劉永葆,劉建華,余又紅,賀星,劉莉
1海軍工程大學(xué)動(dòng)力工程學(xué)院,湖北武漢430033
2宜春學(xué)院物理科學(xué)與工程技術(shù)學(xué)院,江西宜春336000
燃?xì)廨啓C(jī)熱障涂層高溫腐蝕研究綜述
劉永葆1,劉建華1,余又紅1,賀星1,劉莉2
1海軍工程大學(xué)動(dòng)力工程學(xué)院,湖北武漢430033
2宜春學(xué)院物理科學(xué)與工程技術(shù)學(xué)院,江西宜春336000
[目的]為了梳理燃?xì)廨啓C(jī)熱障涂層服役過(guò)程中的高溫腐蝕問(wèn)題,[方法]對(duì)燃?xì)廨啓C(jī)熱障涂層腐蝕類(lèi)型和提高抗腐蝕性能的方法分別進(jìn)行了歸納分析,并展望了提高熱障涂層抗腐蝕性能的發(fā)展方向。[結(jié)果]經(jīng)歸納分析,燃?xì)廨啓C(jī)熱障涂層腐蝕類(lèi)型主要包括:陶瓷層高溫相變、粘結(jié)層氧化、鹽霧腐蝕、CMAS腐蝕以及燃料雜質(zhì)腐蝕。提高熱障涂層抗腐蝕性能的方法主要有:發(fā)展新的抗高溫腐蝕涂層材料、進(jìn)行涂層表面防腐處理、改變涂層系統(tǒng)結(jié)構(gòu)以及提高燃?xì)廨啓C(jī)輔助清潔功能。[結(jié)論]未來(lái)開(kāi)發(fā)性能優(yōu)異的新材料仍是提高熱障涂層抗腐蝕性能的主要方向,而改進(jìn)涂層結(jié)構(gòu)設(shè)計(jì)、材料納米化對(duì)提升熱障涂層抗腐蝕性能有很大潛力。隨著陶瓷基復(fù)合材料的發(fā)展,對(duì)涂層的高溫腐蝕研究將逐步從熱障涂層轉(zhuǎn)向環(huán)境障涂層(EBC)。
燃?xì)廨啓C(jī);熱障涂層;高溫腐蝕;綜述
熱障涂層(Thermal Barrier Coatings,TBC)是一種低熱導(dǎo)率涂層材料,最早由美國(guó)NASA于上世紀(jì)40年代提出并在航空發(fā)動(dòng)機(jī)上進(jìn)行了測(cè)試[1],一般噴涂于發(fā)動(dòng)機(jī)熱端合金部件表面起高溫防護(hù)作用,現(xiàn)已廣泛應(yīng)用于燃?xì)廨啓C(jī)渦輪部件[2]。由于TBC的隔熱作用,可提高渦輪前入口許用溫度,增加發(fā)動(dòng)機(jī)效率;或在保持渦輪入口溫度不變的條件下,降低合金部件熱負(fù)荷,延長(zhǎng)合金部件壽命。此外,TBC隔熱作用帶來(lái)的熱端部件冷卻空氣量減少,可使燃?xì)廨啓C(jī)效率進(jìn)一步提高。鑒于TBC帶來(lái)的巨大效益,美國(guó)高性能燃?xì)廨啓C(jī)計(jì)劃“IHPTET”以及我國(guó)航空發(fā)動(dòng)機(jī)推進(jìn)計(jì)劃中均把TBC、高溫結(jié)構(gòu)材料、高效葉片冷卻技術(shù)列為高壓渦輪葉片三大關(guān)鍵技術(shù)[3]。
Y2O3穩(wěn)定化的ZrO2(Y2O3Stability ZrO2,YSZ)是目前使用最廣的TBC陶瓷面層材料。1978年Stecura[4]優(yōu)選組分比例后,7~8YSZ(質(zhì)量分?jǐn)?shù)7%~8%的Y2O3Stability ZrO2)一直占據(jù)TBC陶瓷面層材料的主導(dǎo)地位。因此,本文主要就基于YSZ的TBC的腐蝕問(wèn)題展開(kāi)討論。其常用的制備方法主要有 2種:APS(Air Plasma Spray)和 EB-PVD(Electron Beam Physical Vapor Deposition)。常用粘結(jié)層(Bond coat)材料一般為MCrAlY合金(M為Ni,Co或Ni+Co)或Pt改性的Al化合物[5],典型的TBC結(jié)構(gòu)如圖1所示。
