,,,*
(1.南華大學(xué)顯微形態(tài)中心,湖南 衡陽 4210012;2.南華大學(xué)組織學(xué)與胚胎學(xué)教研室)
·講座與綜述·
精原細(xì)胞分化及維甲酸在其中的作用與機(jī)制研究進(jìn)展
龍治峰1,歐含笑2,莫中成2,謝遠(yuǎn)杰2*
(1.南華大學(xué)顯微形態(tài)中心,湖南 衡陽 4210012;2.南華大學(xué)組織學(xué)與胚胎學(xué)教研室)
多種microRNAs及RNA結(jié)合蛋白參與調(diào)控精原細(xì)胞分化,維甲酸(retinoic acid,RA)在精原細(xì)胞分化過程發(fā)揮了重要作用,RA可通過調(diào)控microRNA及RNA結(jié)合蛋白影響Stra8、Sohlh1、Sohlh2及Kit等精原細(xì)胞分化決定因子的轉(zhuǎn)錄后加工、修飾,或直接激活mTOR信號通路促進(jìn)精原細(xì)胞分化,但睪丸內(nèi)調(diào)控精原細(xì)胞對RA反應(yīng)的機(jī)制及RA作用于精原細(xì)胞后的下游分子機(jī)制尚未完全明確。
精原細(xì)胞; 分化; 維甲酸; microRNA; RNA結(jié)合蛋白
哺乳動物精子發(fā)生其實(shí)就是干細(xì)胞發(fā)育過程,成年哺乳動物睪丸內(nèi)包含大量精原干細(xì)胞(spermatogonial stem cells,SSCs),它們一方面通過自我更新保持干細(xì)胞的數(shù)目與特性,另一方面通過增殖分化產(chǎn)生注定要進(jìn)入減數(shù)分裂的精原細(xì)胞,從而保證生殖期內(nèi)正常的精子發(fā)生。SSCs分化不足或過度分化均可導(dǎo)致精子數(shù)目減少甚至完全沒有精子,稱非梗阻性少精子癥或無精癥[1]。目前對精原細(xì)胞分化的分子機(jī)制還知之甚少,研究發(fā)現(xiàn)維甲酸(retinoic acid,RA)在精原細(xì)胞分化過程發(fā)揮了必不可少的作用,干擾維甲酸代謝的藥物可能成為有效的男性避孕藥[2],本文就精原細(xì)胞分化及維甲酸在其中的作用與相關(guān)機(jī)制予以綜述。
小鼠胎兒性別決定后,睪丸內(nèi)的原始生殖細(xì)胞(primordial germ cells,PGCs)首先分化形成精原細(xì)胞前體細(xì)胞(prospermatogonia),也稱為生殖母細(xì)胞(gonocytes),該細(xì)胞僅增殖到胚胎14.5天就進(jìn)入靜止?fàn)顟B(tài)直至出生。研究表明,抑制Sertoli細(xì)胞的Notch信號是精原細(xì)胞前體細(xì)胞保持靜止的重要原因[3]。精原細(xì)胞前體細(xì)胞大約在產(chǎn)后1~2天(Postnatal Day 1-2,P1-2)重新進(jìn)入細(xì)胞周期,并從睪丸索的中心遷移至外周,大約在P3-4分化成為精原細(xì)胞。染色質(zhì)修飾蛋白SIN3A(Swi-independent 3a)及激活素(activins)、抑制素(inhibins)、骨形態(tài)蛋白(bone morphogenetic proteins,BMPs)等轉(zhuǎn)化生長因子β(TGF-β)超家族成員也參與了調(diào)控精原細(xì)胞前體細(xì)胞的細(xì)胞周期[4]。精原細(xì)胞隨后繼續(xù)增殖分化,首先由單個型A精原細(xì)胞(A single spermatogonia,As)通過自我更新或增殖形成配對型精原細(xì)胞(A paired spermatogonia,Ap),Ap再增殖生成鏈狀型精原細(xì)胞(A aligned spermatogonia,Aal),Aal不經(jīng)過有絲分裂直接轉(zhuǎn)化形成A1型精原細(xì)胞,該過程稱為精原細(xì)胞分化。As、Ap、Aal統(tǒng)稱為未分化的精原細(xì)胞,其表面標(biāo)志主要包括早幼粒細(xì)胞白血病鋅指蛋白(Promyelocytic leukemia zinc finger protein,Plzf,也稱為Zinc Finger and BTB Domain Containing 16,ZBTB16)、GFRA1(GDNF family receptor alpha 1)、NANOS2/3(Nanos homolog 2/3)等[1,5]。