張傳昕 李梁 吳海山
甲基丙烯酰胺基明膠水凝膠在關(guān)節(jié)軟骨損傷修復(fù)領(lǐng)域中的研究進(jìn)展
張傳昕 李梁 吳海山
組織工程;軟骨,關(guān)節(jié);細(xì)胞培養(yǎng)技術(shù);水凝膠類;損傷,軟骨;甲基丙烯酰胺基明膠水凝膠
關(guān)節(jié)軟骨是一種無血管、神經(jīng)和淋巴腺的組織,其含有的軟骨細(xì)胞數(shù)量少且缺乏干細(xì)胞[1-2],因此關(guān)節(jié)軟骨損傷后的自我修復(fù)能力有限。在接受關(guān)節(jié)鏡術(shù)的患者中,60% 存在軟骨損傷[3-4]。而軟骨損傷后,大多數(shù)都會進(jìn)展為骨關(guān)節(jié)炎[2]。目前臨床上針對軟骨損傷的處理方案有以微骨折法為代表的促進(jìn)修復(fù)手術(shù)和以自體軟骨移植或同種異體軟骨移植為代表的軟骨修復(fù)手術(shù),但存在纖維軟骨修復(fù)、供體不足、手術(shù)過程復(fù)雜、免疫排異等問題,且其遠(yuǎn)期療效欠佳[5-8]。
現(xiàn)有技術(shù)的缺陷使研究者轉(zhuǎn)向近年來飛速發(fā)展的組織工程和再生醫(yī)學(xué)領(lǐng)域。20年前,Langer 和 Vacanti[9]制訂了組織工程三個基本原則,即分離的細(xì)胞或細(xì)胞替代物,誘導(dǎo)組織生發(fā)的物質(zhì)以及容納細(xì)胞的基質(zhì)。除種子細(xì)胞和細(xì)胞因子外,支架的性能對軟骨修復(fù)有至關(guān)重要的影響?,F(xiàn)有多種結(jié)構(gòu)的支架用于軟骨修復(fù)的研究和應(yīng)用,如纖維支架、水凝膠和微載體納米支架。其中,水凝膠因其具有良好的生物組織相容性、生物降解性和細(xì)胞黏附性而受到關(guān)注[10-12]。此外,水凝膠還具有下述特點(diǎn)[11-14]:( 1) 含水量高,與軟骨細(xì)胞外基質(zhì)高度相似,有利于營養(yǎng)運(yùn)輸和細(xì)胞代謝;( 2) 可調(diào)控的機(jī)械強(qiáng)度,通過對水凝膠的修飾控制其壓縮模量和彈性模量;( 3) 構(gòu)建細(xì)胞 3D 培養(yǎng)體系,3D 環(huán)境可使細(xì)胞呈圓形或卵圓形,維持軟骨細(xì)胞正常表型[15-17];( 4) 可實(shí)現(xiàn)液-固相轉(zhuǎn)換,通過物理或化學(xué)方式的催化誘導(dǎo)而改變狀態(tài)。在眾多結(jié)構(gòu)的水凝膠中,甲基丙烯酰胺基明膠水凝膠 ( gelatin methacryloyl hydrogels,GelMA ) 除了具有上述特點(diǎn)外,其易操作、低成本、安全無毒以及廣泛的臨床應(yīng)用[18]而受到關(guān)注。通過化學(xué)或物理交聯(lián)、光聚合或者精細(xì)制造技術(shù)[14,19-20],可以改善水凝膠的物化特性和生物行為?,F(xiàn)將 GelMA 的特性及其在軟骨修復(fù)領(lǐng)域的研究進(jìn)展概述如下。
明膠是一種主要由 I 型膠原變性水解而來的蛋白質(zhì)產(chǎn)物[21],故具有良好的生物降解性和組織相容性,且因成本低廉、易獲得、降解后無毒性[10]被廣泛應(yīng)用于醫(yī)藥、食品領(lǐng)域,如臨床中的血漿代用品以及疫苗等蛋白制劑的穩(wěn)定劑[22]。與膠原蛋白不同的是,明膠的抗原性由于加熱變性而顯著降低,所以不易引起機(jī)體的免疫應(yīng)答。但其保留了膠原蛋白的細(xì)胞黏附特性和基質(zhì)金屬蛋白酶附著位點(diǎn)[23]。因此,明膠基質(zhì)可以促進(jìn)細(xì)胞的遷移、增殖和分化以及引發(fā)細(xì)胞介導(dǎo)的酶促降解作用[24]。