雖然TBC在常溫下性能穩(wěn)定,但在燃?xì)廨啓C(jī)服役過(guò)程中仍存在多種高溫腐蝕問(wèn)題,嚴(yán)重影響涂層的壽命。根據(jù)外界誘因不同,導(dǎo)致熱障涂層腐蝕的主要因素有:陶瓷層高溫相變作用、粘結(jié)層氧化腐蝕、鹽霧腐蝕、鈣鎂鋁硅氧化物(Calcium-Magnesium-alumina-Silicate,CMAS)腐蝕[6]以及燃料雜質(zhì)腐蝕。探索TBC服役條件下腐蝕機(jī)理,研究提高TBC抗腐蝕性能的方法和途徑,對(duì)提高渦輪部件使用壽命及更好發(fā)揮熱障涂層效用意義重大。
1.1 陶瓷層高溫相變
熱障涂層制備過(guò)程中,含質(zhì)量分?jǐn)?shù)8%(摩爾分?jǐn)?shù)4.5%)Y2O3的ZrO2被加熱到立方相或熔化區(qū)后,迅速淬冷可生成ZrO2的非相變四方相(T′相),該相的存在是7~8YSZ具有優(yōu)越力學(xué)性能的主要原因[7-8]。但在燃?xì)廨啓C(jī)高工況運(yùn)行時(shí),由于燃燒室出口溫度場(chǎng)畸變、熱斑或冷卻系統(tǒng)故障等原因,造成渦輪局部超溫,當(dāng)TBC使用溫度超過(guò)1 473 K以后,T′相將不再保持穩(wěn)定,會(huì)相變生成不穩(wěn)定的四方相(T相)。在TBC從工作溫度冷卻到環(huán)境溫度的過(guò)程中,在殘余應(yīng)力作用下T相又易相變?yōu)閱涡毕啵∕相),并產(chǎn)生3%~5%的(的)體積膨脹,誘發(fā)涂層開(kāi)裂。
1.2 粘結(jié)層氧化腐蝕
粘結(jié)層氧化是指粘結(jié)層中的鋁離子與氧離子結(jié)合生成Al2O3氧化層。由于YSZ在高溫環(huán)境下本身就是氧離子良導(dǎo)體,常作為燃料電池的電極;另外,由于涂層含微裂紋和多孔隙結(jié)構(gòu)特點(diǎn),使得高溫燃?xì)庵械难跻淄ㄟ^(guò)涂層缺陷到達(dá)粘結(jié)層?;谶@2個(gè)原因,粘結(jié)層在高溫條件下氧化速率較大。在粘結(jié)層氧化作用下Al2O3逐漸增厚,一般在1~13 μm之間,氧化層的增厚加劇涂層系統(tǒng)內(nèi)應(yīng)力不匹配,這是TBC失效的重要原因[2,9]。
1.3 鹽霧腐蝕
在海洋環(huán)境下工作的燃?xì)廨啓C(jī),TBC還易受到鹽霧腐蝕作用。由于制備后熱障涂層內(nèi)多微裂紋和孔隙結(jié)構(gòu),含鹽空氣中的NaCl易通過(guò)涂層中的微裂紋和孔隙侵入涂層內(nèi)部。研究表明,雖然含鹽空氣中的NaCl對(duì)YSZ層的腐蝕作用不明顯,但在高溫條件下可以導(dǎo)致MCrAlY粘結(jié)層氧化加速,造成疏松狀氧化層(γ-Al2O3)增厚[10-11],這種形式的氧化層易開(kāi)裂且不具有致密氧化層(α-Al2O3)阻隔外界腐蝕侵入的功能。另外,即使在常溫條件下,鹽霧侵蝕也會(huì)造成陶瓷層內(nèi)氧化鋯晶體出現(xiàn)擠壓變形現(xiàn)象,導(dǎo)致涂層內(nèi)的裂紋擴(kuò)展[11]。此外,葉片通流表面積鹽、積垢后還會(huì)改變?nèi)~型,降低葉片氣動(dòng)效率,使燃?xì)廨啓C(jī)功率下降和油耗增加。因此,作為海洋環(huán)境下使用的船用燃?xì)廨啓C(jī),鹽霧腐蝕問(wèn)題必須重視。
