發(fā)生機(jī)制的探索及如何早期診治原發(fā)腫瘤和肝臟轉(zhuǎn)移灶以延長(zhǎng)患者生存期是目前的研究熱點(diǎn)。作者就CRCLM機(jī)制新進(jìn)展作一綜述,望能為CRCLM的研究提供一些思路。
癌細(xì)胞的脫落是發(fā)生遠(yuǎn)處轉(zhuǎn)移的第一步,是基因調(diào)控、癌細(xì)胞、細(xì)胞外微環(huán)境等多種因素共同作用的結(jié)果。
1.1 癌細(xì)胞因素 ①隨機(jī)突變學(xué)說,癌基因、抑癌基因、錯(cuò)配修復(fù)基因等的改變,使正常的結(jié)直腸上皮細(xì)胞演變成具有不同侵襲、轉(zhuǎn)移能力的癌細(xì)胞[2]。正因如此腫瘤治療需個(gè)體化,惡性程度不等的腫瘤在不同體質(zhì)的患者身體內(nèi)具有不同的侵襲能力,其治療效果也不同。長(zhǎng)鏈非編碼RNA(long non-coding RNAs,lncRNAs)是近年來被新發(fā)現(xiàn)的一種調(diào)控分子,在惡性腫瘤的進(jìn)展中,可能在調(diào)節(jié)控制表觀遺傳學(xué)、基因轉(zhuǎn)錄、蛋白生成中發(fā)揮重要作用[3]。Ye等[4]采用基因芯片分析及定量聚合酶鏈反應(yīng)技術(shù),發(fā)現(xiàn)lncRNAs的高表達(dá)促進(jìn)CRC細(xì)胞發(fā)生肝轉(zhuǎn)移,可作為CRC患者預(yù)后的獨(dú)立指標(biāo)。最近,Li等[5]在lnc-RNA FOXP4-AS1對(duì)腫瘤進(jìn)展的影響研究中發(fā)現(xiàn),F(xiàn)OXP4-AS1在CRC組織和細(xì)胞系中表達(dá)均升高,其表達(dá)水平與病理進(jìn)展階段和腫瘤大小呈正相關(guān),利用小干擾RNA沉默F(xiàn)OXP4-AS1表達(dá)可抑制CRC細(xì)胞增殖并誘導(dǎo)細(xì)胞凋亡。Lu等[6]研究表明,lnc-RNA PANDAR在CRC組織和細(xì)胞系有較高的表達(dá),且高表達(dá)lncRNA PANDAR的患者總體存活率相對(duì)較低;在體外實(shí)驗(yàn)中通過抑制PANDAR的表達(dá)可抑制腫瘤細(xì)胞的增殖、遷移、侵襲和誘導(dǎo)細(xì)胞凋亡,并且PANDAR是通過抑制E-鈣黏蛋白、β-鏈蛋白的表達(dá)和增加N-鈣黏蛋白的表達(dá)來影響上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),進(jìn)而促進(jìn)腫瘤細(xì)胞遠(yuǎn)處轉(zhuǎn)移。此外,研究還發(fā)現(xiàn)lnc-RNA ZFAS1、lncRNA AK027294、lncRNA HOXA、HOXAGHET1等基因在CRC中具有類似功能[7-10]。②腫瘤干細(xì)胞學(xué)說[11],促進(jìn)惡性腫瘤不斷增殖進(jìn)而發(fā)生遠(yuǎn)處轉(zhuǎn)移是由少數(shù)具有超強(qiáng)增殖、多向分化能力的干細(xì)胞樣腫瘤細(xì)胞決定的。當(dāng)CRC細(xì)胞表達(dá)CD133、CD44、CD26時(shí)患者發(fā)生肝轉(zhuǎn)移的概率明顯增加[12]。研究發(fā)現(xiàn),CD133+、CD133-細(xì)胞都能在小鼠體內(nèi)形成移植瘤,CD133-細(xì)胞形成腫瘤的惡性程度高于CD133+[13-15]。研究發(fā)現(xiàn)CD26+CRC干細(xì)胞與CRCLM密切相關(guān),而且CD26與腫瘤低分化和微血管浸潤也有相關(guān)性[16]。CD44是一種位于細(xì)胞膜表面的跨膜蛋白,在腫瘤轉(zhuǎn)移中起重要作用。研究證實(shí),CD44+的細(xì)胞群體具有典型的干細(xì)胞特征,其增殖、侵襲能力顯著強(qiáng)于CD44-的細(xì)胞群體[17]。
