,
腸道菌群對(duì)動(dòng)脈粥樣硬化作用機(jī)制的研究概述
徐燕飛,高利
腸道菌群是人體內(nèi)尚未完明確的一個(gè)大型菌群,新近研究發(fā)現(xiàn)腸道菌群與動(dòng)脈粥樣硬化形成可能密切相關(guān),腸道菌群在組成和功能變化可能產(chǎn)生復(fù)雜的病理變化導(dǎo)致動(dòng)脈粥樣硬化,這一發(fā)現(xiàn)尚未明確證實(shí),但此觀點(diǎn)對(duì)研究動(dòng)脈粥樣硬化及其他疾病提供新方向?,F(xiàn)對(duì)一領(lǐng)域研究文獻(xiàn)進(jìn)行梳理匯總,發(fā)現(xiàn)飲食習(xí)慣改變腸道菌群組成,進(jìn)而代謝產(chǎn)生一種可能會(huì)促進(jìn)動(dòng)脈粥樣硬化形成的物質(zhì)—氧化三甲胺(TMTO),現(xiàn)報(bào)道如下。
動(dòng)脈粥樣硬化;腸道菌群;氧化三甲胺
腸道菌群是人體內(nèi)尚未明確的一個(gè)大型菌群,新近研究發(fā)現(xiàn)腸道菌群與動(dòng)脈粥樣硬化形成可能密切相關(guān),腸道菌群在組成和功能變化可能產(chǎn)生復(fù)雜的病理變化進(jìn)而導(dǎo)致動(dòng)脈粥樣硬化,盡管這一發(fā)現(xiàn)尚未被明確證實(shí),但此觀點(diǎn)對(duì)研究動(dòng)脈粥樣硬化及其他疾病提供新的方向。對(duì)近年來在這一領(lǐng)域研究文獻(xiàn)進(jìn)行梳理匯總,發(fā)現(xiàn)飲食習(xí)慣改變腸道菌群組成,進(jìn)而代謝產(chǎn)生一種可能會(huì)促進(jìn)動(dòng)脈粥樣硬化形成的物質(zhì)—氧化三甲胺(TMTO)。
近年來研究發(fā)現(xiàn)長期飲食習(xí)慣會(huì)改變腸道菌群組成[1-4],長期、大量攝入富含膽堿、左旋肉堿、甜菜堿、卵磷脂等成分飲食會(huì)導(dǎo)致腸道菌群的組成比例發(fā)生變化。某種腸道菌群大量繁殖,變化的腸道菌群將攝入的膽堿[5]、左旋肉堿[6]、甜菜堿[7]、卵磷脂[8]等飲食成分進(jìn)行代謝,將其代謝成三甲胺(TMA)[9-11],TMA在肝臟內(nèi)進(jìn)一步被含黃素單氧化酶(FMO3)氧化成TMAO[12],而TMAO可能會(huì)促進(jìn)動(dòng)脈粥樣硬化的形成[5]。有相關(guān)研究表明左旋肉堿對(duì)心血管有保護(hù)作用[13-15],但左旋肉堿是否TMA的來源仍存在爭(zhēng)議[16]。
近期對(duì)TMAO研究發(fā)現(xiàn)其對(duì)動(dòng)脈粥樣硬化形成影響可能有以下幾方面:膽堿、左旋肉堿、甜菜堿、卵磷脂等飲食成分在腸道菌群參與下產(chǎn)生的TMAO可阻礙膽固醇逆向轉(zhuǎn)運(yùn)[6];TMAO可促進(jìn)B類清道夫受體CD36和SRA的細(xì)胞表面表達(dá),進(jìn)而增加泡沫細(xì)胞的形成[5];TMAO通過抑制膽汁酸合成酶Cyp7a1、Cyp27a1和膽汁酸轉(zhuǎn)運(yùn)蛋白在肝臟的表達(dá)[17-19],抑制膽汁合成以影響膽固醇從體內(nèi)清除。也有相關(guān)文獻(xiàn)表明,TMAO與動(dòng)脈粥樣硬化的形成呈負(fù)相關(guān),TMAO通過抑制膽固醇的重吸收,降低高脂血癥幾率,進(jìn)而減少動(dòng)脈粥樣硬化的形成[20-21]。
