祝靈平, 陳秀, 何蘊藉, 周思穎, 鐘山亮, 趙建華, 唐金海
環(huán)狀 RNA (circular RNA, circRNA) 在哺乳動物中廣泛表達(dá)。許多研究表明,環(huán)狀RNA與胃癌、結(jié)直腸癌、乳腺癌、食管癌、肝癌和卵巢癌等多種腫瘤的發(fā)生發(fā)展有直接或間接的關(guān)系。不少文獻也證實環(huán)狀RNA可調(diào)節(jié)轉(zhuǎn)錄和轉(zhuǎn)錄后基因的表達(dá),可與蛋白質(zhì)相互作用進而影響細(xì)胞周期進程、細(xì)胞衰老和凋亡等生命活動。隨著RNA 測序技術(shù)和生物學(xué)分析的發(fā)展,不僅越來越多的環(huán)狀RNA被發(fā)現(xiàn),而且其具體的作用機制也逐漸被人們所熟知,環(huán)狀RNA有望成為一種新穎的疾病診斷標(biāo)志物。本文通過綜合國內(nèi)外有關(guān)環(huán)狀RNA的研究進展,對環(huán)狀RNA發(fā)展歷史、起源、主要特征、功能及其參與腫瘤發(fā)展進行概述。
1976年,Sanger等[1]發(fā)現(xiàn),類病毒基因組由單鏈、閉合RNA分子構(gòu)成,類病毒能侵染植株并導(dǎo)致其死亡,而死亡植株體內(nèi)發(fā)現(xiàn)了類病毒的基因組RNA。1979年,洛克菲勒大學(xué)Hsu 和 Coca-Prados 在電子顯微鏡下觀察到真核細(xì)胞的胞質(zhì)中有環(huán)狀RNA的存在[2]。1993年,Capel等[3]在小鼠精子決定基因Sry中發(fā)現(xiàn)環(huán)狀RNA轉(zhuǎn)錄過程。2006年,Houseley等[4]在果蠅中發(fā)現(xiàn)來自Muscleblind的未知環(huán)狀轉(zhuǎn)錄本。2012年,Salzman等[5]通過RNA-Seq方法首次報道80個環(huán)狀RNA。隨著高通量測序技術(shù)的發(fā)展,大量環(huán)狀RNA分子被相繼發(fā)現(xiàn)。Jeck等[6]在人類成纖維細(xì)胞中檢測出 25 000多種環(huán)狀RNA;而Memczak等[7]通過結(jié)合RNA-seq數(shù)據(jù)和人白細(xì)胞數(shù)據(jù)庫鑒定出1 950種人類環(huán)狀RNA、1 903種小鼠環(huán)狀RNA (其中81種與人類環(huán)狀RNA相同) 和724種線蟲環(huán)狀RNA。
環(huán)狀RNA的種類和形式多種多樣,可以起源于基因組序列中任何區(qū)域,且同一基因位置產(chǎn)生的環(huán)狀RNA也可以是不同類型[7-11]。不同于線性RNA,環(huán)狀RNA是一組3’和5’ 端反向剪接形成共價閉合的環(huán)狀結(jié)構(gòu),稱為“backsplicing”[9, 12-15]。根據(jù)來源主要分為3類:內(nèi)含子序列形成的環(huán)狀RNA (circular intronicRNA, ciRNA),外顯子序列形成的環(huán)狀RNA(exonic circular RNA, ecircRNA) 以及內(nèi)含子和外顯子序列共同形成的環(huán)狀RNA (exon-intron circular RNA, EIciRNA)[8,10, 16-17]。外顯子環(huán)狀RNA可以由一個或者多個外顯子序列組成,主要存在于細(xì)胞質(zhì)內(nèi),而內(nèi)含子環(huán)狀RNA主要分布在細(xì)胞核內(nèi)[18-19]。由于環(huán)狀RNA呈封閉環(huán)狀結(jié)構(gòu),沒有5’—3’的極性和多聚腺苷酸尾巴,故不易被核酸外切酶RNaseR降解,比線性RNA更穩(wěn)定,進化也是保守的[20-21]。環(huán)狀RNA廣泛存在于人體細(xì)胞中,其數(shù)量甚至超過線性RNA的10倍。環(huán)狀RNA具有組織和疾病特異性,在腦組織的含量高,尤其是神經(jīng)突觸中[5-6,22-23]。也有研究發(fā)現(xiàn),環(huán)狀RNA在細(xì)胞外泌體中富集,其可能機制是環(huán)狀RNA不易被降解,可通過細(xì)胞分泌細(xì)胞外囊泡途徑釋放到胞外[24-25]。