1.2 細(xì)胞外基質(zhì)因素 細(xì)胞外基質(zhì)是微環(huán)境的重要組成部分,包括層黏連蛋白、透明質(zhì)酸、蛋白聚糖等。癌細(xì)胞通過黏附分子受體與細(xì)胞外基質(zhì)進(jìn)行物質(zhì)交換,對(duì)癌細(xì)胞的代謝、增殖、遷移等功能產(chǎn)生重要影響。癌細(xì)胞及周圍間質(zhì)細(xì)胞分泌不同的蛋白或酶促進(jìn)細(xì)胞外基質(zhì)的合成與分解。其中,基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)和金屬蛋白酶組織抑制因子(tissue inhabitors of metalloproteinases,TIMPs)是構(gòu)成細(xì)胞外基質(zhì)的主要蛋白分解酶。若細(xì)胞外基質(zhì)合成與分解的動(dòng)態(tài)平衡出現(xiàn)失衡,就會(huì)影響腫瘤細(xì)胞的黏附,促進(jìn)腫瘤細(xì)胞發(fā)生遠(yuǎn)處轉(zhuǎn)移[18]。MMP-1是一種可降解膠原纖維酶,在正常成人組織中表達(dá)很低,但在腫瘤組織中的表達(dá)明顯增高。研究證實(shí),MMP-1分泌與腫瘤轉(zhuǎn)移有直接相關(guān)性,MMP-2抑制轉(zhuǎn)移灶的生長(zhǎng),而MMP-9抑制腫瘤入侵肝臟階段[19-20]。Yan等[21]應(yīng)用定量聚合酶鏈反應(yīng)檢測(cè)236例CRC組織及癌旁組織中MMP-13信使RNA(messenger RNA,mRNA),發(fā)現(xiàn)癌組織中MMP-13 mRNA表達(dá)較癌旁組織明顯升高,與腫瘤進(jìn)展階段、淋巴結(jié)轉(zhuǎn)移、肝轉(zhuǎn)移呈正相關(guān)。但TIMP-1除抑制腫瘤的轉(zhuǎn)移生物活性外,在腫瘤細(xì)胞到達(dá)肝臟前,通過改變肝細(xì)胞和分子特征,為腫瘤細(xì)胞創(chuàng)造適宜的定植環(huán)境。Lorenc等[22]研究發(fā)現(xiàn),TIMP-1不僅在原發(fā)癌細(xì)胞中表達(dá)水平升高,在肝臟轉(zhuǎn)移癌的表達(dá)水平升高更加明顯,并可通過誘導(dǎo)肝細(xì)胞生長(zhǎng)因子信號(hào)途徑促進(jìn)CRCLM,它的濃度決定了其促細(xì)胞增殖、轉(zhuǎn)移和抗細(xì)胞凋亡的作用。Seubert等[23]在動(dòng)物實(shí)驗(yàn)中發(fā)現(xiàn),小鼠肝臟中TIMP-1可通過誘導(dǎo)基質(zhì)細(xì)胞衍生因子-1(stromal cell derived factor-1,SDF-1)來招募周圍的中性粒細(xì)胞,抑制SDF-1可使中性粒細(xì)胞減少,提示中性粒細(xì)胞在TIMP-1誘導(dǎo)的CRCLM中起重要作用;結(jié)合臨床資料分析發(fā)現(xiàn),TIMP-1水平升高與CRC復(fù)發(fā)、肝轉(zhuǎn)移呈正相關(guān),提示TIMP-1促進(jìn)腫瘤轉(zhuǎn)移。
