付 凱,夏靖波,張曉燕,董淑福
(1.空軍工程大學(xué) 信息與導(dǎo)航學(xué)院,西安 710077;2.廈門大學(xué) 嘉庚學(xué)院,福建 漳州 363105)
一種基于云模型的網(wǎng)絡(luò)態(tài)勢綜合評估方法*
付 凱**1,夏靖波2,張曉燕1,董淑福1
(1.空軍工程大學(xué) 信息與導(dǎo)航學(xué)院,西安 710077;2.廈門大學(xué) 嘉庚學(xué)院,福建 漳州 363105)
針對網(wǎng)絡(luò)態(tài)勢評估中存在的模糊性、隨機性和指標量化不統(tǒng)一等問題,提出了一種基于云模型的網(wǎng)絡(luò)態(tài)勢綜合評估方法。綜合考慮實數(shù)型、區(qū)間型和模糊型指標并統(tǒng)一用云模型量化表示,采用主觀與客觀相結(jié)合的賦權(quán)方式,并利用云相似性理論進行網(wǎng)絡(luò)態(tài)勢綜合評估。對通信網(wǎng)絡(luò)態(tài)勢評估的實例分析表明,該方法能夠合理地實現(xiàn)網(wǎng)絡(luò)態(tài)勢的定性及定量評估,并且保留了評估過程中的不確定性。
通信網(wǎng);網(wǎng)絡(luò)態(tài)勢評估;云模型;云相似性理論
隨著信息柵格[1]、云計算、虛擬化[2]等信息技術(shù)的發(fā)展,通信網(wǎng)絡(luò)已成為一個多網(wǎng)系交織、多業(yè)務(wù)承載的復(fù)雜系統(tǒng),呈現(xiàn)出固定與移動網(wǎng)系相互融合、有線與無線手段綜合運用等特點,這給通信網(wǎng)絡(luò)管理與評估帶來巨大挑戰(zhàn)。網(wǎng)絡(luò)態(tài)勢感知是網(wǎng)絡(luò)管理的發(fā)展方向,是指對網(wǎng)絡(luò)中各類設(shè)備運行狀況、各類網(wǎng)絡(luò)及用戶行為所構(gòu)成的整個網(wǎng)絡(luò)的當(dāng)前狀態(tài)進行分析評估并預(yù)測其發(fā)展趨勢[3-4]。網(wǎng)絡(luò)態(tài)勢評估是網(wǎng)絡(luò)態(tài)勢感知的核心環(huán)節(jié),借助數(shù)學(xué)工具對當(dāng)前網(wǎng)絡(luò)狀態(tài)進行合理評價。目前,網(wǎng)絡(luò)態(tài)勢評估的研究大多面向單一類型網(wǎng)絡(luò)(如Internet)并集中于網(wǎng)絡(luò)安全態(tài)勢領(lǐng)域,評估方法主要包括基于數(shù)學(xué)模型[5]、基于知識推理[6]和基于模式識別[7]等3類?;跀?shù)學(xué)模型的方法通過權(quán)重分析、集對分析等建立明確的數(shù)學(xué)表達式,模型易于理解,但參數(shù)選擇易受主觀因素影響?;谥R推理的方法是在先驗知識的基礎(chǔ)上,采用D-S證據(jù)理論、貝葉斯網(wǎng)絡(luò)、模糊推理等智能理論進行推理得到對當(dāng)前態(tài)勢的評價,但推理規(guī)則維護及開銷是需要考慮的問題?;谀J阶R別的方法在對態(tài)勢空間進行劃分的基礎(chǔ)上,利用粗集、神經(jīng)網(wǎng)絡(luò)、灰關(guān)聯(lián)分析等理論進行模式匹配,引入機器學(xué)習(xí)機制使得評估結(jié)果更加準確,但也帶來計算量大等問題。隨著通信網(wǎng)絡(luò)建設(shè)規(guī)模和業(yè)務(wù)范圍的不斷擴大,其復(fù)雜性和不確定性也隨之增加。在面向多網(wǎng)系多指標復(fù)雜系統(tǒng)的網(wǎng)絡(luò)態(tài)勢綜合評估中,由于測量環(huán)境及工具各異、專家知識及經(jīng)驗不同等原因,存在指標測量結(jié)果隨機性大、專家主觀判斷模糊性大等問題,并且不同類型指標的量化標準也不同。云模型[8]作為一種定性定量轉(zhuǎn)換模型,將概念的模糊性和隨機性有機結(jié)合起來,在系統(tǒng)評估[9]、智能預(yù)測等方面具有廣泛的應(yīng)用。文獻[10-11]提出了基于云模型的網(wǎng)絡(luò)安全態(tài)勢評估方法,有效處理了態(tài)勢評估中的不確定性問題,使評估結(jié)果更加合理。
基于此,本文提出一種基于云模型的網(wǎng)絡(luò)態(tài)勢綜合評估方法,綜合考慮多種類型指標并統(tǒng)一用云模型量化表示,采用主客觀相結(jié)合的賦權(quán)方法,并基于云相似性理論實現(xiàn)網(wǎng)絡(luò)態(tài)勢的定性及定量評估,最后通過實例分析證明了該方法的合理性。
2.1 云的定義及數(shù)字特征[12]