1.4 CMAS腐蝕
在燃?xì)廨啓C(jī)服役過(guò)程中,入口空氣中的灰塵、砂石等微粒雜質(zhì)易造成TBC類(lèi)似火山灰環(huán)境下的鈣鎂鋁硅氧化物(Calcium-Magnesium-alumina-Silicate,CMAS)腐蝕。研究表明[12],CMAS混合物對(duì)TBC的破壞作用跟熔點(diǎn)有關(guān),當(dāng)溫度低于熔點(diǎn)時(shí),CMAS對(duì)TBC造成固體沖蝕破壞;當(dāng)溫度高于熔點(diǎn)時(shí),CMAS以熔鹽形式沿空隙或微裂紋滲入涂層內(nèi)部,對(duì)涂層產(chǎn)生物理破壞和化學(xué)腐蝕作用。EB-PVD方法制備的TBC具有柱狀晶微觀結(jié)構(gòu)特點(diǎn),對(duì)CMAS環(huán)境尤其敏感,由于毛細(xì)管作用熔鹽從柱狀晶間隙滲入YSZ內(nèi)部,導(dǎo)致涂層微觀結(jié)構(gòu)改變,造成孔隙率降低。而且由于熱腐蝕作用還造成局部貧Y,導(dǎo)致ZrO2晶體在停機(jī)冷卻階段不穩(wěn)定,由T相向M相轉(zhuǎn)變,相變過(guò)程中的大應(yīng)變最終造成涂層的開(kāi)裂。因此,CMAS既降低了YSZ層應(yīng)變?nèi)菹抟步档土薢rO2相穩(wěn)定性[13-16]。Vidal-Setif等[17]研究了實(shí)際發(fā)動(dòng)機(jī)葉片CMAS腐蝕現(xiàn)象,發(fā)現(xiàn)在葉背和尾緣處幾乎沒(méi)有CMAS滲入,而在葉盆和前緣處,發(fā)現(xiàn)有不同程度滲入和相關(guān)化學(xué)反應(yīng)發(fā)生,導(dǎo)致ZrO2晶體相穩(wěn)定性的降低,并生成腐蝕產(chǎn)物Ca2Zr5Ti2O16和Ca2Zr2Ti4O14。張小峰等[18]的研究也證實(shí),CMAS高溫熔融后在毛細(xì)管作用下沿著柱狀晶間隙往深度方向滲透,與涂層發(fā)生熱腐蝕反應(yīng),熱腐蝕與熱應(yīng)力的綜合作用導(dǎo)致涂層界面開(kāi)裂。
1.5 燃料雜質(zhì)腐蝕
燃料中腐蝕性雜質(zhì)(如Na,S,V,Pb,P)和從外界吸入的沙塵中的Si[14],在燃燒過(guò)程中,生成強(qiáng)酸和強(qiáng)堿性的氧化物,這些氧化物具有特定的酸堿特性,復(fù)合物Na3VO4(3Na2O·V2O5),NaVO3(Na2O· V2O5),V2O5與ZrO2,Y2O3,CeO2等氧化物的高溫腐蝕難易程度存在差異[19]。根據(jù)Lewis酸堿理論,只有當(dāng)酸堿強(qiáng)度相當(dāng)時(shí)不發(fā)生反應(yīng),否則會(huì)發(fā)生酸堿反應(yīng),如NaVO3相對(duì)于Y2O3可以起酸的作用,相對(duì)于GeO2或Ta2O5起堿的作用。通常有以下幾種腐蝕反應(yīng)[20-25]:
此外,McKee等[26]通過(guò)在燃燒測(cè)試裝置中使用摻有NaCl和S的燃料研究TBC腐蝕作用。在經(jīng)歷871℃燃燒測(cè)試后,在ZrO2涂層孔洞中可以找到NaSO4成分,在基底層與粘結(jié)層界面處發(fā)現(xiàn)了硫化物的存在,表明硫酸鹽既穿過(guò)了面層也穿過(guò)了粘結(jié)層。另一方面,在熔融的PbSO4-NaSO4坩堝測(cè)試中,沒(méi)有發(fā)現(xiàn)ZrO2有明顯的相穩(wěn)定性的降低,也未發(fā)現(xiàn)與YSZ之間的腐蝕反應(yīng),但在粘結(jié)層中發(fā)現(xiàn)了腐蝕產(chǎn)物PbCrO4。