1.3 血管、淋巴管因素 隨著腫瘤的不斷增大,部分腫瘤細(xì)胞會(huì)出現(xiàn)不同程度的缺氧,缺氧可激活缺氧誘導(dǎo)因子、血管內(nèi)皮生長(zhǎng)因子等的合成,進(jìn)而促進(jìn)癌細(xì)胞血管、淋巴管的增殖。這些因子可與內(nèi)皮細(xì)胞相互作用,激活多種信號(hào)通路,進(jìn)一步促進(jìn)腫瘤細(xì)胞血管生長(zhǎng)、遠(yuǎn)處轉(zhuǎn)移。正因如此,抗血管內(nèi)皮生長(zhǎng)因子的靶向藥物(如貝伐單抗)可有效阻斷腫瘤血管、淋巴管生成,緩解腫瘤進(jìn)展,側(cè)面驗(yàn)證了此機(jī)制。Cacchi等[24]研究發(fā)現(xiàn),CRC細(xì)胞可誘導(dǎo)癌組織內(nèi)淋巴管生成,從而增強(qiáng)腫瘤細(xì)胞進(jìn)入淋巴循環(huán)系統(tǒng)的能力并促進(jìn)轉(zhuǎn)移。
1.4 EMT因素 除腫瘤細(xì)胞、細(xì)胞外基質(zhì)、血管、淋巴管等因素外,EMT是促進(jìn)腫瘤細(xì)胞脫落的又一重要因素。EMT是指各種因素促使上皮細(xì)胞轉(zhuǎn)化為具有間質(zhì)細(xì)胞表型的現(xiàn)象。其特征為細(xì)胞黏附分子(如E-鈣黏蛋白)表達(dá)減少、細(xì)胞角蛋白轉(zhuǎn)化為波形蛋白為主的細(xì)胞骨架及具有間質(zhì)細(xì)胞特征等。整個(gè)過程由3組調(diào)控因子通過抑制E-鈣黏蛋白表達(dá)來演變:第1組由SNAIl、SNAI2的Snail鋅指蛋白家族組成;第2組由ZEB1、ZEB2組成;第3組由TWIST1、TWIST2家族成員組成。
除以上3個(gè)家族外,近年又發(fā)現(xiàn)許多其他家族轉(zhuǎn)錄因子也參與了CRC的進(jìn)展和EMT,如OCT4、SOX2、B7-H3等。Jiang等[25]研究發(fā)現(xiàn),共刺激分子B7-H3在CRC組織中表達(dá)升高,其通過抑制E-鈣黏蛋白、β-連環(huán)蛋白表達(dá)和上調(diào)N-鈣黏蛋白、波形蛋白表達(dá),并通過激活磷脂酰肌醇3-激酶/蛋白激酶B通路上調(diào)Smad1表達(dá)促進(jìn)EMT,進(jìn)而使腫瘤細(xì)胞轉(zhuǎn)移。Qin等[26]在研究CRC遠(yuǎn)處轉(zhuǎn)移的機(jī)制中,發(fā)現(xiàn)人端粒酶反轉(zhuǎn)錄酶和E盒結(jié)合鋅指蛋白-1形成復(fù)合物直接結(jié)合E-鈣黏蛋白啟動(dòng)子,抑制E-鈣黏蛋白的表達(dá),同時(shí)促進(jìn)CRC細(xì)胞發(fā)生EMT。腫瘤細(xì)胞到達(dá)靶器官后,在多種因素(如p53基因突變、SNAI2上調(diào)、E-鈣黏蛋白啟動(dòng)子甲基化等)調(diào)控下,下調(diào)并激活E-鈣黏蛋白,使其重新獲得增殖能力,這些間質(zhì)細(xì)胞恢復(fù)成上皮樣細(xì)胞,為血液中的“種子”定植“土壤”提供條件。