為使明膠基水凝膠在體內(nèi)保持穩(wěn)定,預(yù)先在其側(cè)基修飾官能團(tuán),隨后可利用多種方式將明膠共價交聯(lián)成網(wǎng)狀結(jié)構(gòu),但只有少數(shù)幾種適合同步交聯(lián)和細(xì)胞封裝[25],如光交聯(lián)和酶促交聯(lián)。與酶促反應(yīng)相反,光引發(fā)能在時間和空間上控制交聯(lián)過程,這對制備結(jié)構(gòu)復(fù)雜的水凝膠至關(guān)重要[26]。紫外線和可見光都可以引發(fā)光交聯(lián),目前使用最多的為紫外線光敏型明膠。
有多種光引發(fā)劑能夠引發(fā)光交聯(lián),多數(shù)文獻(xiàn)報道應(yīng)用光引發(fā)劑 Irgacure 2959配合 GelMA 來啟動交聯(lián)反應(yīng)。Irgacure 2959屬于裂解型光引發(fā)劑,細(xì)胞毒性比其它光引發(fā)劑低,可在紫外光照條件下可以裂解出能夠打開烯類 π鍵的自由基[27]。紫外光波長的大小對于光照交聯(lián)反應(yīng)的進(jìn)行十分關(guān)鍵,波長 300nm 的紫外光能量約為 400kJ / mol,與鍵能 120~840kJ / mol 相當(dāng),大于一般化學(xué)反應(yīng)的活化能,這是光能引發(fā)聚合的依據(jù)。各類烯類單體都有各自特殊的吸收光區(qū)域,一般為波長 200~300nm 的紫外光區(qū)。但對于光交聯(lián)水凝膠反應(yīng)中紫外線波長的確定,各文獻(xiàn)的結(jié)果并不一致[28-29],還需進(jìn)一步實(shí)驗(yàn)加以論證。
Bartnikowski 等[30]研究光引發(fā)劑濃度和紫外線劑量是否對軟骨細(xì)胞有毒性作用,其認(rèn)為引發(fā)劑的濃度需要根據(jù)活性基團(tuán)的數(shù)量而定,且不同紫外線劑量對細(xì)胞無顯著毒性作用。然而,紫外線對生物體的損傷作用是眾所周知的,盡管細(xì)胞活性在短期內(nèi)未受影響,但紫外線損傷依然可能對細(xì)胞功能和組織形成存在潛在的長期副作用[31]。其次,光引發(fā)劑 Irgacure 2959對細(xì)胞的長期作用也未研究透徹。所以,對可見光交聯(lián)及相應(yīng)引發(fā)劑的研究是有價值且必要的。
為使明膠基水凝膠性質(zhì)進(jìn)一步優(yōu)化,可修飾不同類型的官能團(tuán),如甲基丙烯酸酐等。Van den Bulcke 等[32]在2000年首論述了 GelMA,因其固有的生物活性和可調(diào)控的生化性質(zhì)而受到組織工程領(lǐng)域的青睞[33]。GelMA 由甲基丙烯酸酐在弱堿性環(huán)境 ( pH=7.5) 中修飾明膠分子鏈上的氨基得到,在 50℃ 的反應(yīng)溫度下,氨基酸的氨基與酰氯或酸酐在弱堿溶液中發(fā)生作用時,氨基即被酰基化,以此交聯(lián)到明膠分子鏈上。
在設(shè)計 GelMA 時,充分考慮其理化特性 ( 如硬度、降解曲線、孔徑大小 ) 和細(xì)胞行為 ( 如細(xì)胞活性、增殖、分化和遷移 ) 是決定其應(yīng)用于不同組織工程領(lǐng)域的關(guān)鍵,如改變 GelMA 的修飾度或光交聯(lián)的條件。調(diào)節(jié)甲基丙烯酸酐修飾明膠的濃度,可改變其生化特性,稱為 GelMA 的修飾度[32]。如骨髓間充質(zhì)干細(xì)胞的高密度培養(yǎng)有利于細(xì)胞向軟骨細(xì)胞分化[34],當(dāng) GelMA 的修飾度接近 80% 時,凝膠內(nèi)大分子廣泛的交聯(lián)可以阻礙細(xì)胞的擴(kuò)散,以此促進(jìn)間充質(zhì)干細(xì)胞向軟骨細(xì)胞的分化。