一直認(rèn)為,環(huán)狀RNA是一種mRNA錯誤剪接體,是一類沒有功能的結(jié)構(gòu),長期被忽視[3, 10, 26]。隨著轉(zhuǎn)錄本研究的深入和RNA測序技術(shù)發(fā)展,環(huán)狀RNA功能慢慢被了解。它們主要參與 miRNA 海綿吸附、轉(zhuǎn)錄調(diào)控、結(jié)合蛋白質(zhì)、翻譯和剪接等 5個方面的調(diào)節(jié)[27-33]。據(jù)報道,環(huán)狀RNA在多種疾病(如心血管疾病[34]、阿爾茨海默病[35-36]、帕金森[37]等)和肝癌[38]、胃癌[39]、食管癌[40]、結(jié)腸癌[41]等腫瘤中發(fā)揮重要作用,參與這些疾病生理病理調(diào)節(jié)過程[42]。
3.1 環(huán)狀RNA在腫瘤組織中異常表達(dá) 環(huán)狀RNA在腫瘤組織中異常表達(dá),與癌旁組織相比,環(huán)狀RNA hsa_circ_002059[43]、hsa_circ_0000096[39]、has_circ_0001649[44]表達(dá)水平在胃癌組織中下調(diào),而circPVT1[45]在胃癌組織中高表達(dá)。Hsa_circ_0000069[46]、hsa_circ_001569[47]、circ-BANP[41]表達(dá)水平在結(jié)腸癌組織中明顯上調(diào),而hsa_circ_001988[48]在結(jié)腸癌中低表達(dá)。Zhong等[49]在膀胱癌組織芯片中發(fā)現(xiàn)circTCF25高表達(dá)。Hsa_circ_0067934[40]在食管癌組織中上調(diào),而cir-ITCH[50]在食管鱗癌組織中明顯下調(diào)。 Xuan等[51]發(fā)現(xiàn),hsa_circRNA_100855在喉癌組織中上調(diào),而hsa_circRNA_104912在喉癌組織中下調(diào)。同樣有研究發(fā)現(xiàn)hsa_circ_0005075[52]、circZKSCAN1[53]在肝癌組織中上調(diào)。
3.2 環(huán)狀RNA參與腫瘤的增殖、轉(zhuǎn)移、凋亡 環(huán)狀RNA在癌癥研究領(lǐng)域備受關(guān)注,多項研究表明,他們可以通過相關(guān)信號通路來影響細(xì)胞增殖、分化、轉(zhuǎn)移和凋亡等發(fā)展過程。例如,叉形頭盒 O3 環(huán)狀 RNA(circRNA-forkhead box O3, circ-Foxo3) 能與缺氧誘導(dǎo)因子 (hypoxia inducible factor 1α, HIF1α) 和局部粘著斑激酶 (focal adhesion kinase, FAK) 相結(jié)合,這些蛋白質(zhì)被捕獲,它們的功能無法發(fā)揮,從而促進細(xì)胞衰老。circ-Foxo3能 與 細(xì) 胞 周 期 蛋 白 依 賴 性 激 酶 2 (cyclindependent kinase 2, CDK2) 和細(xì)胞周期蛋白依賴性激酶抑制劑 p21 形成三元復(fù)合物抑制 CDK2 的活性,將細(xì)胞阻滯在 G1/S 期,影響細(xì)胞周期進展,抑制細(xì)胞增殖[54-55]。circHIPK3可以海綿吸附miR-124調(diào)節(jié)基因如蛋白磷酸酶調(diào)節(jié)分子(protein phosphatase 1 regulatory subunit 13 like,iASPP)影響腫瘤細(xì)胞增殖[56-57]。此外,長非編碼RNA和環(huán)狀RNA可以在mRNA和蛋白水平上調(diào)節(jié)mir-671誘導(dǎo)上調(diào)凋亡相關(guān)因子caspase8和p38表達(dá),促進神經(jīng)元細(xì)胞凋亡[58]。早幼粒細(xì)胞白血病/視黃酸受體α(promyelocytic leukemia/retinoic acid receptorα,PML/RARA)和酸甲基轉(zhuǎn)移酶2A(lysine methyltransferase 2A,MLL)基因融合、生產(chǎn)環(huán)狀RNA(f-circm9和f-circpr)被敲除后會導(dǎo)致大量腫瘤細(xì)胞凋亡[59]。