大量體內(nèi)、外研究顯示,精原細(xì)胞未分化狀態(tài)的保持依賴于支持細(xì)胞和/或肌樣細(xì)胞提供配體與精原細(xì)胞的相應(yīng)受體結(jié)合。目前已知膠質(zhì)細(xì)胞衍生神經(jīng)營養(yǎng)因子(glial cell-derived neurotrophic factor,GDNF)與GFRA1[6]、C-X-C基序的趨化因子配體12(C-X-C motif chemokine ligand 12,CXCL12)與趨化因子受體4[7](CXCR4)、成纖維細(xì)胞生長因子2和8(fibroblast growth factors 2 and 8,F(xiàn)GF2和FGF8)與FGFR[8]等結(jié)合參與了精原細(xì)胞未分化狀態(tài)的維持。
A1型精原細(xì)胞經(jīng)過6次有絲分裂逐次形成A2、A3、A4、中間型(In型)、B型精原細(xì)胞直至生成細(xì)線前期(preleptotene)初級精母細(xì)胞,進(jìn)而啟動減數(shù)分裂。A1型以后的精原細(xì)胞均屬于分化型精原細(xì)胞,目前其常用的表面標(biāo)志包括維甲酸誘導(dǎo)的基因8 (stimulated by retinoic acid gene 8,Stra8)、Kit[9]等,但尚未發(fā)現(xiàn)能區(qū)分各種分化型精原細(xì)胞(A1、A2、A3或A4)的蛋白質(zhì)標(biāo)記物。包括人在內(nèi)的靈長類動物精原細(xì)胞分化略有不同,人類睪丸中存在Adark、Apale、B型3種精原細(xì)胞,精原細(xì)胞前體細(xì)胞大約在出生后2~3月轉(zhuǎn)化為Adark和Apale精原細(xì)胞,在4~5歲能見到最早分化的B型精原細(xì)胞,但此時B型精原細(xì)胞的數(shù)量只有青春期時的10%左右。目前認(rèn)為Adark精原細(xì)胞是暫時不進(jìn)入細(xì)胞周期的“儲備”干細(xì)胞群,而Apale精原細(xì)胞類似嚙齒動物中未分化的精原細(xì)胞,可以單個細(xì)胞存在或形成有胞質(zhì)橋相互連接的長鏈細(xì)胞,Apale精原細(xì)胞經(jīng)過1次有絲分裂即可形成B型精原細(xì)胞[10]。對于具有高度分化能力的組織,其穩(wěn)態(tài)的維持必須通過干細(xì)胞不斷增殖實(shí)現(xiàn)自我更新與儲備,同時產(chǎn)生能增殖和分化的細(xì)胞,并在它們之間存在精細(xì)的平衡,睪丸內(nèi)也存在調(diào)節(jié)精原細(xì)胞增殖、分化的信號途徑。
目前關(guān)于精原細(xì)胞分化的分子機(jī)制還知之甚少,大多從與人類基因組具有很大相似性的小鼠獲得。多個基因如Stra8、SYCP3(Synaptonemal complex protein 3)編碼的蛋白質(zhì)在減數(shù)分裂中具有明確作用,在已分化精原細(xì)胞內(nèi)它們的mRNA表達(dá)水平增高,提示它們可能參與了精原細(xì)胞分化[11]。敲除轉(zhuǎn)錄因子Sohlh1(spermatogenesis and oogenesis specific basic helix-loop-helix 1)、Sohlh2或敲除Sox3(Sex Determining Region Y-Box 3)均會損害精原細(xì)胞分化,但Sox3敲除導(dǎo)致的生精缺陷主要體現(xiàn)在第一輪精子發(fā)生過程,且隨著小鼠年齡的增加生精狀況逐漸改善,在出生后10天左右睪丸索結(jié)構(gòu)基本正常,這表明Sox3在精原細(xì)胞分化中并不是絕對必需的[12]。特定基因的mRNA豐度雖然在不同精原細(xì)胞之間存在差異,但在蛋白質(zhì)表達(dá)水平無差異甚至檢測不到相應(yīng)的蛋白質(zhì),表明這些基因存在轉(zhuǎn)錄后的調(diào)控。如Kit受體酪氨酸激酶的mRNA在睪丸的整個發(fā)育過程中能檢測到,但其蛋白質(zhì)只表達(dá)于特定的時期,Kit蛋白質(zhì)在PGCs有表達(dá),由PGCs形成的精原細(xì)胞前體細(xì)胞中不表達(dá)Kit蛋白,但在P3-4又開始在分化的精原細(xì)胞中表達(dá)Kit蛋白[13]。