設(shè)U是一個用精確數(shù)值表示的定量論域,C是U上的一個定性概念,若定量值x∈U,且x是定性概念C的一次隨機實現(xiàn),x對C的確定度μ(x)∈[0,1]是具有穩(wěn)定傾向的隨機數(shù),則x在論域U上的分布稱為云,每一個x稱為一個云滴。
云模型用期望Ex、熵En和超熵He等3個數(shù)字特征來表征一個定性概念C的整體定量特性。其中,期望Ex是定性概念基本確定性的度量,反映了論域空間中最能代表定性概念的點;熵En是定性概念的不確定性度量,體現(xiàn)定性概念的隨機性和模糊性之間的關(guān)聯(lián);超熵He是熵的不確定度量,反映了在論域空間中代表該定性概念所有點的不確定度的凝聚性。
2.2 云的期望曲線及“3En”規(guī)則
由于正態(tài)分布的普適性,正態(tài)云是云模型中應(yīng)用最廣泛的一種。對于云滴變量x,若滿足x~N(Ex,En′),其中En′~N(En,He),En≠0,則把曲線
y(x)=exp[-(x-Ex)2/2En2]
(1)稱為正態(tài)云的期望曲線,能夠直觀地描繪出云的基本幾何形態(tài)(如圖1所示)。在云模型中,不同云滴群對概念的貢獻是不同的。對概念有貢獻的云滴主要落在區(qū)間[Ex-3En,Ex+3En]中,稱為“3En”規(guī)則。
圖1 云模型示意圖
Fig.1 Sketch map of cloud model
2.3 云相似性理論
相似性度量是一個常見的數(shù)學(xué)問題,廣泛應(yīng)用于數(shù)據(jù)挖掘、圖像處理等領(lǐng)域。云模型之間的相似性度量主要應(yīng)用于基于云模型的評估決策中,通過尋找待評對象云與評價等級云的最大相似度實現(xiàn)定性評價,其度量方法主要分為基于云滴距離、基于數(shù)字特征和基于相交面積等3類。文獻[13]首次提出了相似云理論,并基于云滴距離計算云模型之間的相似度,但大量云滴計算帶來時間復(fù)雜度高、結(jié)果不穩(wěn)定等問題。文獻[14]利用云模型的數(shù)字特征計算云模型之間的相似性,但忽略了云模型的不確定性,并且存在數(shù)字特征向量的部分分量過度占優(yōu)問題。文獻[15-16]基于云期望曲線的相交面積衡量云模型之間的相似性,計算復(fù)雜度較低且結(jié)果穩(wěn)定。
3.1 基本原理
本文提出的基于云模型的網(wǎng)絡(luò)態(tài)勢綜合評估方法,綜合考慮實數(shù)型、區(qū)間型和模糊型等多種態(tài)勢指標進行歸一化及云化處理,采用主觀與客觀相結(jié)合的賦權(quán)方法,利用云模型的計算規(guī)則生成待評對象云并建立評價等級云,最后采用基于隸屬度的云相似性度量方法進行網(wǎng)絡(luò)態(tài)勢的定性評估,并基于云模型相似度實現(xiàn)由定性評估到定量評估值的轉(zhuǎn)換。網(wǎng)絡(luò)態(tài)勢評估流程如圖2所示。
圖2 基于云模型的網(wǎng)絡(luò)態(tài)勢評估流程
Fig.2 Process of network situation assessment based on cloud model
3.2 實施步驟
(1)網(wǎng)絡(luò)態(tài)勢指標歸一化處理
對于效益型指標,做歸一化處理如下:
(2)
對于成本型指標,做歸一化處理如下:
(3)
對于模糊型指標,將其歸一化與后面的云化處理同步完成。
(2)指標云化處理
指標云化主要是將各類型指標轉(zhuǎn)換為云模型Ci(Ex,En,He)表示,以應(yīng)用于后續(xù)基于云模型的評估中。
對于模糊型指標,采用“優(yōu)、良、中、差、特差”5個等級的模糊評價值,其對應(yīng)的云模型如表1所示。其中,“極差”屬于半降云,“優(yōu)”屬于半升云,其他等級對應(yīng)完整的云[16]。
表1 模糊評價值及對應(yīng)云模型
Tab.1 Fuzzy assessment value and corresponding cloud model
模糊評價值云模型極差C(0.00,0.05,0.02)差C(0.30,0.07,0.02)中C(0.50,0.08,0.02)良C(0.70,0.07,0.02)優(yōu)C(1.00,0.05,0.02)
(3)確定指標權(quán)重
(4)生成待評對象云
對各指標云進行一維線性加權(quán),得到待評對象云
式中:wi可以表示為C(wi,0,0)。按照云模型之間的運算規(guī)則,對于兩個云C1(Ex1,En1,He1)和C2(Ex2,En2,He2),則有
(4)
(5)
(5)建立評價等級云
最終的網(wǎng)絡(luò)態(tài)勢分為“優(yōu)、良、中、差、特差”5個等級,各等級對應(yīng)的云模型仍采用表1中的表示方式。
(6)網(wǎng)絡(luò)態(tài)勢定性評估