cir-ITCH可結(jié)合miR-7和miR-214增強E3泛素蛋白連接酶(itchy E3 ubiquitin protein ligase ,ITCH)表達(dá),從而抑制Wnt/β-catenin信號通路[50]。同時,cZNF292下調(diào)被證實有助于降低核因子κb(nuclear factorκB,NF-κB)、轉(zhuǎn)錄因子E2F transcription factor 1(E2F1)、Sp1 transcription factor(SP1)、hypoxia inducible factor 1(HIF-1)、AP-1transcription factor subunit(AP-1)、信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活子3(signal transducer and activator of transcription 3,STAT3)、信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活子5(signal transducer and activator of transcription 5,STAT5),從而抑制腫瘤細(xì)胞生長[60-61]。環(huán)狀RNA表達(dá)受到許多癌癥相關(guān)通路和信號轉(zhuǎn)導(dǎo)通路的影響,包括磷脂酰肌醇3激酶/Akt(Phosphoinositide 3-Kinase/Akt ,PI3K/Akt)和NFκB,轉(zhuǎn)化生長因子β(transforming growth factorβ,TGF-β)等[62]。環(huán)狀RNA可能在腫瘤發(fā)生、發(fā)展以及侵襲轉(zhuǎn)移中發(fā)揮重要作用[46, 53, 63]。
隨著RNA測序和其他檢測技術(shù)的應(yīng)用,我們注意到,環(huán)狀RNA在許多腫瘤中差異表達(dá)現(xiàn)象很普遍,包括食管癌、胃癌、膀胱癌、結(jié)腸癌、肝細(xì)胞癌等腫瘤中環(huán)狀RNA的表達(dá)。Li等[24]發(fā)現(xiàn),外泌體中環(huán)狀RNA(exosome circRNA, exo-circRNA)含量比細(xì)胞豐富,且性質(zhì)穩(wěn)定,而血清中多種 exo-circRNA 在癌癥患者和健康人中具有明顯差異表達(dá),環(huán)狀RNA可通過外泌體傳遞某種信號到遠(yuǎn)處靶細(xì)胞,從而可以初步實現(xiàn)腫瘤患者的早期診斷和鑒別診斷。由于環(huán)狀RNA比線性RNA更穩(wěn)定,起源于易種植腫瘤,環(huán)狀RNA可以貯存在細(xì)胞囊泡中通過胞吐方式釋放進入血液循環(huán),使得環(huán)狀RNA在臨床創(chuàng)傷小、易于獲得的采集體液 (如唾液、 血液等)中更容易被檢測和被提取[64-65]。這些特點為環(huán)狀RNA成為腫瘤診斷和靶向治療標(biāo)志物提供了臨床優(yōu)勢。環(huán)狀RNA有可能成為人類腫瘤中理想分子標(biāo)志物,用于某些腫瘤的靶向治療。
環(huán)狀RNA可通過調(diào)控miRNA間接實現(xiàn)其功能,環(huán)狀RNA 與miRNA 之間既存在競爭關(guān)系又存在協(xié)同關(guān)系,可以把環(huán)狀RNA作為靶標(biāo)來調(diào)控miRNA,進而調(diào)控一系列生命活動,他們之間的平衡對生物體至關(guān)重要。目前,雖然已有大量證據(jù)證明環(huán)狀RNA參與基因的表達(dá)調(diào)控、腫瘤的發(fā)生和發(fā)展過程,但環(huán)狀RNA大部分功能還是未知的,且探索環(huán)狀RNA的工具也是有限的,因此更深入研究將面臨著挑戰(zhàn)。
[1] Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976,73(11):3852-3856.