總之,燃料中各雜質(zhì)對(duì)YSZ、粘結(jié)層甚至是基體合金分別具有不同的腐蝕作用,特別是雜質(zhì)對(duì)Y2O3的腐蝕造成YSZ中穩(wěn)定劑降低,導(dǎo)致ZrO2相的不穩(wěn)定性。在應(yīng)用低品質(zhì)燃油以及混合燃料時(shí)雜質(zhì)腐蝕問(wèn)題尤其值得關(guān)注。
提高TBC材料抗高溫腐蝕性能,主要從4個(gè)方面入手:發(fā)展新的抗高溫腐蝕涂層材料、進(jìn)行涂層表面防腐處理、改進(jìn)涂層系統(tǒng)結(jié)構(gòu)及增強(qiáng)燃?xì)廨啓C(jī)輔助清潔功能。
2.1 新TBC材料
關(guān)于新TBC材料的研究主要集中在稀土基材料方面。其中,La2Zr2O7涂層獲得較多研究人員的關(guān)注,Vassen等[27]報(bào)道其有更低的彈性模量及更高的熱膨脹系數(shù)。Yugeswaran等[28]研究了其在V2O5,Na2SO4和Na2SO4+V2O5環(huán)境下的腐蝕反應(yīng),證實(shí)該涂層具有優(yōu)良的抗V2O5腐蝕的性能;在Na2SO4腐蝕環(huán)境下,當(dāng)溫度在1 200 K以下可以保持化學(xué)穩(wěn)定性,但是在溫度達(dá)到1 350 K時(shí)與Na2SO4反應(yīng)生成La2O2SO4;而在Na2SO4+V2O5腐蝕環(huán)境下其抗腐蝕性能中等。Yugeswaran等[29]還提出了一種重量比50%8YSZ+50%La2Zr2O7的涂層,具有比單獨(dú)采用8YSZ或La2Zr2O7更優(yōu)良的性能。Xie等[30]研究了LaTi2Al9O19/YSZ雙層陶瓷涂層,認(rèn)為其具有比單YSZ陶瓷層更高的工作溫度和更優(yōu)良的抗Na2SO4和NaCl熔鹽腐蝕的性能。Habibi等[31-32]研究了YSZ中摻入Ta2O5(即YSZ-Ta2O5)后的抗高溫腐蝕性能,認(rèn)為在YSZ-Ta2O5中存在T相和正交相的鋯鉭氧化物,其中正交相在熱、化學(xué)穩(wěn)定性上均優(yōu)于T相,因而YSZ-Ta2O5具有比YSZ更好的抗Na2SO4+V2O5環(huán)境腐蝕性能。Chen等[33]對(duì)LaMgAl11O19(LaMA)作為組分加入YSZ基中,及作為表面阻隔層覆蓋于YSZ表面2種情況下的研究結(jié)果表明,LaMA加入YSZ中作為第2相可以有效阻止熔鹽滲入陶瓷層和粘結(jié)層。而LaMA作為表面阻隔層使用時(shí),也能增進(jìn)抗熔鹽侵入的性能。
關(guān)于ZrO2穩(wěn)定劑的替代研究也是提高TBC抗腐蝕性能的一個(gè)途徑。由于ZrO2陶瓷材料常用的穩(wěn)定劑CaO,MgO,Y2O3均能與外界腐蝕物質(zhì)發(fā)生反應(yīng)生成硫酸鹽和釩酸鹽。因此為了提高穩(wěn)定劑的抗腐蝕性能,嘗試采用CeO2,Sc2O3,In2O3,Yb2O3,Er2O3,Nd2O3和Sm2O3等替代Y2O3來(lái)改進(jìn)抗腐蝕性能。