研究發(fā)現(xiàn),miR-146、miR-221/222、miR-17-92、miR-106b-25和miR-let7等microRNA參與了精原細(xì)胞分化相關(guān)基因轉(zhuǎn)錄后的調(diào)控[14],NANOS2/3、DAZL(Deleted In Azoospermia-Like)等RNA結(jié)合蛋白及Eif2s3y(eukaryotic translation initiation factor 2,subunit 3,structural gene Y-linked)都已經(jīng)被證明在哺乳動物胎期和新生期生殖細(xì)胞發(fā)育和分化中發(fā)揮了重要作用。研究認(rèn)為NANOS2是維持胎兒精原細(xì)胞前體細(xì)胞及產(chǎn)后未分化精原細(xì)胞功能和存活所必需的RNA結(jié)合蛋白。在精子發(fā)生過程中NANOS2通過促進(jìn)其靶基因mRNA降解或阻止其與核糖體結(jié)合而抑制其靶基因的翻譯[15]。DAZL基因編碼一段含單個RNA識別基序的結(jié)構(gòu)域和DAZ重復(fù)序列的RNA結(jié)合蛋白,它與多聚腺苷酸結(jié)合蛋白共同調(diào)控配子生成過程有關(guān)mRNAs的翻譯,DAZL-/-小鼠大部分生殖細(xì)胞停留于Aal階段[16]。Eif2s3y是Y染色體上編碼真核啟始因子EIF2復(fù)合物γ亞基的基因,在翻譯起始時它和三磷酸鳥苷(GTP)、Met-tRNA形成三元復(fù)合物。Eif2s3y敲除的小鼠睪丸內(nèi)僅包含GFRA1陽性的未分化精原細(xì)胞,表明EIF2S3Y是精原細(xì)胞增殖和分化所必需的,其機(jī)制也可能是激活被抑制的mRNA重新翻譯[17]。未分化精原細(xì)胞為何依靠翻譯過程而不是通過轉(zhuǎn)錄來調(diào)控多種基因的表達(dá),至今也未得到合理的解釋,可能由于未分化精原細(xì)胞缺乏從轉(zhuǎn)錄水平精確控制某些基因表達(dá)的能力,因此采用轉(zhuǎn)錄后調(diào)控的方式來調(diào)節(jié)基因的表達(dá)[18]。
維甲酸(retinoic acid,RA)是維生素A在體內(nèi)通過兩步氧化反應(yīng)生成的活性代謝產(chǎn)物。維生素A首先被胞漿乙醇脫氫酶系(cytosolic alcohol dehydrogenases,ADHs)和視黃醇脫氫酶系(retinol dehydrogenases,RDHs)氧化生成視黃醛(retinal),視黃醛隨后被視黃醛脫氫酶系(retinaldehyde dehydrogenase1-3,RALDH1-3 or Aldh1a1-3)氧化生成RA,RA由細(xì)胞維甲酸結(jié)合蛋白(cellular RA binding proteins,CRABPs)運(yùn)輸至細(xì)胞內(nèi),RA再通過與其高親和力的維甲酸受體(retinoic acid receptor,RAR)結(jié)合,作用于靶基因啟動子的RA反應(yīng)元件(RA response elements,RAREs),調(diào)控相關(guān)基因的轉(zhuǎn)錄而發(fā)揮生物學(xué)作用。睪丸支持細(xì)胞和生精細(xì)胞能表達(dá)各種與維甲酸合成和代謝相關(guān)的轉(zhuǎn)運(yùn)蛋白和酶,睪丸內(nèi)維甲酸主要來源于其自身特別是支持細(xì)胞的合成。RAR有RARA、RARB和RARG三種同分異構(gòu)體,每種RAR可分別與視黃醇X受體A、B或G(retinoid X receptor A,B or G,RXRA,RXRB or RXRG)形成異二聚體。RAR同分異構(gòu)體在睪丸內(nèi)有不同的表達(dá)模式,在新生期、青春期及成年哺乳動物內(nèi),RARA主要表達(dá)在Sertoli 細(xì)胞,RARG主要表達(dá)在分化的精原細(xì)胞,RARB不表達(dá),由此可推測RA調(diào)控精原細(xì)胞分化主要是通過RARG實(shí)現(xiàn)的[19]。RA可被細(xì)胞色素P450酶系26家族A1,B1,C1(cytochrome P450 family 26 enzyme A1,B1,C1,CYP26A1, CYP26B1, CYP26C1)降解,CYP26A1、CYP26B1和CYP26C1均可表達(dá)在管周肌樣細(xì)胞內(nèi),生精上皮內(nèi)RA水平通過合成和分解代謝得到精準(zhǔn)的控制[20]。