修飾度在 20%~80% 的GelMA 可以保持穩(wěn)定的理化性質(zhì),且隨著修飾度的增高,凝膠硬度和耐久度隨之增高而孔徑則減小[35]。調(diào)整光交聯(lián)的條件對 GelMA 的特性也有顯著影響。這些條件參數(shù)包括曝光時間,光照強(qiáng)度和引發(fā)劑濃度。GelMA 的降解主要由酶促反應(yīng)引起,尤其是基質(zhì)金屬蛋白酶,通常由封裝在水凝膠中的軟骨細(xì)胞分泌,故平衡水凝膠降解速率與基質(zhì)金屬蛋白酶的分泌量也是需要被深入研究的課題。
GelMA 具有良好的促細(xì)胞黏附和增殖特性。先前的研究顯示,由于 GelMA 的生物組織相容性、力學(xué)特性及含有多肽序列,在 2D 和 3D 的細(xì)胞培養(yǎng)實(shí)驗(yàn)中都能充當(dāng)培養(yǎng)基使用[36]。如細(xì)胞可以在 GelMA 溶液中單層培養(yǎng),也可以在 GelMA 經(jīng)紫外線光交聯(lián)后構(gòu)建負(fù)載細(xì)胞的 3D 培養(yǎng)體系,且細(xì)胞存活率基本>80%。而與 2D 單層培養(yǎng)不同的是,3D 水凝膠中的細(xì)胞能改變其周圍環(huán)境并使之適于遷移[37]。此外,3D 壞境中細(xì)胞行為更接近其在天然組織中的表現(xiàn),由于 GelMA 與細(xì)胞外基質(zhì)高度的相似性,而使之成為細(xì)胞 3D 培養(yǎng)體系的研究熱點(diǎn)[38-40]。
雖然軟骨細(xì)胞常用于修復(fù)軟骨損傷,但其在單層培養(yǎng)中會發(fā)生去分化現(xiàn)象而限制了其產(chǎn)生透明軟骨的能力?,F(xiàn)在有越來越多的證據(jù)表明,與傳統(tǒng)的細(xì)胞單層培養(yǎng)相比,在 3D 環(huán)境中生長的軟骨細(xì)胞更能維持自身形態(tài)和表型,3D 體系所模擬的生理環(huán)境使得軟骨細(xì)胞能夠產(chǎn)生正常軟骨組織[41-42]。軟骨細(xì)胞是錨定依賴性細(xì)胞,在培養(yǎng)板上生長需要黏附于材料表面,通常呈扁平狀鋪展。而在水凝膠支架中,軟骨細(xì)胞形態(tài)為圓形或卵圓形,與其在天然軟骨基質(zhì)中相近,因而有利于維持正常表型。有研究表明,生長狀態(tài)成圓形或卵圓形的間充質(zhì)干細(xì)胞也更傾向于向軟骨細(xì)胞分化。
標(biāo)準(zhǔn)的軟骨細(xì)胞培養(yǎng)方式為細(xì)胞團(tuán)塊培養(yǎng),在 3D 環(huán)境中團(tuán)塊內(nèi)細(xì)胞間的直接接觸會促進(jìn)軟骨細(xì)胞保持分化狀態(tài)[34]。現(xiàn)在,水凝膠被廣泛用于構(gòu)建 3D 細(xì)胞培養(yǎng),以此研究細(xì)胞外基質(zhì)、細(xì)胞-細(xì)胞接觸效應(yīng)以及細(xì)胞增殖、遷移和分化等課題[43]。Sridharan 等[34]比較了兔骨髓間充質(zhì)干細(xì)胞在水凝膠 3D 結(jié)構(gòu)中團(tuán)塊培養(yǎng)和單細(xì)胞懸液培養(yǎng)的結(jié)果,證實(shí)團(tuán)塊培養(yǎng)可以加強(qiáng)細(xì)胞生物合成和生成軟骨的能力,且團(tuán)塊內(nèi)細(xì)胞數(shù)量越多,合成能力越強(qiáng)。
由于水凝膠與細(xì)胞外基質(zhì)高度的相似性,組織工程對其展開了大量的研究。人工合成材料水凝膠有著良好的力學(xué)特性,但其缺乏生物活性。而生物材料水凝膠的生物學(xué)特性雖可以滿足細(xì)胞要求,但缺少機(jī)械強(qiáng)度和力學(xué)可控性。因此,選用單一材料制備的生物支架效果并不理想,而復(fù)合支架逐漸成為研究熱點(diǎn)。GelMA 的生物相容性和降解性極佳,多項(xiàng)研究對 GelMA 復(fù)合材料進(jìn)行了探究,并獲得較為滿意的結(jié)果。