美國(guó)海軍研究實(shí)驗(yàn)室(Naval Research Labora?tory,NRL)研究表明,Sc2O3和In2O3可以作為ZrO2涂層的抗腐蝕穩(wěn)定劑。這2種氧化物的酸性均比Y2O3要強(qiáng),更難與V2O5反應(yīng)?;瘜W(xué)研究也證實(shí),純凈氧化物Sc2O3[34],Yb2O3[35]和In2O3[36]比Y2O3更具有抗V2O5或SO3-Na2SO4腐蝕的作用。CSZ(CeO2stabilized ZrO2)有比YSZ更低的熱導(dǎo)率和更大的熱膨脹系數(shù),比Y2O3更抗SO3-Na2SO4和NaVO3熔鹽的腐蝕[37]。Khor等[38]研究表明摩爾分?jǐn)?shù)4%的Er2O3可使ZrO2穩(wěn)定在C相,從而抑制了T相到M相的相變破壞。
此外,納米材料的興起在TBCs領(lǐng)域也引發(fā)了研究熱潮。與微米級(jí)YSZ相比,納米級(jí)的YSZ在熱學(xué)、力學(xué)、電學(xué)上具有特殊的性質(zhì),納米材料的晶粒尺寸能夠影響相變,一般情況下只有在高溫下穩(wěn)定存在的ZrO2的T相結(jié)構(gòu),在納米ZrO2中室溫下就可以穩(wěn)定存在[39-40]。納米陶瓷材料可以提高與粘結(jié)層的粘結(jié)強(qiáng)度[41-42],進(jìn)一步減少熱導(dǎo)率[43-45],提高熱循環(huán)條件下的壽命。Jamali等[46]研究發(fā)現(xiàn),納米YSZ由于其表面粗糙度更大,且涂層中存在高孔隙率納米區(qū),在Na2SO4+V2O5腐蝕環(huán)境下的腐蝕反應(yīng)比傳統(tǒng)YSZ中程度更深。但是由于納米YSZ高孔隙率提供了更大的應(yīng)變?nèi)菹?,能夠更好地抵抗高溫腐蝕環(huán)境下T相到M相相變時(shí)體積變化帶來(lái)的應(yīng)變失效。
2.2 TBC表面處理
TBC表面處理是指通過(guò)對(duì)TBC表面采用防腐蝕處理措施來(lái)達(dá)到阻止氣態(tài)或熔融腐蝕物滲入涂層內(nèi)部的目的。對(duì)TBC表面密封的方式主要有2種:一是采用物理手段使涂層表面致密化,減少涂層表面微裂紋和孔隙,阻止腐蝕物侵入,如激光重熔、離子輻照等;二是在涂層表面涂敷封堵層來(lái)阻止腐蝕物的滲入。
Tsai等[47-48]采用激光重熔使得YSZ涂層材料的抗腐蝕壽命顯著增長(zhǎng)。但Batista等[49]研究表明,由于微裂紋的存在,激光重熔的YSZ并不能有效防止厚度方向上的熔鹽滲入腐蝕。Yan等[50]研究了用70%H++30%C+的脈沖離子束輻照來(lái)實(shí)現(xiàn)涂層表面密封的方法。Chen等[51]和Afrasiabi等[52]在8YSZ涂層表面制備致密Al2O3,發(fā)現(xiàn)可以有效提高涂層抗高溫腐蝕的性能,延長(zhǎng)涂層使用壽命。Zhong和Wang等[53]比較了Al2O3和LaPO4這2種材料的密封層對(duì)8YSZ涂層的保護(hù)作用,結(jié)果表明Al2O3比LaPO4具有更優(yōu)良的保護(hù)TBC的性能。Nejati等[54]進(jìn)一步研究了CSZ,CSZ/microAl2O3和CSZ/nanoAl2O3涂層的抗腐蝕性能,認(rèn)為Al2O3作為表面密封層可以有效減少CSZ受高溫腐蝕影響,而具有納米結(jié)構(gòu)的Al2O3密封層效果最好。也有學(xué)者采用鋁酸鹽等無(wú)機(jī)密封材料來(lái)封閉涂層的孔隙和微裂紋[55-56]。雖然涂層表面密封的研究眾多,但是實(shí)際應(yīng)用并不廣泛,長(zhǎng)期高溫條件下仍然存在密封層開(kāi)裂和腐蝕物局部滲入等問(wèn)題。
