劉紅玉,姚曉斌
(隴南師范高等??茖W(xué)校 數(shù)信學(xué)院,甘肅 成縣 742500)
一類四階兩點(diǎn)邊值問題解的存在性
劉紅玉,姚曉斌
(隴南師范高等專科學(xué)校 數(shù)信學(xué)院,甘肅 成縣 742500)
本文研究了一類四階隱式微分方程兩點(diǎn)邊值問題解的存在性,運(yùn)用上下解方法和迭代技巧得到了存在性結(jié)果。
隱式常微分方程;上下解方法;迭代
隱式微分方程邊值問題不僅在理論研究方面有著重要的作用,而且在突變論和奇異論方面有著深刻的應(yīng)用背景,也是常微分方程研究中的一個(gè)熱門話題[1-4]。對(duì)于帶有各種邊值條件的顯式四階微分方程,已有很多的解的存在唯一性結(jié)果,且在這些問題研究中有著很多的研究方法[5-9]。馬如云等人[7]運(yùn)用上下解方法和迭代技巧研究了四階兩點(diǎn)邊值問題
可解性,并獲得了相應(yīng)的結(jié)果。但是,如考慮如下四階隱式微分方程兩點(diǎn)邊值問題
那么該方程是否仍具有可解性?
(H1)f:[0,1]×R×R→R是連續(xù)的;
(H2)存在M>0,使得對(duì)任意的u1,v1,u2,v2∈R(u1≤u2,v1≤v2),有
定義1如果α,β∈C4[0,1]滿足
則分別稱α,β是(1)的下解和上解。
本文的主要結(jié)果如下:
定理2設(shè)(H1)和(H2)成立,滿足
證明由于
可得
下面分五步來證明:
第一步,將邊值問題(1)轉(zhuǎn)化為積分方程。
問題(1)首先可改寫為
設(shè)v(t)=u(IV)(t)。
注意到u(0)=u(1)=u″(0)=u″(1)=0,因此v是如下積分方程
的解,這表明
是問題(1)的解,其中
第二步,設(shè)x(t)=α(IV)(t),y(t)=β(IV)(t),結(jié)合條件(H2),有
由于x0,y0∈C[0,1],因此,于是存在x?,y?∈C[0,1],使得和分別收斂于x?,y?。
此外,有
第四步,證明x?,y?是(2)的解。
因f連續(xù)且
故
,
設(shè)f(t,u,v)=eu-(2v+e-v-2),容易驗(yàn)證(H1)成立。
進(jìn)一步地,可證明對(duì)對(duì)任意的u1,v1,u2,v2∈R(u1≤u2,v1≤v2),有
因此(H2)成立。
考查如下問題
因此,應(yīng)用定理2可知所考察的問題至少有一個(gè)解。
[1]Marano S A.On a boundary value problem for the differential equation[J].Mathematics Analysis Application,1994,82:309-319.
[2]Kelevedjiev P,Popivanov N.Existence of solutions of boundary value problems for the equation with fully nonlinear boundary conditions[J].Annuaire de l′Universite de sofia,2000,94:65-77.
[3]Grammatikopoulos M K,Kelevedjiev P,Popivanov N. On the solvability of a singular boundary value problem for the equation[C].Proceedings of the Fourth International Conference of Differential and Functional Differential Equations and Workshop,Moscow,Russia, 2005:14-21.
[4]Carl S,Heikkila S.On second order discontinuous implicit boundary value problems with discontinuous implicit boundary conditions[J].Nonlinear Analysis, 1998,33(3):261-279.
[5]Ma R Y.Existence for an equation associated with the static equilibrium of an elastic beam supported by sliding clamps[J].Pure and Applied Mathematics,1995,11:1-4.
[6]Ma R Y.On the solvability of a fourth-order two-point boundary valve problem[J].Mathematical Applicable,1997,10:60-62.
[7]Ma R Y,Zhang J H,Fu S M.The method of lower and upper solutions for fourth-order two-point boundary value problems[J].Mathematical Analysis and Applications,1997,215:415-422.
[8]Maria do R G,Luis S,Stepan A T.On the solvability of a boundary value problem for a fourth-order ordinary differential equation[J].Applied Mathematics Letters,2005,18(4):439-444.
[9]Bai C Z,Yang D D,Zhu H B.Existence of solutions for fourth order differential equation four-point boundary conditions[J].Applied Mathematics Letters,2007,20(11):1131-1136.
Existence and uniqueness of solution to a fourth-order and two-point boundary value problem
LIU Hong-yu,YAO Xiao-bin
(Department of Mathematics and Information Science,Longnan Teachers College,Chengxian Gansu742500,China)
In this paper the author discussed the existence of solutions to two-point boundary value problem of fourth order implicit ordinary dierential equations,employed lower and upper solutions method and iterative technique to obtain existence result.
implicit ordinary differential equations;lower and upper solutions method;iterative
O175.8
:A
:1004-4329(2016)04-006-03
10.14096/j.cnki.cn34-1069/n/1004-4329(2016)04-006-03
2016-07-08
劉紅玉(1980- ),女,碩士,講師,研究方向?yàn)閿?shù)學(xué)分析和常微分方程邊值問題。