腫瘤細(xì)胞免疫逃逸機(jī)制主要有:①癌細(xì)胞自身免疫原性較低,并具有一定抗原調(diào)節(jié)轉(zhuǎn)變能力;細(xì)胞組織相容性抗原分子表達(dá)異常,缺乏共刺激分子的表達(dá)和T細(xì)胞活化的第二信號(hào)系統(tǒng),使T細(xì)胞不能識(shí)別腫瘤抗原。②宿主的抗原呈遞細(xì)胞功能缺陷,無法呈遞腫瘤抗原,不能激活T細(xì)胞使其識(shí)別并殺傷腫瘤細(xì)胞。近年來,有學(xué)者提出新的腫瘤細(xì)胞免疫逃逸機(jī)制:①惡性腫瘤細(xì)胞通過表達(dá)巨噬細(xì)胞清道夫受體CD163或CD68獲得免疫細(xì)胞功能和表型特征;②腫瘤細(xì)胞通過與基質(zhì)細(xì)胞的相互作用激活致癌通路;③產(chǎn)生的抗炎細(xì)胞因子和免疫抑制代謝物(腺苷)最終使腫瘤微環(huán)境呈低免疫原性。在免疫逃避和腫瘤細(xì)胞抗原表觀因素的研究中,NT5E/ CD73獲得了極大關(guān)注,NT5E/CD73是胞外腺苷產(chǎn)生過程中的限速酶,是ATP轉(zhuǎn)為腺苷的免疫抑制的作用位點(diǎn);腺苷通過激活腫瘤、內(nèi)皮細(xì)胞或免疫細(xì)胞上的同源受體,以旁分泌和自分泌方式發(fā)揮促腫瘤作用;NT5E/CD73水平升高與患者預(yù)后顯著相關(guān);與原發(fā)腫瘤或癌旁組織相比,肝臟轉(zhuǎn)移瘤的NT5E/ CD73的表達(dá)是升高的,與腫瘤相關(guān)巨噬細(xì)胞表達(dá)相關(guān),但與錯(cuò)配修復(fù)不相關(guān);多種原癌基因通路可以協(xié)同誘導(dǎo)惡性細(xì)胞表達(dá)NT5E/CD73,以增強(qiáng)結(jié)腸惡性腫瘤細(xì)胞間旁分泌/自分泌作用而逃避免疫監(jiān)視、促進(jìn)轉(zhuǎn)移[27]。
在CRCLM進(jìn)程中,腫瘤細(xì)胞生長(zhǎng)的微環(huán)境發(fā)生了巨大變化,包括腫瘤細(xì)胞相關(guān)炎癥反應(yīng)和腫瘤微血管的新生反應(yīng)。其中腫瘤相關(guān)巨噬細(xì)胞(tumorassociated macrophages,TAMs)在促進(jìn)CRC發(fā)生侵襲、轉(zhuǎn)移中起重要作用。有研究發(fā)現(xiàn),單核髓源性抑制細(xì)胞可進(jìn)一步發(fā)展為成熟的TAMs[28]。其中至少有2種TAMs表型促進(jìn)腫瘤的發(fā)生和轉(zhuǎn)移:M1型TAMs促炎巨噬細(xì)胞有明顯抗腫瘤活性,但持續(xù)的炎癥反應(yīng)又可誘導(dǎo)產(chǎn)生活性氧和氮自由基使細(xì)胞及周圍微環(huán)境發(fā)生改變,進(jìn)而促進(jìn)腫瘤進(jìn)展;M2型TAMs通過分泌免疫抑制性細(xì)胞因子促進(jìn)腫瘤細(xì)胞及基質(zhì)血管生成,并抑制腫瘤免疫應(yīng)答。巨噬細(xì)胞集落刺激因子、前列腺素E2等細(xì)胞因子可誘導(dǎo)單核細(xì)胞向M2型TAMs轉(zhuǎn)化。此外,還發(fā)現(xiàn)CRC中巨噬細(xì)胞密度與患者的預(yù)后明顯相關(guān),巨噬細(xì)胞密度越大,患者的生存期越短。肝竇內(nèi)部分巨噬細(xì)胞是固定于竇壁的,稱為Kupffer細(xì)胞,能吞噬肝內(nèi)衰老、壞死細(xì)胞、細(xì)菌等,是肝臟固有屏障的重要組成部分。但在腫瘤細(xì)胞肝轉(zhuǎn)移過程中,釋放炎性因子、趨化因子等,使腫瘤細(xì)胞黏附分子表達(dá)上調(diào),破壞免疫屏障,防御機(jī)制失衡,促進(jìn)腫瘤定植于“土壤”,同時(shí)改變局部“土壤”微環(huán)境使其適合“種子”生長(zhǎng)。在肝臟定植并生長(zhǎng)為CRCLM的最后一步,“土壤”的微環(huán)境決定“種子”能否“生根發(fā)芽”。