Koeth等[6]發(fā)現(xiàn)長期肉食習(xí)慣會(huì)導(dǎo)致一種腸道菌群比例失調(diào)或某種腸道菌群大量繁殖,將膽堿及左旋肉堿等飲食成分代謝成TMAO,進(jìn)而促進(jìn)動(dòng)脈粥樣硬化的形成,并不是膽堿或左旋肉堿本身導(dǎo)致動(dòng)脈粥樣硬化[5,22],且血漿中TMAO水平達(dá)到一定濃度才導(dǎo)致動(dòng)脈粥樣硬化。飲食對(duì)腸道菌群的變化可能與普氏桿菌增加有關(guān),研究發(fā)現(xiàn)腸道菌群中富含普氏桿菌機(jī)體血漿TMAO水平較富含大腸桿菌實(shí)驗(yàn)體的血漿TMAO高,因此普氏菌屬可能會(huì)增加血漿TMAO濃度[6]。除此之外,Tang等[8]對(duì)動(dòng)脈粥樣硬化病人和健康人的腸道菌群分析發(fā)現(xiàn),病人腸道菌群中柯林斯菌屬較豐富,而在健康人腸道菌群中優(yōu)桿菌、羅氏菌屬及擬桿菌較豐富??傊嬍骋蛩睾湍c道菌群的組成對(duì)血漿中TMAO濃度起到重要的作用[23],而TMAO對(duì)動(dòng)脈粥樣硬化的形成具有重要意義。
2.1 TMAO可能會(huì)阻礙膽固醇逆向轉(zhuǎn)運(yùn)(RCT) 近期研究表明,腸道菌群生產(chǎn)的TMAO可能阻止膽固醇從巨噬細(xì)胞內(nèi)流出,即阻礙膽固醇逆向轉(zhuǎn)運(yùn),使膽固醇在巨噬細(xì)胞內(nèi)不斷積累,而膽固醇在巨噬細(xì)胞內(nèi)大量積累使巨噬細(xì)胞形成泡沫細(xì)胞,泡沫細(xì)胞在血管內(nèi)皮內(nèi)積累形成動(dòng)脈粥樣硬化[5,24-25]。
2.2 TMAO促進(jìn)泡沫細(xì)胞形成 有研究認(rèn)為TMAO可通過促進(jìn)與動(dòng)脈粥樣硬化形成有關(guān)的B類清道夫受體CD36和SRA的細(xì)胞表面表達(dá)[6]增加泡沫細(xì)胞形成。CD36通過識(shí)別、吞噬氧化低密度脂蛋白(ox-LDL),使巨噬細(xì)胞泡沫化,以促進(jìn)動(dòng)脈粥樣硬化的形成[26]。CD36會(huì)促進(jìn)單核細(xì)胞與內(nèi)皮細(xì)胞黏附,使單核細(xì)胞進(jìn)入內(nèi)皮細(xì)胞,在內(nèi)皮細(xì)胞內(nèi)單核細(xì)胞變成巨噬細(xì)胞,進(jìn)而吞噬ox-LDL,導(dǎo)致膽固醇積累,形成泡沫細(xì)胞,泡沫細(xì)胞堆積在血管內(nèi)皮細(xì)胞上,形成動(dòng)脈粥樣硬化[27]。
2.3 TMAO抑制膽汁酸合成而影響膽固醇代謝 對(duì)小鼠研究發(fā)現(xiàn),腸道菌群的代謝物TMAO可抑制膽汁酸合成酶Cyp7a1、Cyp27a1和膽汁酸轉(zhuǎn)運(yùn)蛋白(Oatp1、Oatp4、CFTR/MRP、Mrp2、Ntcp)在肝臟中的表達(dá)[17-19],而Cyp7a1參與膽汁酸合成和膽固醇代謝[6],故TMAO可通過抑制膽汁酸合成以影響膽固醇從體內(nèi)清除。
2.4 TMAO減少膽固醇重吸收而減少動(dòng)脈粥樣硬化形成 對(duì)喂食TMAO小鼠研究發(fā)現(xiàn),TMAO會(huì)減少腸內(nèi)的膽固醇轉(zhuǎn)運(yùn)蛋白Npc1L1(將膽固醇從腸腔轉(zhuǎn)運(yùn)至腸內(nèi)皮細(xì)胞)[28]和肝臟內(nèi)Cyp7a1、Cyp27a1的表達(dá),而缺乏Cyp7a1或Cyp27a1的小鼠導(dǎo)致膽固醇吸收減少[20-21],進(jìn)而抑制動(dòng)脈粥樣硬化形成。這一研究發(fā)現(xiàn)與以上所說TMAO導(dǎo)致動(dòng)脈粥樣硬化形成相矛盾,需要進(jìn)一步研究證實(shí)。
2.5 TMAO導(dǎo)致動(dòng)脈硬化的其他機(jī)制 TMAO和它的前驅(qū)物質(zhì)三甲胺是陽離子季胺,兩者都與精氨酸競(jìng)爭(zhēng)以抑制精氨酸的利用率,從而減少一氧化氮的形成,減少一氧化氮對(duì)血管的保護(hù)作用,但這一假設(shè)在牛大動(dòng)脈內(nèi)皮細(xì)胞內(nèi)的實(shí)驗(yàn)證實(shí)似乎并不成立[29-30]。
關(guān)于腸道菌群作用下形成的TMAO對(duì)動(dòng)脈粥樣硬化形成的機(jī)制存在較多爭(zhēng)議,目前研究表明,導(dǎo)致動(dòng)脈粥樣硬化的因素是復(fù)雜的。本文目的在于提示相關(guān)研究需關(guān)注腸道菌群與動(dòng)脈粥樣硬化形成之間的關(guān)系,盡管諸多研究結(jié)果尚需進(jìn)一步證明,但關(guān)于這方面的研究不僅對(duì)動(dòng)脈粥樣硬化及其相關(guān)疾病的發(fā)病機(jī)制有重大意義,且對(duì)臨床設(shè)計(jì)治療方案也有啟示。