軟骨細(xì)胞在不同種類的水凝膠中表現(xiàn)各異[44],Levett等[44]研究了常用于軟骨修復(fù)工程的四種水凝膠——明膠,透明質(zhì)酸,聚乙二醇和藻酸鹽。作者將四種水凝膠分別修飾甲基丙烯酸酐以使其具有光交聯(lián)能力,而后將軟骨細(xì)胞封裝其中進(jìn)行 3D 培養(yǎng)。研究顯示,明膠水凝膠促進(jìn)了細(xì)胞增殖和糖胺聚糖基質(zhì)的沉積,此基質(zhì)能顯著改變水凝膠的力學(xué)強(qiáng)度。但明膠中的部分細(xì)胞由于發(fā)生去分化現(xiàn)象而分泌 I 型膠原。軟骨細(xì)胞在透明質(zhì)酸水凝膠組再分化狀態(tài)最佳,但其新生成的基質(zhì)僅集中在細(xì)胞周圍區(qū)域。隨后,Levett 等[45]將明膠和透明質(zhì)酸結(jié)合構(gòu)成了 GelMA / HAMA ( 甲基丙烯酰胺基透明質(zhì)酸 ) 復(fù)合水凝膠,隨后作者將人軟骨細(xì)胞置于 GelMA / HAMA 中培養(yǎng),并通過基因檢測和免疫熒光檢測證實(shí)該復(fù)合支架能加強(qiáng)細(xì)胞成軟骨能力。此外,作者還發(fā)現(xiàn)在 GelMA / HAMA 中,軟骨細(xì)胞維持了圓形的細(xì)胞表型并使 ECM 的分泌量增加。
Suo 等[46]通過負(fù)載丙烯酰胺基葡萄糖 ( AGA ) 的光交聯(lián)明膠水凝膠來調(diào)節(jié) GelMA 的性質(zhì)。隨后對 GelMA / AGA 進(jìn)行流變學(xué)和微形態(tài)檢測,結(jié)果顯示該水凝膠膨脹率、明膠溶解度及水凝膠降解率降低。這些特性的改變使GelMA / AGA 更為穩(wěn)定。此外,AGA 毒性比單純氨基葡萄糖低,在細(xì)胞毒性實(shí)驗(yàn)中,水凝膠溶解所釋放的 AGA 未引起細(xì)胞凋亡增加,因此適當(dāng)增加 AGA 含量可促進(jìn)軟骨細(xì)胞生長。
Visser 等[47]將馬軟骨、半月板和肌腱組織經(jīng)脫細(xì)胞處理后溶解,修飾甲基丙烯酸酐并與 GelMA 構(gòu)成復(fù)合水凝膠。而后分別加入馬軟骨細(xì)胞和骨髓間充質(zhì)干細(xì)胞培養(yǎng)。結(jié)果顯示,三組新型水凝膠均無細(xì)胞毒性,但封裝軟骨細(xì)胞的三組水凝膠中 DNA、糖胺聚糖、II 型膠原含量均不如對照組 ( 單純 GelMA 組 )。而封裝骨髓間充質(zhì)干細(xì)胞的三組水凝膠結(jié)果和對照組相似,且糖胺聚糖 / DNA 比值較對照組高,但差異無統(tǒng)計學(xué)意義。該實(shí)驗(yàn)盡管未能證明上述三種復(fù)合水凝膠有更好的軟骨修復(fù)能力,但間接證明了骨髓間充質(zhì)干細(xì)胞成軟骨能力比單純軟骨細(xì)胞更優(yōu)。另有文獻(xiàn)指出,軟骨細(xì)胞和骨髓間充質(zhì)干細(xì)胞共培養(yǎng)能更好地引導(dǎo)間充質(zhì)干細(xì)胞向軟骨細(xì)胞分化[48]。