Qiu等[29]報(bào)道的CRC伴乙型病毒性肝炎、肝硬化的患者發(fā)生肝轉(zhuǎn)移的概率較正常肝臟者低,側(cè)面證實(shí)了“土壤”對(duì)CRCLM發(fā)生的重要性。肝星狀細(xì)胞在多種細(xì)胞因子、生長(zhǎng)因子作用下轉(zhuǎn)化為肌纖維母細(xì)胞,具有活躍的增殖和運(yùn)動(dòng)能力,同時(shí)經(jīng)轉(zhuǎn)化的肌纖維母細(xì)胞也可產(chǎn)生多種細(xì)胞因子、生長(zhǎng)因子,抑制機(jī)體對(duì)腫瘤細(xì)胞的免疫反應(yīng)并促進(jìn)腫瘤生長(zhǎng)、血管形成?;诖它c(diǎn),通過抗血小板衍生內(nèi)皮細(xì)胞生長(zhǎng)因子藥物抑制肝星狀細(xì)胞活性,可有效防治CRCLM。
癌癥轉(zhuǎn)移的機(jī)制不同,其調(diào)節(jié)惡性腫瘤轉(zhuǎn)移的細(xì)節(jié)可能會(huì)有所不同。研究發(fā)現(xiàn),CRC細(xì)胞來源的外泌體含有的微小RNA與癌基因、腫瘤轉(zhuǎn)移相關(guān)基因密切相關(guān)[30],暗示其可能與CRCLM相關(guān)。外泌體是細(xì)胞以出胞方式向胞外分泌的囊泡樣小體,其內(nèi)包含多種生物活性物質(zhì),可經(jīng)自分泌、旁分泌或遠(yuǎn)分泌作用于細(xì)胞微環(huán)境及遠(yuǎn)處靶器官,是細(xì)胞間信息傳遞及信號(hào)傳導(dǎo)的重要載體,其不僅可由正常細(xì)胞產(chǎn)生,也可由CRC細(xì)胞產(chǎn)生,其可促進(jìn)正常結(jié)直腸上皮細(xì)胞的癌變、增殖、遷移并可作為遠(yuǎn)處轉(zhuǎn)移的一種媒介,在CRCLM整個(gè)發(fā)生、發(fā)展過程中均起關(guān)鍵作用。Alix蛋白是穩(wěn)定存在于外泌體內(nèi)的蛋白。Valcz等[31]利用定量聚合酶鏈?zhǔn)椒磻?yīng)技術(shù)分別檢測(cè)Alix蛋白在正常腸上皮組織、腺瘤組織和結(jié)腸癌組織的表達(dá),發(fā)現(xiàn)外泌體在促進(jìn)結(jié)腸上皮癌變過程中起重要作用,通過Alix蛋白介導(dǎo)“上皮組織—腺瘤—癌”這一序列模式發(fā)生癌變。外泌體在誘導(dǎo)正常上皮細(xì)胞發(fā)生癌變后,可通過微小RNA-210基因促進(jìn)EMT,影響CRC細(xì)胞的黏附[32]。此外,Holzner等[33]在研究中發(fā)現(xiàn),外泌體也可通過作用ZEB1、ZEB2這一調(diào)控因子來參與細(xì)胞分化、遷移并促進(jìn)癌細(xì)胞進(jìn)入血管循環(huán)。外泌體中的整合素在CRCLM發(fā)生過程中,可改變肝臟微環(huán)境,為癌細(xì)胞在肝臟的定植與生長(zhǎng)創(chuàng)造條件[34]。因此,特異性阻斷外泌體整合素,可以抑制腫瘤細(xì)胞發(fā)生肝臟轉(zhuǎn)移的能力。