[1] Ley RE,Micah H,Catherine L,et al.Evolution of mammals and their gut microbes[J].Science,2008,320(5883):1647-1651.
[2] Muegge BD.Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans[J].Science,2011,332:970-974.
[3] Zimmer J,Lange B,F(xiàn)rick JS,et al.A vegan or vegetarian diet substantially alters the human colonic faecal microbiota[J].Eur J Clin Nutr,2012,66(1):53-60.
[4] Moschen AR,Wieser V,Tilg H.Dietary factors:major regulators of the gut's microbiota[J].Gut Liver,2012,6(4):411-416.
[5] Wang Z,Klipfell E,Bennett BJ,et al.Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J].Nature,2011,472(7341):57-63.
[6] Koeth RA,Wang Z,Levison BS,et al.Intestinal microbiota metabolism of L-carnitine,a nutrient in red meat,promotes atherosclerosis[J].Nat Med,2013,19(5):576-585.
[7] Wang Z,Tang WH,Buffa JA,et al.Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide[J].Eur Heart J,2014,35(14):904-910.
[8] Tang WH,Wang Z,Levison BS,et al.Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk[J].N Engl J Med,2013,368(17):1575-1584.
[9] Rebouche CJ,Chenard CA.Metabolic fate of dietary carnitine in human adults:identification and quantification of urinary and fecal metabolites[J].J Nutr,1991,121(4):539-546.
[10] Rebouche CJ,Mack DL,Edmonson PF.L-Carnitine dissimilation in the gastrointestinal tract of the rat[J].Biochemistry,1984,23(26):6422-6426.
[11] Zhang AQ,Mitchell SC,Smith RL.Dietary precursors of trimethylamine in man:a pilot study[J].Food Chem Toxicol,1999,37(5):515-520.
[12] Brugere JF,Borrel G,Gaci N,et al.Archaebiotics:proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease[J].Gut Microbes,2014,5(1):5-10.