Gao 等[49]制備的光交聯(lián)二 PEG ( 甲基丙烯酸聚乙二醇酯 ) / GelMA 比單純 GelMA 的壓縮模量高 10倍。運(yùn)用噴墨式生物打印機(jī)將間充質(zhì)干細(xì)胞均勻分布在 PEG / GelMA支架上培養(yǎng) 21天后,其 SOX9表達(dá)量、II 型膠原和蛋白多糖含量均有顯著性增加。Boere 等[39]將聚甲基丙烯酰基-聚 ( 羥甲基己交酯-ε-己內(nèi)酯 )-聚 ( ε-己內(nèi)酯 ) ( pMHMGCL / PCL ) 與 GelMA 通過紫外線聚合共價交聯(lián)構(gòu)成復(fù)合水凝膠。將該水凝膠填充入關(guān)節(jié)軟骨缺損模型后光交聯(lián)固化,隨后對其施加模擬正常關(guān)節(jié)運(yùn)動的軸向及轉(zhuǎn)動力量,檢測數(shù)據(jù)顯示的其抵抗力較單純 GelMA 組有顯著提高,且檢測到大量的 II 型膠原在支架和自身組織交界處沉積。體外軟骨細(xì)胞 3D 培養(yǎng) 6周后,通過免疫熒光檢測證實(shí)軟骨細(xì)胞可產(chǎn)生軟骨特異性基質(zhì)。
軟骨基質(zhì)鈣化區(qū)是軟骨的最深層結(jié)構(gòu),其 II 型膠原含量只占 20%,而 65% 為羥磷灰石 ( HAP ),與軟骨下骨接近 ( 86% )[50],故軟骨鈣化區(qū)具有較高的硬度,但生軟骨能力較低。Bartnikowski 等[51]將藻酸鹽 / HAP,GelMA以及 GelMA / HAMA 相互組合,構(gòu)成 GelMA-藻酸鹽 / HAP,GelMA / HAMA-藻酸鹽 / HAP 兩種新型復(fù)合水凝膠,以期在增加水凝膠機(jī)械強(qiáng)度的同時,不影響軟骨細(xì)胞的增殖與合成。隨后作者將軟骨細(xì)胞封裝其中,并用光交聯(lián)構(gòu)成 3D 培養(yǎng)體系。培養(yǎng)后第 1天細(xì)胞活性檢測為 80%存活率,故細(xì)胞毒性較低。在細(xì)胞培養(yǎng)期間,兩組復(fù)合水凝膠的彈性模量顯著大于對照組 ( GelMA-藻酸鹽組 )。而培養(yǎng) 28天的結(jié)果顯示兩組新型水凝膠并未對軟骨細(xì)胞存在消極影響。綜上所述,作者認(rèn)為該復(fù)合水凝膠可以作為軟骨修復(fù)支架的基礎(chǔ)而進(jìn)行進(jìn)一步的研究。
總之,GelMA 在軟骨修復(fù)組織工程領(lǐng)域中將發(fā)揮重要作用。將天然明膠通過化學(xué)修飾甲基丙烯酸酐后,經(jīng)紫外光照交聯(lián)形成的 GelMA 不僅具有良好的生物組織相容性和降解率,同時也與天然的軟骨細(xì)胞外基質(zhì)高度相似,這有利于細(xì)胞代謝及生物合成。水凝膠中的廣泛存在細(xì)胞黏附位點(diǎn)可以使封裝在內(nèi)的細(xì)胞擴(kuò)散遷移,也可促進(jìn)外周細(xì)胞的長入。GelMA 擁有的以上特點(diǎn)是其作為生物材料的基礎(chǔ)。
由于水凝膠修飾了甲基丙烯酸酐而使其具有了可調(diào)控的力學(xué)特性,為封裝的細(xì)胞提供了保護(hù)和支撐,但其強(qiáng)度仍不能與天然軟骨相當(dāng)。借助其它生物或合成材料的高強(qiáng)度特點(diǎn)與 GelMA 相結(jié)合所形成的復(fù)合支架,能有效解決GelMA 力學(xué)強(qiáng)度不足的缺陷。但高強(qiáng)度的材料往往具有較差的生物組織相容性和難以調(diào)控的降解率,故如何選擇材料及平衡兩者之間的比例還需要不斷的探索和嘗試。
目前,對于 GelMA 支架的研究很多,而如何將其轉(zhuǎn)化進(jìn)入臨床則是研究者們面臨的共同問題。現(xiàn)在缺乏對該水凝膠制備過程中各種條件參數(shù)的共識,包括 GelMA 的合成標(biāo)準(zhǔn),與其它材料的結(jié)合標(biāo)準(zhǔn)以及水凝膠 3D 細(xì)胞培養(yǎng)的流程。比如目前交聯(lián)的金標(biāo)準(zhǔn)是紫外光配合光引發(fā)劑Irgacure 2959,但對于紫外線波長、光照時間和 Irgacure 2959的濃度卻還無定論。且由于紫外線本身存在的缺陷,將來是否利用可見光代替也在進(jìn)一步研究中。因此,上述亟待解決的問題可為今后的研究指明方向,為轉(zhuǎn)化臨床應(yīng)用提供基礎(chǔ)。