Wang等[35]分別利用具有高度肝轉(zhuǎn)移特性的CRC HT29細(xì)胞和人克隆結(jié)腸腺癌Caco-2細(xì)胞建立CRCLM裸鼠模型,證實(shí)HT29細(xì)胞來源的外泌體更易促進(jìn)CRCLM的發(fā)生,而Caco-2細(xì)胞的外泌體較少發(fā)生CRCLM;進(jìn)一步研究HT29細(xì)胞來源的外泌體介導(dǎo)的CRCLM機(jī)制,發(fā)現(xiàn)HT29細(xì)胞來源的外泌體的小鼠在肝臟轉(zhuǎn)移微環(huán)境中高表達(dá)CXCR4,提示外泌體是通過招募表達(dá)CXCR4的基質(zhì)細(xì)胞來建立轉(zhuǎn)移途徑;隨后,在用HT29細(xì)胞來源的外泌體體外處理Caca-2細(xì)胞后,Caca-2細(xì)胞的遷移能力顯著增加,進(jìn)一步支持了外泌體在調(diào)控CRCLM中的作用。這一研究可促進(jìn)轉(zhuǎn)化醫(yī)學(xué)的進(jìn)一步研究,預(yù)防和治療CRCLM。
CRCLM是一個(gè)動(dòng)態(tài)、復(fù)雜的生物學(xué)過程,癌細(xì)胞是如何進(jìn)入血液循環(huán),如何種植于肝臟的,其機(jī)制尚不完全一致。隨著現(xiàn)代分子生物學(xué)的進(jìn)步及高端檢測(cè)技術(shù)的發(fā)展,人們將會(huì)對(duì)CRCLM分子機(jī)制有更加深入的認(rèn)識(shí),從而為CRCLM患者的早期預(yù)防、早期診斷、精準(zhǔn)治療提供新的方向和思路。
[1]Chen W,Zheng R,Zhang S,et al.Report of incidence and mortality in China cancer registries,2009[J].Chin J Cancer Res,2013,25(1):10-21.
[2]Ogino S,Lochhead P,Giovannucci E,et al.Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker:power and promise of molecular pathological epidemiology[J].Oncogene,2014,33(23):2949-2955.
[3]Xue Y,Ma G,Gu D,et al.Genome-wide analysis of long noncoding RNA signature in human colorectal cancer[J]. Gene,2015,556(2):227-234.
[4]Ye LC,Ren L,Qiu JJ,et al.Aberrant expression of long noncoding RNAs in colorectal cancer with liver metastasis [J].Tumour Biol,2015,36(11):8747-8754.
[5]Li J,Lian Y,Yan C,et al.Long non-coding RNA FOXP4-AS1 is an unfavourable prognostic factor and regulates proliferation and apoptosis in colorectal cancer[J].Cell Prolif,2017,50(1):12312.
[6]Lu M,Liu Z,Li B,et al.The high expression of long noncoding RNA PANDAR indicates a poor prognosis for colorectal cancer and promotes metastasis by EMT pathway [J].J Cancer Res Clin Oncol,2017,143(1):71-81.