網(wǎng)絡(luò)態(tài)勢定性評估主要依據(jù)待評對象云和評價等級云的相似度,找出與待評對象云相似度最大的等級云作為定性評價結(jié)果。文獻[15]提出了一種新的一維正態(tài)云概念隸屬度判定算法,綜合考慮云模型公共面積和云滴所占比例兩方面因素,并利用向量進行合成得到最終的隸屬度,但此方法存在云滴計算復(fù)雜度高、向量部分分量過度占優(yōu)等問題。該文獻指出,云模型之間的隸屬度不僅取決于其相交面積,而且取決于對象云落入概念云的云滴數(shù)量??紤]將這兩方面均有所體現(xiàn)又要避免上述問題,本文以相交面積與自身面積之比定義云模型之間的隸屬度,進而以相互隸屬度衡量云模型之間的相似度。其基本思想是如果云C1對云C2的隸屬度較高,且云C2對云C1的隸屬度也較高,則云C1和C2的相似度較高。定義云C1對云C2的隸屬度為
B(C1,C2)=Sc/S1。
(6)
式中:S1為云C1的面積;S2為云C2的面積;Sc為云C1和云C2的相交面積。對于采用云期望曲線計算各云模型自身面積及相交面積的方法見文獻[15],此處不再贅述。同理,云C2對云C1的隸屬度為B(C2,C1)=Sc/S2。進而定義云模型之間的相似度為
D(C1,C2)=(B(C1,C2)+B(C2,C1))/2。
(7)
本文將云模型之間的相似度定義為兩個云模型相互隸屬度的均值,如果兩個云的相互隸屬度較高,則它們的相似度也較高,并且當(dāng)相互隸屬度都為1時兩個云的相似度為1。此方法本質(zhì)上屬于基于相交面積的云相似度量方法,同樣具有計算復(fù)雜度低、結(jié)果穩(wěn)定等優(yōu)點。
按照式(7)計算待評對象云與各評價等級云的相似度Di(i=1,2,…,5),取maxDi所對應(yīng)的等級云代表的評語為網(wǎng)絡(luò)態(tài)勢定性評估結(jié)果。
(7)網(wǎng)絡(luò)態(tài)勢定量評估
定性評估能夠直觀地反映網(wǎng)絡(luò)態(tài)勢的總體情況,而定量評估主要用于獲得精確的網(wǎng)絡(luò)態(tài)勢值,便于對比分析。考慮態(tài)勢評估中的不確定性問題,本文基于云模型相似度提出一種由定性評估到定量評估值的轉(zhuǎn)換方式,以實現(xiàn)網(wǎng)絡(luò)態(tài)勢的定量評估。在定性評估中找出與待評對象云相似度最大與次大的兩個等級云C1和C2(暫不考慮存在相似度相同的情況,并假設(shè)Ex1 T=(T1+T2)/2。 (8) 上述轉(zhuǎn)換方式主要依據(jù)云模型之間的相似度并結(jié)合“3En”規(guī)則進行計算,即待評對象云與某評價等級云的相似度越高,則定量評價值與該等級云的期望Ex越接近。與直接采用待評對象云的期望Ex作為定量評估值相比,本文方法保留了態(tài)勢評估中的不確定性,而且采用與待評對象云最相似的兩個等級云計算均值的方式可以減小誤差。 表2 通信網(wǎng)絡(luò)指標類型及數(shù)據(jù) Tab.2 Index type and data of a communication network 網(wǎng)系網(wǎng)系指標指標類型待評指標數(shù)據(jù)待評指標數(shù)據(jù)歸一化結(jié)果待評指標數(shù)據(jù)云化結(jié)果網(wǎng)系1指標1實數(shù)型,效益型0.820.82C(0.82,0.07,0.02)指標2區(qū)間型,效益型[0.61,0.89][0.64,0.89]C(0.76,0.04,0.02)指標3模糊型,效益型優(yōu)-C(1.00,0.05,0.02)網(wǎng)系2指標1實數(shù)型,效益型0.750.75C(0.75,0.05,0.02)指標2實數(shù)型,效益型0.920.92C(0.92,0.06,0.02)指標3模糊型,效益型良-C(0.70,0.07,0.02)網(wǎng)系3指標1區(qū)間型,效益型[0.68,0.95][0.71,0.95]C(0.83,0.06,0.02)網(wǎng)系4指標1區(qū)間型,效益型[0.59,0.83][0.62,0.83]C(0.72,0.03,0.02)網(wǎng)系5指標1實數(shù)型,效益型0.730.73C(0.73,0.03,0.02)指標2實數(shù)型,效益型0.950.95C(0.95,0.04,0.02)指標3實數(shù)型,效益型0.920.92C(0.92,0.04,0.02)指標4實數(shù)型,效益型0.820.82C(0.82,0.05,0.02)指標5模糊型,效益型優(yōu)-C(1.00,0.05,0.02)網(wǎng)系6指標1實數(shù)型,效益型0.740.74C(0.74,0.05,0.02)指標2實數(shù)型,效益型0.890.89C(0.89,0.06,0.02)指標3實數(shù)型,效益型0.940.94C(0.94,0.04,0.02)指標4實數(shù)型,效益型0.590.59C(0.59,0.07,0.02)指標5實數(shù)型,效益型0.680.68C(0.68,0.03,0.02)指標6模糊型,效益型良-C(0.70,0.07,0.02) 