[1] Buckwalter JA. Articular cartilage: injuries and potential for healing[J]. J Orthop Sports Phys Ther, 1998, 28(4):192-202.
[2] Hunziker EB. Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable[J]? Osteoarthritis Cartilage / OARS, 1999, 7(1):15-28.
[3] Hjelle K, Solheim E, Strand T, et al. Articular cartilage defects in 1,000knee arthroscopies[J]. Arthroscopy, 2002, 18(7): 730-734.
[4] Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124knee arthroscopies[J]. The Knee, 2007, 14(3):177-182.
[5] Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation[J]. New Eng J Medicine, 1994, 331(14): 889-895.
[6] Gobbi A, Nunag P, Malinowski K. Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes[J]. Knee Surgerysports Traumatolo, Arthrosc, 2005, 13(3):213-221.
[7] Luyten FP, Vanlauwe J. Tissue engineering approaches for osteoarthritis[J]. Bone, 2012, 51(2):289-296.
[8] Tins BJ, McCall IW, Takahashi T, et al. Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up[J]. Radiology, 2005, 234(2):501-508.
[9] Langer R, Vacanti JP. Tissue engineering[J]. Science, 1993, 260(5110):920-926.
[10] Lai JY, Li YT. Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers[J]. Biomacromolecules, 2010, 11(5):1387-1397.
[11] Cabral J, Moratti SC. Hydrogels for biomedical applications[J]. Future Medicinal Chemistry, 2011, 3(15):1877-1888.
[12] Baroli B. Hydrogels for tissue engineering and delivery of tissue-inducing substances[J]. J Pharm Sci, 2007, 96(9): 2197-2223.
[13] Oliveira JT, Reis RL. Polysaccharide-based materials for cartilage tissue engineering applications[J]. J Tissue Eng Regen Med, 2011, 5(6):421-436.