[7]Thorenoor N,F(xiàn)altejskova-Vychytilova P,Hombach S,et al. Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer[J].Oncotarget,2016,7(1):622-637.
[8]Niu H,Hu Z,Liu H,et al.Long non-coding RNA AK027294 involves in the process of proliferation,migration,and apoptosis of colorectal cancer cells[J].Tumour Biol,2016,37 (8):10097-10105.
[9]Lian Y,Ding J,Zhang Z,et al.The long noncoding RNA HOXA transcript at the distal tip promotes colorectal cancer growth partially via silencing of p21 expression[J]. Tumour Biol,2016,37(6):7431-7440.
[10]Zhou J,Li X,Wu M,et al.Knockdown of long noncoding RNA GHET1 inhibits cell proliferation and invasion of colorectal cancer[J].Oncol Res,2016,23(6):303-309.
[11]Abetov D,Mustapova Z,Saliev T,et al.Biomarkers and signaling pathways of colorectal cancer stem cells[J]. Tumour Biol,2015,36(3):1339-1353.
[12]Neumann J,L?hrs L,Albertsmeier M,et al.Cancer stem cell markers are associated with distant hematogenous liver metastases but not with peritoneal carcinomatosis in coloreetal cancer[J].Cancer Invest,2015,33(8):354-360.
[13]Jing F,Kim HJ,Kim CH,et al.Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases[J].Int J Oncol,2015,46(4):1582-1588.
[14]Michl M,Heinemann V,Jung A,et al.Expression of cancer stem cell markers in metastatic colorectal cancer correlates with liver metastasis,but not with metastasis to the central nervous system[J].Pathol Res Pract,2015,211(8):601-609.
[15]Yamamoto S,Tanaka K,Takeda K,et al.Patients with CD133-negative colorectal liver metastasis have a poor prognosis after hepatectomy[J].Ann Surg Oncol,2014,21 (6):1853-1861.
[16]Davies S,Beckenkamp A,Buffon A.CD26 a cancer stem cell marker and therapeutic target[J].Biomed Pharmacother,2015,71:135-138.
[17]Ribeiro KB,da Silva Zanetti J,Ribeiro-Silva A,et al. KRAS mutation associated with CD44/CD166 immunoexpression as predictors of worse outcome in metastatic colon cancer[J].Cancer Biomark,2016,16(4):513-521.
[18]Li CY,Yuan P,Lin SS,et al.Matrix metalloproteinase 9 expression and prognosis in colorectal cancer:a meta-analysis[J].Tumour Biol,2013,34(2):735-741.
[19]Banday MZ,Sameer AS,Mir AH,et al.Matrix metalloproteinase(MMP)-2,-7 and-9 promoter polymorphisms in colorectal cancer in ethnic Kashmiri population--a casecontrol study and a mini review[J].Gene,2016,589(1): 81-89.
[20]Araújo RF Jr,Lira GA,Vila?a JA,et al.Prognostic and diagnostic implications of MMP-2,MMP-9,and VEGF-α expressions in colorectal cancer[J].Pathol Res Pract,2015,211(1):71-77.
[21]Yan Q,Yuan Y,Yankui L,et al.The expression and significance of CXCR5 and MMP-13 in colorectal cancer[J]. Cell Biochem Biophys,2015,73(1):253-259.
[22]Lorenc Z,Waniczek D,Lorenc-Podgórska K,et al.Profile of expression of genes encoding matrix metallopeptidase 9 (MMP9),matrix metallopeptidase 28(MMP28)and TIMP metallopeptidase inhibitor 1(TIMP1)in colorectal cancer: assessment of the role in diagnosis and prognostication [J].Med Sci Monit,2017,23:1305-1311.
[23]Seubert B,Grünwald B,Kobuch J,et al.Tissue inhibitor of metalloproteinases(TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice[J].Hepatology,2015,61(1):238-248.