續(xù)表2 利用層次分析法得到表2中各指標的主觀權(quán)重為xi=(0.385 0,0.190 6,0.021 4,0.080 8,0.040 1,0.007 8,0.047 0,0.029 9,0.017 3,0.011 5,0.011 5,0.011 5,0.003 6,0.014 9,0.014 9,0.014 9,0.011 3,0.011 3,0.005 2,0.007 1,0.005 4,0.005 4,0.011 6,0.009 2,0.002 1,0.012 0,0.016 3)。利用熵值法得到指標客觀權(quán)重為yi=(0.054 3,0.031 0,0.038 8,0.038 8,0.046 5,0.054 3,0.046 5,0.023 3,0.023 3,0.031 0,0.031 0,0.038 8,0.038 8,0.038 8,0.046 5,0.031 0,0.054 3,0.023 3,0.054 3,0.031 0,0.038 8,0.023 3,0.046 5,0.038 8,0.054 3,0.007 8,0.015 5)。通過乘法集成得到指標最終權(quán)重為wi=(0.492 2,0.139 2,0.019 5,0.073 8,0.044 0,0.010 0,0.051 5,0.016 4,0.009 5,0.008 4,0.008 4,0.010 5,0.003 3,0.013 6,0.016 4,0.010 9,0.014 4,0.006 2,0.006 7,0.005 2,0.004 9,0.002 9,0.012 7,0.008 4,0.002 7,0.002 2,0.006 0)。 計算待評對象云為Cz(0.808 2,0.035 4,0.010 5),利用正向云發(fā)生器[12]生成待評對象云和各評價等級云,從而得到網(wǎng)絡(luò)態(tài)勢圖,如圖3所示。 圖3 基于云模型的網(wǎng)絡(luò)態(tài)勢圖 Fig.3 Network situation chart based on cloud model 計算待評對象云與各評價等級云的相似度,并與數(shù)字特征法[14]、期望曲線法[15]作對比,如表3所示。其中,期望曲線法是指利用式(1)計算待評對象云的期望值(本文中Ex=0.808 2)對各評價等級云的隸屬度。 表3 待評對象云與評價等級云的相似度 Tab.3 Similarity between target cloud and ranking cloud 方法相似度極差差中良優(yōu)數(shù)字特征法0.050.980.990.991.00期望曲線法0.000.000.000.290.00本文方法0.000.000.010.340.05 由表3可知,數(shù)字特征法計算的各相似度區(qū)分度不大,與實際不符;期望曲線法和本文方法取最大相似度后得到的定性評估結(jié)果均為良。由態(tài)勢圖可以看出評估結(jié)果比較合理,且本文方法判定對象云與“優(yōu)”、“中”代表的等級云也有較小的相似度,體現(xiàn)了態(tài)勢評估中的不確定性。 根據(jù)表3得到D1=0.34和D2=0.05,計算可得T1=0.838 6,T2=0.857 5,則網(wǎng)絡(luò)態(tài)勢定量評價值為T=(T1+T2)/2=0.848。 本文針對網(wǎng)絡(luò)態(tài)勢評估中存在模糊性、隨機性和指標量化不統(tǒng)一等問題,提出了一種基于云模型的網(wǎng)絡(luò)態(tài)勢綜合評估方法,在各類指標云化的基礎(chǔ)上利用云相似性理論進行網(wǎng)絡(luò)態(tài)勢評估。實例分析表明,該方法能夠綜合考慮多種類型指標,合理地實現(xiàn)網(wǎng)絡(luò)態(tài)勢的定性及定量評估,并且保留評估過程中的不確定性。本文在云模型生成方法上進行了簡化處理,對于不同指標的量化標準還需要做進一步的研究。 [1] HUNG B,DEFRANCESCO D,CHENG B N,et al. An evaluation of IP header compression on the GIG joint IP modem system[C]//Proceedings of 2014 IEEE Military Communications Conference.Baltimore,USA:IEEE,2014:1484-1490. [2] 賈偉,夏靖波.一種生存性軍事虛擬網(wǎng)絡(luò)映射新方法[J]. 