[13] Broderick TL,Quinney HA,Barker CC,et al.Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation[J].Circulation,1993,87(3):972-981.
[14] Noland RC,Koves TR,Seiler SE,et al.Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control[J].J Biol Chem,2009,284(34):22840-22852.
[15] Muoio DM,Noland RC,Kovalik JP,et al.Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility[J].Cell Metab,2012,15(5):764-777.
[16] DiNicolantonio JJ,Lavie CJ,F(xiàn)ares H,et al.L-Carnitine in the secondary prevention of cardiovascular disease:systematic review and meta-analysis[J].Mayo Clin Proc,2013,88(6):544-551.
[17] Charach G,Rabinovich A,Argov O,et al.The role of bile acid excretion in atherosclerotic coronary artery disease[J].Int J Vasc Med,2012,2012:949672
[18] Charach G,Rabinovich PD,Konikoff FM,et al.Decreased fecal bile acid output in patients with coronary atherosclerosis[J].J Med,1998,29(3-4):125-136.
[19] Lu Y,F(xiàn)eskens EJ,Boer JM,et al.The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population[J].Atherosclerosis,2010,210(1):14-27.
[20] Schwarz M,Russell DW,Dietschy JM,et al.Marked reduction in bile acid synthesis in cholesterol 7alpha-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia[J].J Lipid Res,1998,39(9):1833-1843.
[21] Repa JJ,Lund EG,Horton JD,et al.Disruption of the sterol 27-hydroxylase gene in mice results in hepatomegaly and hypertriglyceridemia.Reversal by cholic acid feeding[J].J Biol Chem,2000,275(50):39685-39692.
[22] Rakoff-Nahoum S,Paglino J,Eslami-Varzaneh F,et al.Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis[J].Cell,2004,118(2):229-241.
[23] Hartiala J,Bennett BJ,Tang WH,et al.Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide,a proatherogenic metabolite of choline and L-carnitine[J].Arterioscler Thromb Vasc Biol,2014,34(6):1307-1313.
[24] Febbraio M,Podrez EA,Smith JD,et al.Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice[J].J Clin Invest,2000,105(8):1049-1056.
[25] Suzuki H,Kurihara Y,Takeya M,et al.A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection[J].Nature,1997,386(6622):292-296.
[26] Altmann SW,Davis HRJR,Zhu LJ,et al.Niemann-pick C1 like 1 protein is critical for intestinal cholesterol absorption[J].Science,2004,303(5661):1201-1204.
[27] Bai C,Biwersi J,Verkman AS,et al.A mouse model to test the in vivo efficacy of chemical chaperones[J].J Pharmacol Toxicol Methods,1998,40(1):39-45.
[28] Mello CC,Barrick D.Measuring the stability of partly folded proteins using TMAO[J].Protein Sci,2003,12(7):1522-1529.
[29] Stewart BW,Nagarajan S.Recombinant CD36 inhibits ox-LDL2 induced ICAM212 dependent monocyte adhesion[J].Mol Immunol,2006,43(3):255-267.
[30] Kopp rasch S,Pietzsch J,Westendorf T,et al.The pivotal role of scavenger receptor CD36 and phagocyte2derived oxidants in oxidized low density lipoprotein-induced adhesion to endothelial cells[J].Int J Biochem Cell Biol,2004,36(3):460-471.
(本文編輯薛妮)
國家臨床重點(diǎn)專科資助項(xiàng)目,編號(hào):財(cái)社[2012]122號(hào)
首都醫(yī)科大學(xué)宣武醫(yī)院(北京 100053)
高利,E-mail:xuanwugaoli@126.com
信息:徐燕飛,高利.腸道菌群對(duì)動(dòng)脈粥樣硬化作用機(jī)制的研究概述[J].中西醫(yī)結(jié)合心腦血管病雜志,2017,15(17):2126-2128.
R543.5 R255.2
:Adoi:10.3969/j.issn.1672-1349.2017.17.012
:1672-1349(2017)17-2126-03
2016-09-28)