研究表明,由未分化精原細(xì)胞向A1型精原細(xì)胞轉(zhuǎn)化過程需要維甲酸參與[2,21]。長期維生素A缺失(vitamin A deficient,VAD)飼料喂養(yǎng)的小鼠或給予維甲酸合成酶抑制劑如WIN18446后,精原細(xì)胞不能越過Aal階段而停留在未分化階段,導(dǎo)致無精子產(chǎn)生及不育,而補(bǔ)充維生素A或RA能使精原細(xì)胞完成從Aal型至A1型的轉(zhuǎn)化,恢復(fù)其生育能力[22];條件性敲除支持細(xì)胞和生精細(xì)胞內(nèi)視黃醇脫氫酶10(retinol dehydrogenase 10,Rdh10)將導(dǎo)致比單純敲除支持細(xì)胞內(nèi)Rdh10更加嚴(yán)重的A1型精原細(xì)胞缺失,但這種缺失只在小于7周齡的小鼠第一輪精子發(fā)生過程中最明顯,7周以上的小鼠表現(xiàn)為正常的睪丸組織學(xué)結(jié)構(gòu)和生育能力,該結(jié)果提示成年小鼠將視黃醇轉(zhuǎn)化為視黃醛可能是由Rdh10以外的其他視黃醇脫氫酶催化完成的[23]。此外,支持細(xì)胞Aldh1a1-3 條件性敲除鼠均導(dǎo)致精原細(xì)胞分化停止,給予RA或使用RARA的選擇性激活劑能重新活化精子發(fā)生[24]。這些研究結(jié)果表明,RA對精原細(xì)胞分化肯定具有調(diào)控作用,但其調(diào)控的分子機(jī)制是怎樣的呢?
Stra8是最先明確的RA下游靶基因,但RA如何調(diào)控Stra8及Stra8下游的分子機(jī)制不明確。研究報道,RA能通過上調(diào)雞胚PGCs中piwi 樣1(piwi-like 1,Piwil1)及Stra8 mRNA的表達(dá),促進(jìn)其分化并進(jìn)入減數(shù)分裂[25]。RA能引起未分化精原細(xì)胞miR-146及ZBTB16的表達(dá)下調(diào),從而導(dǎo)致Stra8、Kit 表達(dá)上調(diào),促進(jìn)精原細(xì)胞分化。RA也能引起未分化精原細(xì)胞miR-221/222表達(dá)下調(diào),而過表達(dá)miR-221/222能抑制RA導(dǎo)致的精原細(xì)胞分化及Kit的表達(dá)[26]。精原細(xì)胞分化必需因子Sohlh1、Sohlh2及Kit的mRNA在未分化精原細(xì)胞就存在,但未見蛋白質(zhì)表達(dá),在RA刺激下這些mRNA才開始翻譯成蛋白質(zhì),但是mRNA豐度沒有顯著增加,這表明在精原細(xì)胞分化過程中,RA并不只是促進(jìn)單一基因的轉(zhuǎn)錄激活,而是將多個被抑制基因的mRNA翻譯后予以表達(dá)[27]。在NIH3T3、MEF等細(xì)胞系中,RARA還可結(jié)合PI3K的調(diào)節(jié)亞基(p85),并通過募集其催化亞基快速地磷酸化ERK和AKT而活化mTOR通路。研究證實(shí),給出生后第1天(P1)小鼠添加外源RA可導(dǎo)致精原細(xì)胞前體細(xì)胞中mTOR磷酸化而激活,活化的mTOR磷酸化其底物EIF4E結(jié)合蛋白1(EIF4E-binding Protein1,EIF4EBP1)和核糖體蛋白s6激酶(ribosomal protein S6-kinase,S6K),前者可調(diào)節(jié)帽依賴的mRNA的翻譯,后者直接修飾核糖體增強(qiáng)其合成蛋白質(zhì)功能,傳遞生長增殖、分化和存活信號。在未分化精原細(xì)胞內(nèi)缺失Tsc2,將導(dǎo)致mTORC1過早激活從而促進(jìn)精原細(xì)胞分化,而應(yīng)用雷帕霉素、敲除激活A(yù)KT所需的Pdk1(phosphoinositide-dependent kinase 1)基因或降低AKT表達(dá)從而抑制其下游靶基因Foxo1均可導(dǎo)致精原細(xì)胞分化受抑制[28]。這些結(jié)果表明,RA可激活PI3K/AKT/mTORC1信號途徑促進(jìn)精原細(xì)胞分化,抑制mTORC1活化對保持精原細(xì)胞的干細(xì)胞特性非常重要。目前關(guān)于RA與microRNA及NANOS2等結(jié)合蛋白在出生后睪丸中表達(dá)的關(guān)系研究較少,但在缺乏Cyp26b1的胎鼠睪丸中其RA水平更高,而NANOS2 mRNA水平顯著降低,這提示RA可以負(fù)調(diào)控NANOS2的表達(dá),且位于RA信號下游的NANOS2表達(dá)缺失后,可導(dǎo)致精原細(xì)胞內(nèi)被抑制的Sohlh1、Sohlh2及Kit等精原細(xì)胞分化決定因子mRNA的翻譯,促進(jìn)精原細(xì)胞分化[20]。