[24]Cacchi C,Arnholdt HM,J?hnig H,et al.Clinical significance of lymph vessel density in T3 colorectal carcinoma [J].Int J Colorectal Dis,2012,27(6):721-726.
[25]Jiang B,Zhang T,Liu F,et al.The co-stimulatory molecule B7-H3 promotes the epithelial-mesenchymal transition in colorectal cancer[J].Oncotarget,2016,7(22):31755-31771.
[26]Qin Y,Tang B,Hu CJ,et al.An hTERT/ZEB1 complex directly regulates E-cadherin to promote epithelial-to-mesenchymal transition(EMT)in colorectal cancer[J].Oncotarget,2016,7(1):351-361.
[27]Bonnin N,Armandy E,Carras J,et al.MiR-422a promotes loco-regional recurrence by targeting NT5E/CD73 in head and neck squamous cell carcinoma[J].Oncotarget,2016,7 (28):44023-44038.
[28]Sica A,Mantovani A.Macrophage plasticity and polarization:in vivo veritas[J].J Clin Invest,2012,122(3):787-795.
[29]Qiu HB,Zhang LY,Zeng ZL,et al.HBV infection decreases risk of liver metastasis in patients with colorectal cancer:a cohort study[J].World J Gastroenterol,2011,17 (6):804-808.
[30]Reymond N,d’água BB,Ridley AJ.Crossing the endothelial barrier during metastasis[J].Nature Rev Cancer,2013,13(12):858-870.
[31]Valcz G,Galamb O,Krenács T,et al.Exosomes in colorectal carcinoma formation:ALIX under the magnifying glass [J].Mod Pathol,2016,29(8):928-938.
[32]Bigagli E,Luceri C,Guasti D,et al.Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells:role of microRNA-210[J]. Cancer Biol Ther,2016,17(10):1062-1069.
[33]Holzner S,Senfter D,Stadler S,et al.Colorectal cancer cell-derived microRNA200 modulates the resistance of adjacent blood endothelial barriers in vitro[J].Oncol Rep,2016,36(5):3065-3071.
[34]Hoshino A,Costa-Silva B,Shen TL,et al.Tumour exosome integrins determine organotropic metastasis[J].Nature,2015,527(7578):329-335.
[35]Wang X,Ding X,Nan L,et al.Investigation of the roles of exosomes in colorectal cancer liver metastasis[J].Oncol Rep,2015,33(5):2445-2453.
Advances in liver metastasis of colorectal cancer
ZOU Guijun1,2,WANG Di1,3,HU Yuanliang2,F(xiàn)ENG Qi2,HU Shidong1,DU Xiaohui1
(1.Department of General Surgery,Chinese PLA General Hospital,Beijing 100853,China;2.Department of General Surgery,Navy General Hospital,Beijing 100048,China;3.Department of Clinical Medicine,Nankai University School of Medicine,Tianjin 300071,China)
In China,the incidence of colorectal cancer(CRC)shows an increasing trend in recent years,liver metastasis is a main cause of prognosis and long-term survival for CRC.However,the biological process in the liver metastasis of CRC is extremely complicated and influenced by multiple factors,so the mechanism of liver metastasis is still unclear.In this review,the novel insight and development of liver metastasis of CRC will be illuminated.
Colorectal cancer(CRC);Drug therapy;Neoplasm metastasis;Secondary liver neoplasms
R735.3
A
2095-3097(2017)03-0185-05
10.3969/j.issn.2095-3097.2017.03.014
2017-02-09 本文編輯:徐海琴)
國家自然科學(xué)基金資助項(xiàng)目(61471397)
100853北京,解放軍總醫(yī)院普通外科(鄒貴軍,王 迪,胡時(shí)棟,杜曉輝);100048北京,海軍總醫(yī)院普通外科(鄒貴軍,胡遠(yuǎn)亮,馮 奇);300071天津,南開大學(xué)醫(yī)學(xué)院臨床醫(yī)學(xué)系(王 迪)
杜曉輝,E-mail:duxiaohui301@sina.com