[2] Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979,280(5720):339-340.
[3] Capel B, Swain A, Nicolis S, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis[J]. Cell, 1993,73(5):1019-1030.
[4] Houseley JM, Garcia-Casado Z, Pascual M, et al. Noncanonical RNAs from transcripts of the Drosophila muscleblind gene[J]. J Hered, 2006,97(3):253-260.
[5] Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012,7(2):e30733.
[6] Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013,19(2):141-157.
[7] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013,495(7441):333-338.
[8] Chen I, Chen CY, Chuang TJ. Biogenesis, identification, and function of exonic circular RNAs[J]. Wiley Interdiscip Rev RNA, 2015,6(5):563-579.
[9] Chen LL, Yang L. Regulation of circRNA biogenesis[J]. RNA Biol, 2015,12(4):381-388.
[10] Shen T, Han M, Wei G, et al.An intriguing RNA species-perspectives of circularized RNA[J].Protein Cell,2015,6(12):871-880.
[11] Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013,51(6):792-806.
[12] Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993,7(1):155-160.
[13] Sun X, Wang L, Ding J, et al. Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA[J]. FEBS Lett, 2016,590(20):3510-3516.
[14] Suzuki H, Aoki Y, Kameyama T, et al. Endogenous Multiple Exon Skipping and Back-Splicing at the DMD Mutation Hotspot[J]. Int J Mol Sci, 2016,17(10). pii: E1722.
[15] Zhang XO, Dong R, Zhang Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs[J]. Genome Res, 2016,26(9):1277-1287.
[16] Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals[J]. Cell Rep, 2015,10(1):103-111.
[17] Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014,159(1):134-147.
[18] Westholm JO, Miura P, Olson S, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation[J]. Cell Rep, 2014,9(5):1966-1980.
[19] Talhouarne GJ, Gall JG. Lariat intronic RNAs in the cytoplasm of Xenopus tropicalis oocytes[J]. RNA, 2014,20(9):1476-1487.
[20] Suzuki H, Zuo Y, Wang J, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing[J]. Nucleic Acids Res, 2006,34(8):e63.
[21] Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs[J]. Int J Mol Sci, 2014,15(6):9331-9342.
[22] Rybak-Wolf A, Stottmeister C, Gla?ar P, et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed[J]. Mol Cell, 2015,58(5):870-885.
[23] Xia S, Feng J, Lei L, et al. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes[J]. Brief Bioinform, 2016,pii: bbw081. [Epub ahead of print] .
[24] Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015,25(8):981-984.
[25] Lasda E, Parker R. Circular RNAs Co-Precipitate with Extracellular Vesicles: A Possible Mechanism for circRNA Clearance[J].PLoS One, 2016,11(2):e0148407.
[26] Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons[J]. Cell, 1991,64(3):607-613.
[27] Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities[J]. RNA, 2010,16(11):2043-2050.
[28] Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges[J]. Curr Biol, 2010,20(19):R858-861.
[29] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013,495(7441):384-388.
[30] Chen LL. The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol Cell Biol, 2016,17(4):205-211.
[31] Dudekula DB, Panda AC, Grammatikakis I, et al. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs[J]. RNA Biol, 2016,13(1):34-42.
[32] Schneider T, Hung LH, Schreiner S, et al. CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs[J]. Sci Rep, 2016,6:31313.
[33] Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine[J]. Cell Res, 2017,27(5):626-641.
[34] Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223[J]. Eur Heart J, 2016,37(33):2602-2611.
[35] Zhao Y, Alexandrov PN, Jaber V, et al. Deficiency in the Ubiquitin Conjugating Enzyme UBE2A in Alzheimer’s Disease (AD) is Linked to Deficits in a Natural Circular miRNA-7 Sponge (circRNA; ciRS-7)[J]. Genes (Basel), 2016,7(12). pii: E116.