睪丸內(nèi)包含一小部分?jǐn)?shù)目恒定的SSCs和產(chǎn)生正常配子所必需的數(shù)以百萬計準(zhǔn)備增殖分化的精原細(xì)胞,為何RA只對正準(zhǔn)備分化或已分化的精原細(xì)胞起作用呢?有研究認(rèn)為,RA能對所有精原細(xì)胞起作用,但精原細(xì)胞被暴露于RA是被嚴(yán)格控制的。胎兒時期靜止?fàn)顟B(tài)的精原細(xì)胞前體細(xì)胞通過高表達(dá)CYP26B1并降解RA,防止其被暴露于RA,否則它們將提前開始分化,進(jìn)入減數(shù)分裂并過早凋亡。出生后3~4天,由于精原細(xì)胞內(nèi)CYP26B1活性降低或消失,導(dǎo)致它們被暴露于RA,從而出現(xiàn)Stra8基因陽性表達(dá)、已分化的精原細(xì)胞[29]。另一種觀點(diǎn)認(rèn)為,所有精原細(xì)胞都被暴露于RA,但只有某些精原細(xì)胞能表達(dá)相應(yīng)的RAR而對RA做出回應(yīng)。如正準(zhǔn)備分化的精原細(xì)胞表達(dá)RARG而未分化的精原細(xì)胞不表達(dá),或者通過RA合成及降解酶精細(xì)控制細(xì)胞內(nèi)RA的水平。整體敲除RAR或者條件性敲除生殖細(xì)胞、支持細(xì)胞RAR的研究發(fā)現(xiàn),RARB-/-小鼠能存活并保持正常的生育力,因?yàn)檎I掀?nèi)本來就不表達(dá)RARB。而RXRA-/-、RXRG-/-小鼠精子發(fā)生均出現(xiàn)不同程度的缺陷,但兩者無論是單一敲除還是聯(lián)合敲除都不能表現(xiàn)出VAD小鼠呈現(xiàn)的精原細(xì)胞分化阻滯和不育的表型。RXRA-/-小鼠可表現(xiàn)為不育,而RXRG-/-小鼠在第一輪精子發(fā)生過程無明顯異常,許多生精小管結(jié)構(gòu)是正常的[19];采用轉(zhuǎn)基因方法利用Gfra1啟動子在未分化精原細(xì)胞表達(dá)RARG,可導(dǎo)致這些精原細(xì)胞在VII-VIII期出現(xiàn)分化[30],說明RAR及RXR確實(shí)參與了精原細(xì)胞分化,但沒有哪一種受體是精原細(xì)胞分化過程必不可少的。處于生精周期第VII至VIII期的生精上皮暴露于濃度最高的RA,但第VII至VIII期生精上皮中同時也包含有Stra8及Kit均陰性表達(dá)的未分化精原細(xì)胞[21],表明它們確實(shí)暴露于RA但未接受RA信號或者不能對RA信號做出回應(yīng)。由于細(xì)胞對RA的暴露可以在其合成、接收、存儲/運(yùn)輸及降解多個環(huán)節(jié)進(jìn)行調(diào)控,因此可推測,調(diào)控細(xì)胞對RA做出適當(dāng)反應(yīng)的機(jī)制并不依賴于單個基因的功能,同時也說明調(diào)節(jié)雄性生殖細(xì)胞的RA暴露及其對RA的反應(yīng)與男性生殖健康的關(guān)系很密切。
綜上所述,RA在減數(shù)分裂之前的精原細(xì)胞分化過程發(fā)揮了重要作用,但睪丸內(nèi)調(diào)控精原細(xì)胞對RA反應(yīng)的機(jī)制及RA作用于精原細(xì)胞后的下游分子機(jī)制尚未完全明確。RA可通過調(diào)控microRNA及RNA結(jié)合蛋白影響Stra8、Sohlh1、Sohlh2及Kit等精原細(xì)胞分化決定因子的轉(zhuǎn)錄后加工、修飾,或直接激活mTOR信號通路促進(jìn)精原細(xì)胞分化。未來的研究應(yīng)該著眼于睪丸內(nèi)RA的代謝機(jī)制,關(guān)注精原細(xì)胞分化過程中蛋白質(zhì)組的變化及RA對其表達(dá)的影響,進(jìn)一步鑒定分化過程中特定的信號途徑及其作用,明確RA在雄性生殖細(xì)胞發(fā)育階段SSC自我更新及其精原細(xì)胞分化中的作用機(jī)制,最終為調(diào)控男性生殖健康特別是保證正常精子發(fā)生服務(wù)。
[1] Yang QE,Oatley JM.Spermatogonial stem cell functions in physiological and pathological conditions [J].Curr Top Dev Biol,2014,107:235-267.