電訊技術(shù),2015,55(5):545-551. JIA Wei,XIA Jingbo. A new approach for survivable military virtual network mapping[J]. Telecommunication Engineering,2015,55(5):545-551.(in Chinese) [3] BASS T. Intrusion systems and multisensor data fusion[J]. Communications of the ACM,2000,43(4):99-105. [4] 柏駿,夏靖波,鐘贇,等. 網(wǎng)絡(luò)運行態(tài)勢感知技術(shù)及其模型[J]. 解放軍理工大學(xué)學(xué)報(自然科學(xué)版),2015,16(1):16-22. BAI Jun,XIA Jingbo,ZHONG Yun,et al. Network running situation awareness technology and its model[J]. Journal of PLA University of Science and Technology(Natural Science Edition),2015,16(1):16-22. (in Chinese) [5] 吳琨,白中英. 集對分析的可信網(wǎng)絡(luò)安全態(tài)勢評估與預(yù)測[J].哈爾濱工業(yè)大學(xué)學(xué)報,2012,44(3):112-118. WU Kun,BAI Zhongying. Trusted network security situational awareness and forecast based on SPA[J]. Journal of Harbin Institute of Technology,2012,44(3):112-118.(in Chinese) [6] ZHAO J H,ZHOU Y,SHUO L X. A situation awareness model of system survivability based on variable Fuzzy set[J]. Telkomnika,2012,10(8):2239-2246. [7] 謝麗霞,王亞超,于巾博. 基于神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)安全態(tài)勢感知[J].清華大學(xué)學(xué)報(自然科學(xué)版),2013,53(12):1750-1760. XIE Lixia,WANG Yachao,YU Jinbo. Network security situation awareness based on neural networks[J]. Journal of Tsinghua University(Science and Technology),2013,53(12):1750-1760.(in Chinese) [8] 李德毅,孟海軍,史雪梅.隸屬云和隸屬云發(fā)生器[J].計算機研究與發(fā)展,1995,32(6):15-20. LI Deyi,MENG Haijun,SHI Xuemei. Membership clouds and membership cloud generators[J]. Journal of Computer Research and Development,1995,32(6):15-20.(in Chinese) [9] ZHANG L M,WU X G,DING L Y,et al. A novel model for risk assessment of adjacent buildings in tunneling environments[J]. Building and Environment,2013,65(7):185-194. [10] 楊宏宇,褚潤林,李東博. 一種新的網(wǎng)絡(luò)安全態(tài)勢評估方法[J].微電子學(xué)與計算機,2015,32(1):29-34. YANG Hongyu,CHU Runlin,LI Dongbo. A new method for network security situation assessment[J]. Microelectronics & Computer,2015,32(1):29-34.(in Chinese) [11] 張擁軍,唐俊. 基于云模型的網(wǎng)絡(luò)安全態(tài)勢分析與評估[J].計算機工程與科學(xué),2014,36(1):63-67. ZHANG Yongjun,TANG Jun. Analysis and assessment of network security situation based on cloud model[J]. Computer Engineering & Science,2014,36(1):63-67.