[14] Gauvin R, Parenteau-Bareil R, Dokmeci MR, et al. Hydrogels and microtechnologies for engineering the cellular microenvironment[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2012, 4(3):235-246.
[15] Chung C, Burdick JA. Engineering cartilage tissue[J]. Advanced Drug Delivery Reviews, 2008, 60(2):243-262.
[16] Sohier J, Moroni L, van Blitterswijk C, et al. Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering[J]. Expert Opinion On Drug Delivery, 2008, 5(5):543-566.
[17] Reddi AH, Becerra J, Andrades JA. Nanomaterials and hydrogel scaffolds for articular cartilage regeneration[J]. Tissue Engineering. Part B, Reviews, 2011, 17(5):301-305.
[18] Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research[J]. J Control Release, 2013, 172(3):1075-1091.
[19] Khademhosseini A, Langer R, Borenstein J, et al. Microscale technologies for tissue engineering and biology[J]. Pro Natl Acad Sci U S A, 2006, 103(8):2480-2487.
[20] Khademhosseini A, Langer R. Microengineered hydrogels for tissue engineering[J]. Biomaterials, 2007, 28(34):5087-5092.
[21] Young S, Wong M, Tabata Y, et al. Gelatin as a delivery vehicle for the controlled release of bioactive molecules[J]. J Control Release, 2005, 109(1-3):256-274.
[22] Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, et al. Functional and bioactive properties of collagen and gelatin from alternative sources: A review[J]. Food Hydrocolloids, 2011, 25(8):1813-1827.
[23] Van den Steen PE, Dubois B, Nelissen I, et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9(MMP-9)[J]. Crit Rev Biochem Mol Biol, 2002, 37(6):375-536.
[24] Nichol JW, Koshy ST, Bae H, et al. Cell-laden microengineered gelatin methacrylate hydrogels[J]. Biomaterials, 2010, 31(21): 5536-5544.
[25] Mironi-Harpaz I, Wang DY, Venkatraman S, et al. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity[J]. Acta Biomaterialia, 2012, 8(5):1838-1848.
[26] Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications[J]. Biomaterials, 2002, 23(22): 4307-4314.
[27] Liu M, Li MD, Xue J, et al. Time-resolved spectroscopic and density functional theory study of the photochemistry of Irgacure-2959in an aqueous solution[J]. J Phys Chem A, 2014, 118(38):8701-8707.
[28] Fu Y, Xu K, Zheng X, et al. 3D cell entrapment in crosslinked thiolated gelatin-poly (ethylene glycol) diacrylate hydrogels[J]. Biomaterials, 2012, 33(1):48-58.
[29] Hutson CB, Nichol JW, Aubin H, et al. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels[J]. Tissue engineering. Part A, 2011, 17(13-14):1713-1723.
[30] Bartnikowski M, Bartnikowski NJ, Woodruff MA, et al. Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems[J]. Acta Biomaterialia, 2015, 27:66-76.
[31] Fedorovich NE, Oudshoorn MH, van Geemen D, et al. The effect of photopolymerization on stem cells embedded in hydrogels[J]. Biomaterials, 2009, 30(3):344-353.
[32] Van den Bulcke AI, Bogdanov B, De Rooze N, et al. Structural and rheological properties of methacrylamide modif i ed gelatin hydrogels[J]. Biomacromolecules, 2000, 1(1):31-38.
[33] Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials, 2015, 73:254-271.
[34] Sridharan B, Lin SM, Hwu AT, et al. Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels[J]. PloS One, 2015, 10(12):e0141479.
[35] Chen YC, Lin RZ, Qi H, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels[J]. Adv Funct Mater, 2012, 22(10):2027-2039.
[36] Dubruel P, Unger R, Vlierberghe SV, et al. Porous gelatin hydrogels: 2. In vitro cell interaction study[J]. Biomacromolecules, 2007, 8(2):338-344.
[37] Benton JA, DeForest CA, Vivekanandan V, et al. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function[J]. Tissue Engineering. Part A, 2009, 15(11):3221-3230.