[2] Whitmore LS,Ye P.Dissecting germ cell metabolism through network modeling [J].PLoS One,2015,10(9):e0137607.
[3] Garcia TX,DeFalco T,Capel B,et al.Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence [J].Dev Biol,2013,377(1):188-201.
[4] Itman C,Wong C,Whiley PA,et al.TGFbeta superfamily signaling regulators are differentially expressed in the developing and adult mouse testis [J].Spermatogenesis,2011,1(1):63-72.
[5] Zhou Z,Shirakawa T,Ohbo K,et al.RNA binding protein nanos2 organizes post- transcriptional buffering system to retain primitive state of mouse spermatogonial stem cells [J].Dev Cell,2015,34(1):96-107.
[6] Grasso M,Fuso A,Dovere L,et al.Distribution of GFRA1-expressing spermatogonia in adult mouse testis [J].Reproduction,2012,143(3):325-332.
[7] Yang QE,Kim D,Kaucher A,et al.CXCL12-CXCR4 signaling is required for the maintenance of mouse spermatogonial stem cells [J].J Cell Sci,2013,126(Pt 4):1009-1020.
[8] Hasegawa K,Saga Y.FGF8-FGFR1 signaling acts as a niche factor for maintaining undifferentiated spermatogonia in the mouse [J].Biol Reprod,2014,91(6):145.
[9] Shirakawa T,Yaman-Deveci R,Tomizawa S,et al.An epigenetic switch is crucial for spermatogonia to exit the undifferentiated state toward a Kit-positive identity [J].Development,2013,140(17):3565-3576.
[10] Hermann BP,Sukhwani M,Hansel MC,et al.Spermatogonial stem cells in higher primates:are there differences from those in rodents[J].Reproduction,2010,139(3):479-493.
[11] Li M,Feng R,Ma H,et al.Retinoic acid triggers meiosis initiation via stra8-dependent pathway in Southern catfish,Silurus meridionalis [J].Gen Comp Endocrinol,2016,232:191-198.
[12] Raverot G,Weiss J,Park SY,et al.Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis [J].Dev Biol,2005,283(1):215-225.
[13] Mithraprabhu S,Loveland KL.Control of KIT signalling in male germ cells:what can we learn from other systems[J].Reproduction,2009,138(5):743-757.