(in Chinese) [12] 李德毅,杜鹢. 不確定性人工智能 [M]. 2版.北京:國防工業(yè)出版社,2014:44-65. LI Deyi,DU Yi. Artificial intelligence with uncertainty [M]. 2nd ed.Beijing:National Defense Industry Press,2014:44-65. (in Chinese) [13] 張勇,趙東寧,李德毅. 相似云及其度量分析方法[J].信息與控制,2004,33(2):129-132. ZHANG Yong,ZHAO Dongning,LI Deyi. The similar cloud and the measurement method[J]. Information and Control,2004,33(2):129-132. (in Chinese) [14] 張光衛(wèi),李德毅,李鵬. 基于云模型協(xié)同過濾推薦算法[J].軟件學(xué)報,2007,18(10):2403-2411. ZHANG Guangwei,LI Deyi,LI Peng,et al. A collaborative filtering recommendation algorithm based on cloud model[J]. Journal of Software,2007,18(10):2403-2411. (in Chinese) [15] 李海林,郭崇慧,邱望仁. 正態(tài)云模型相似度計算方法[J].電子學(xué)報,2011,39(11):2561-2567. LI Hailin,GUO Chonghui,QIU Wangren. Similarity measurement between normal cloud models[J]. Acta Electronica Sinica,2011,39(11):2561-2567. (in Chinese) [16] 查翔,倪世宏,謝川,等. 云相似度的概念躍升間接計算方法[J].系統(tǒng)工程與電子技術(shù),2015,37(7):1676-1682. ZHA Xiang,NI Shihong,XIE Chuan,et al. Indirect computation approach of cloud model similarity based on conception skipping[J]. Systems Engineering and Electronics,2015,37(7):1676-1682. (in Chinese) [17] SAATY T L. Decision making-the analytic hierarchy and network processes(AHP/ANP)[J]. Journal of Systems Science and Systems Engineering,2004,13(1):1-35. [18] 周華仁,張晟,穆松,等. 綜合評價方法及其軍事應(yīng)用[M].北京:清華大學(xué)出版社,2015:18-19. ZHOU Huaren,ZHANG Sheng,MU Song,et al. Comprehensive evaluation method and its military application[M]. Beijing:Tsinghua University Press,2015:18-19.(in Chinese) FU Kai was born in Jining,Shandong Province,in 1987. He received the M.S. degree in 2012.He is currently working toward the Ph.D. degree. His research concerns network management and safety. Email:fukaia3@163.com 夏靖波(1963—),男,河北秦皇島人,教授,主要研究方向為網(wǎng)絡(luò)管理與安全; XIA Jingbo was born in Qinhuangdao,Hebei Province,in 1963. He is now a professor.His research concerns network management and safety. Email:jbxiad@sina.com 張曉燕(1970—),女,陜西西安人,副教授,主要研究方向為圖像處理; ZHANG Xiaoyan was born in Xi′an,Shaanxi Province,in 1970. She is now an associate professor. Her research concerns image processing. Email:zxyxjwxxj@163.com 董淑福(1970—),男,山東青島人,教授,主要研究方向為通信網(wǎng)絡(luò)技術(shù)、無人機信息系統(tǒng)。 