[38] Levato R, Visser J, Planell JA, et al. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers[J]. Biofabrication, 2014, 6(3):035020.
[39] Boere KW, Visser J, Seyednejad H, et al. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs[J]. Acta Biomaterialia, 2014, 10(6):2602-2611.
[40] Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs[J]. Lab Chip, 2014, 14(13):2202-2211.
[41] Smeriglio P, Lai JH, Dhulipala L, et al. Comparative potential of juvenile and adult human articular chondrocytes for cartilage tissue formation in three-dimensional biomimetic hydrogels[J]. Tissue Engineering. Part A, 2015, 21(1-2):147-155.
[42] Lai JH, Kajiyama G, Smith RL, et al. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels[J]. Scientif i c Reports, 2013, 3:3553.
[43] Luo Y, Shoichet MS. A photolabile hydrogel for guided threedimensional cell growth and migration[J]. Nature Materials, 2004, 3(4):249-253.
[44] Levett PA, Melchels FP, Schrobback K, et al. Chondrocyte redifferentiation and construct mechanical property development in single-component photocrosslinkable hydrogels[J]. J Biomed Mater Res A, 2014, 102(8):2544-2553.
[45] Levett PA, Melchels FP, Schrobback K, et al. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate[J]. Acta Biomaterialia, 2014, 10(1):214-223.
[46] Suo H, Xu K, Zheng X. Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds[J]. J Biomater Appl, 2015, 29(7):977-987.
[47] Visser J, Levett PA, te Moller NC, et al. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue[J]. Tissue Eng Part A, 2015, 21(7-8):1195-1206.
[48] de Windt TS, Hendriks JA, Zhao X, et al. Concise review: unraveling stem cell cocultures in regenerative medicine: which cell interactions steer cartilage regeneration and how[J]? Stem Cells Translational Medicine, 2014, 3(6):723-733.
[49] Gao G, Schilling AF, Hubbell K, et al. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA[J]. Biotechnology Letters, 2015, 37(11):2349-2355.
[50] Zhang Y, Wang F, Tan H, et al. Analysis of the mineral composition of the human calcif i ed cartilage zone[J]. Int J Med Sci, 2012, 9(5):353-360.
[51] Bartnikowski M, Akkineni AR, Gelinsky M, et al. A hydrogel model incorporating 3D-plotted hydroxyapatite for osteochondral tissue[J]. Materials, 2016, 9(4):285.
( 本文編輯:李貴存 )
A brief review of gelatin-methacryloyl hydrogels for the therapeutical application of articular cartilage defect repair
ZHANG Chuan-xin, LI Liang, WU Hai-shan.
Department of Joint Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, 200003, China Corresponding author: WU Hai-shan, Email: drisland@vip.sina.com
Tissue engineering has made promising progresses in the aspect of cartilage repair in nearly two decades. The use of hydrogel-based scaffolds not only promotes the extracellular environment for 3D cell culture, but also provides suitable mechanical properties. Among all kinds of hydrogels, gelatin methacryloyl hydrogels ( GelMA ) have gained great interest due to their appropriate biological properties and tunable physicochemical characteristics. This photocrosslinkable hydrogels can crosslink to form networks with tunable mechanical properties when exposed to UV light. GelMA highly mimics extracellular matrix ( ECM ) so that they can facilitate cell-attaching and retain metalloproteinase responsive peptide motifs. These characteristics allow chondrocytes to proliferate and spread in hydrogels, and contribute to self-degradation. Hybrid hydrogels can be fabricated by mixing GelMA with other polymers combineing biocompatibility and mechanical strength. GelMA plays a critical pioneering role in the fi eld of articular cartilage repair and has promising prospects in clinical applications.
Tissue engineering; Cartilage, articular; Cell culture techniques; Hydrogels; Injuries, cartilage; Gelatin methacryloyl hydrogels
10.3969/j.issn.2095-252X.2017.08.015
R681.3, R318
200003 上海,第二軍醫(yī)大學(xué)附屬長征醫(yī)院關(guān)節(jié)外科
吳海山,Email: drisland@vip.sina.com
2016-10-27)