[14] Yadav RP,Kotaja N.Small RNAs in spermatogenesis [J].Mol Cell Endocrinol,2014,382(1):498-508.
[15] Sada A,Hasegawa K,Pin PH,et al.NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells [J].Stem Cells,2012,30(2):280-291.
[16] Richardson TE,Chapman KM,Tenenhaus Dann C,et al.Sterile testis complementation with spermatogonial lines restores fertility to DAZL-deficient rats and maximizes donor germline transmission [J].PLoS One,2009,4(7):e6308.
[17] atsubara Y,Kato T,Kashimada K,et al.TALEN-mediated gene disruption on Y chromosome reveals critical role of EIF2S3Y in mouse spermatogenesis [J].Stem Cells Dev,2015,24(10):1164-1170.
[18] Schwanhausser B,Busse D,Li N,et al.Global quantification of mammalian gene expression control [J].Nature,2011,473(7347):337-342.
[19] Mark M,Teletin M,Vernet N,et al.Role of retinoic acid receptor (RAR) signaling in post-natal male germ cell differentiation [J].Biochim Biophys Acta,2015,1849(2):84-93.
[20] Hogarth CA,Evans E,Onken J,et al.CYP26 enzymes are necessary within the postnatal seminiferous epithelium for normal murine spermatogenesis [J].Biol Reprod,2015,93(1):19.
[21] Hogarth CA,Arnold S,Kent T,et al.Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production [J].Biol Reprod,2015,92(2):37.
[22] Paik J,Haenisch M,Muller CH,et al.Inhibition of retinoic acid biosynthesis by the bisdichloroacetyldiamine WIN 18,446 markedly suppresses spermatogenesis and alters retinoid metabolism in mice [J].J Biol Chem,2014,289(21):15104-15117.
[23] Tong MH,Yang QE,Davis JC,et al.Retinol dehydrogenase 10 is indispensible for spermatogenesis in juvenile males [J].Proc Natl Acad Sci USA,2013,110(2):543-548.
[24] Arnold SL,Kent T,Hogarth CA,et al.Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations [J].J Lipid Res,2015,56(2):342-357.
[25] Xu L,Chang G,Ma T,et al.Piwil1 mediates meiosis during spermatogenesis in chicken [J].Anim Reprod Sci,2016,166:99-108.
[26] Yang QE,Racicot KE,Kaucher AV,et al.MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells [J].Development,2013,140(2):280-290.
[27] Busada JT,Geyer CB.The role of retinoic acid (RA) in spermatogonial differentiation [J].Biol Reprod,2016,94(1):10.
[28] Busada JT,Chappell VA,Niedenberger BA,et al.Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse [J].Dev Biol,2015,397(1):140-149.
[29] Evans E,Hogarth C,Mitchell D,et al.Riding the spermatogenic wave:profiling gene expression within neonatal germ and sertoli cells during a synchronized initial wave of spermatogenesis in mice [J].Biol Reprod,2014,90(5):108.
[30] Ikami K,Tokue M,Sugimoto R,et al.Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis [J].Development,2015,142(9):1582-1592.
Advancesinmechanismsofspermatogonialdifferentiationandfunctionofretinoicacidinthisprocess
LONG Zhifeng, OU Hanxiao,MO Zhongcheng,et al
(MicromorphologyLaboratoryCenter,UniversityofSouthChina,Hengyang421001,Hunan,China)
Several microRNAs and RNA binding protein are involved in the differentiation of spermatogonia and retinoic acid (RA) has an important role in the process of spermatogonial differentiation.RA can affect the post-transcriptional modification and expression of its determinative factor such as Stra8,Sohlh1,Sohlh2 and Kit by regulating microRNAs and RNA binding protein,or directly activate mTOR signaling pathway and promote the differentiation of spermatogonia.However,mechanism of how to regulate spermatogonia response to RA and its downstream molecular pathway of RA acting on spermatogonia is not completely clear.
spermatogonia; differentiation; retinoic acid; microRNA; RNA binding protein
10.15972/j.cnki.43-1509/r.2017.01.002
2016-03-28;
2016-10-26
湖南省科技廳項(xiàng)目(2014SK3085)、湖南省衛(wèi)生廳項(xiàng)目(B2013-037)及南華大學(xué)“蒸湘學(xué)者”唐向陽教授研究計劃資助.
*通訊作者,E-mail:charlesking8888@163.com.
R339.2
A
秦旭平)