DONG Shufu was born in Qingdao,Shandong Province,in 1970.He is now a professor.His research concerns communication network technology and UAV information system. Email:shufudong@163.com A Network Situation Integrated Assessment Method Based on Cloud Model FU Kai1,XIA Jingbo2,ZHANG Xiaoyan1,DONG Shufu1 (1.School of Information and Navigation,Air Force Engineering University,Xi′an 710077,China;2.Tan Kah Kee College,Xiamen University,Zhangzhou 363105,China) In order to solve the problem of fuzziness,randomness and different standards of index quantification in network situation assessment,an integrated method for assessing network situation based on cloud model is proposed. Real number,interval number and fuzzy number are all expressed by cloud model,and similar cloud theory is utilized in network situation integrated assessment with integrating subjective and objective weights. Example analysis for communication networks shows that the proposed method can achieve rational network situation assessment qualitatively and quantitatively,and retain the uncertainty in the process of situation assessment. communication network;network situation assessment;cloud model;similar cloud theory 10.3969/j.issn.1001-893x.2016.12.008 付凱,夏靖波,張曉燕,等.一種基于云模型的網(wǎng)絡(luò)態(tài)勢綜合評估方法[J].電訊技術(shù),2016,56(12):1346-1351.[FU Kai,XIA Jingbo,ZHANG Xiaoyan,et al.A network situation integrated assessment method based on cloud model[J].Telecommunication Engineering,2016,56(12):1346-1351.] 2016-03-11; 2016-06-22 Received date:2016-03-11;Revised date:2016-06-22 航空科學(xué)基金項目(20141996018);陜西省自然科學(xué)基礎(chǔ)研究計劃項目(2012JZ8005) Foundation Item:The Aeronautical Science Foundation of China(20141996018);The Natural Science Fundamental Research Planned Project of Shaanxi Province(2012JZ8005) TN915 A 1001-893X(2016)12-1346-06 付 凱(1987—),男,山東濟寧人,2012年獲碩士學(xué)位,現(xiàn)為博士研究生,主要研究方向為網(wǎng)絡(luò)管理與安全; **通信作者:fukaia3@163.com Corresponding author:fukaia3@163.com4 實例分析
5 結(jié) 論