[36] Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD)[J]. Front Genet, 2013,4:307.
[37] Junn E, Lee KW, Jeong BS, et al. Repression of alpha-synuclein expression and toxicity by microRNA-7[J]. Proc Natl Acad Sci U S A, 2009,106(31):13052-13057.
[38] Xu L, Zhang M, Zheng X, et al. The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2017,143(1):17-27.
[39] Li P, Chen H, Chen S, et al. Circular RNA 0000096 affects cell growth and migration in gastric cancer[J]. Br J Cancer, 2017,116(5):626-633.
[40] Xia W, Qiu M, Chen R, et al. Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation[J]. Sci Rep, 2016,6:35576.
[41] Zhu M, Xu Y, Chen Y, et al. Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer[J]. Biomed Pharmacother, 2017,88:138-144.
[42] Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer[J]. Cancer Res, 2013,73(18):5609-5612.
[43] Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 2015,444:132-136.
[44] Li WH, Song YC, Zhang H, et al. Decreased Expression of Hsa_circ_00001649 in Gastric Cancer and Its Clinical Significance[J]. Dis Markers, 2017,2017:4587698.
[45] Chen J, Li Y, Zheng Q, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer[J]. Cancer Lett, 2017,388:208-219.
[46] Guo JN, Li J, Zhu CL, et al. Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation, migration, and invasion in colorectal cancer[J]. Onco Targets Ther, 2016,9:7451-7458.
[47] Xie H, Ren X, Xin S, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer[J]. Oncotarget, 2016,7(18):26680-26691.
[48] Wang X, Zhang Y, Huang L, et al. Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances[J]. Int J Clin Exp Pathol, 2015,8(12):16020-16025.
[49] Zhong Z, Lv M, Chen J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma[J]. Sci Rep, 2016,6:30919.
[50] Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway[J].Oncotarget,2015,6(8):6001-6013.
[51] Xuan L, Qu L, Zhou H, et al. Circular RNA: a novel biomarker for progressive laryngeal cancer[J]. Am J Transl Res, 2016,8(2):932-939.
[52] Shang X, Li G, Liu H, et al. Comprehensive Circular RNA Profiling Reveals That hsa_circ_0005075, a New Circular RNA Biomarker, Is Involved in Hepatocellular Crcinoma Development[J]. Medicine (Baltimore), 2016,95(22):e3811.
[53] Yao Z, Luo J, Hu K, et al. ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways[J]. Mol Oncol, 2017,11(4):422-437.
[54] Du WW, Yang W, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016,44(6):2846-2858.
[55] Yang W, Du WW, Li X, et al. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis[J]. Oncogene, 2016,35(30):3919-3931.
[56] Chen J, Xiao H, Huang Z, et al. MicroRNA124 regulate cell growth of prostate cancer cells by targeting iASPP[J]. Int J Clin Exp Pathol, 2014,7(5):2283-2290.
[57] Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016,7:11215.
[58] Nan A, Chen L, Zhang N, et al. A novel regulatory network among LncRpa, CircRar1, MiR-671 and apoptotic genes promotes lead-induced neuronal cell apoptosis[J]. Arch Toxicol, 2017,91(4):1671-1684.
[59] Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations[J]. Cell, 2016,165(2):289-302.
[60] Boeckel JN, Jaé N, Heumüller AW, et al. Identification and Characterization of Hypoxia-Regulated Endothelial Circular RNA[J]. Circ Res, 2015,117(10):884-890.
[61] Yang P, Qiu Z, Jiang Y, et al. Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/β-catenin signaling pathway[J].Oncotarget,2016,7(39):63449-63455.
[62] Ahmed I, Karedath T, Andrews SS, et al. Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma[J]. Oncotarget, 2016,7(24):36366-36381.
[63] Xin Z, Ma Q, Ren S, et al. The understanding of circular RNAs as special triggers in carcinogenesis[J]. Brief Funct Genomics, 2017,16(2):80-86.
[64] Memczak S, Papavasileiou P, Peters O, et al. Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood[J]. PLoS One, 2015,10(10):e0141214.
[65] Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J]. Clin Chem, 2015,61(1):221-230.