2.3 改變TBC涂層結(jié)構(gòu)
為提高抗腐蝕性能,進(jìn)行涂層結(jié)構(gòu)系統(tǒng)上的設(shè)計(jì)也是提高TBC抗腐蝕性能的重要途徑。目前,經(jīng)典的YBC涂層結(jié)構(gòu)為雙涂層結(jié)構(gòu)(即粘結(jié)層與面層)[57]。為提高TBC材料的抗腐蝕性能,在TBC表面處理時(shí)制備表面密封防腐蝕層,也是一種改變涂層結(jié)構(gòu)的方法。另外,考慮到粘結(jié)層與合金基體中元素濃度梯度導(dǎo)致的涂層與基體間互擴(kuò)散的問(wèn)題,以及粘結(jié)層與氧離子的氧化作用,提出阻擋層(Diffusion Barrier Coating,DBC)概念。
阻擋粘結(jié)層與基體互擴(kuò)散的阻擋層稱(chēng)為擴(kuò)散阻擋層,即在基體合金與粘結(jié)層之間制備擴(kuò)散系數(shù)低,且與基體和粘結(jié)層能良好匹配的薄層[58-59]。擴(kuò)散阻擋層材料有以下幾類(lèi)[60-61]:?jiǎn)我毁F金屬或難熔金屬、雙(多)金屬合金、陶瓷層。在這幾種擴(kuò)散阻擋層材料中,單一難熔金屬或貴金屬對(duì)元素的擴(kuò)散阻滯能力有選擇性,制備成本相對(duì)較高,且在多元素同時(shí)互為擴(kuò)散情況下效果不佳;雙(多)金屬合金在界面易生成脆性相,影響涂層和基體的力學(xué)性能;陶瓷層綜合性能最佳,使用最廣,且以氮化物居多[61-62]。
阻擋粘結(jié)層與氧離子結(jié)合的阻擋層稱(chēng)為氧化阻擋層。由于性能穩(wěn)定且結(jié)構(gòu)致密,目前研究最多的是α-Al2O3[60,63],研究表明制備氧化阻擋層后粘結(jié)層的氧化程度降低,陶瓷層粘結(jié)強(qiáng)度得到有效保持,TBC性能和壽命得到提升,且采用納米阻擋層后效果更明顯。
此外,在綜合考慮防腐、抗粘結(jié)層氧化、阻擋擴(kuò)散等因素的基礎(chǔ)上還提出了復(fù)合涂層概念,即在涂層表面制備抗腐蝕層,在粘結(jié)層上制備氧化阻擋層,在粘結(jié)層下制備擴(kuò)散阻擋層[64-65]。其中Takahashi等[65]提出的一種復(fù)合涂層概念如圖2所示,綜合考慮了抗腐蝕性能和力學(xué)性能,在實(shí)驗(yàn)條件下具有更優(yōu)異的抗腐蝕性能。但是由于結(jié)構(gòu)復(fù)雜性和界面不穩(wěn)定性增多,導(dǎo)致不匹配性風(fēng)險(xiǎn)和制備難度增大,目前未實(shí)際應(yīng)用。若能解決工藝和匹配問(wèn)題,不失為一種重要的抗腐蝕途徑。
2.4 增強(qiáng)燃?xì)廨啓C(jī)輔助清潔功能
除了針對(duì)TBC材料本身的提高抗腐蝕性能的方法之外,燃?xì)廨啓C(jī)在實(shí)際應(yīng)用中還有一套進(jìn)氣過(guò)濾系統(tǒng)來(lái)保證進(jìn)氣空氣的潔凈,該過(guò)濾系統(tǒng)將外界空氣中大部分液態(tài)水微粒、固體顆粒雜質(zhì)擋在了燃?xì)廨啓C(jī)之外。另外,在日常維護(hù)中,清洗劑作為一種廉價(jià)有效的清潔除垢方法,在一定時(shí)間間隔內(nèi)對(duì)燃?xì)廨啓C(jī)通流部分的清洗,可以有效防止鹽分和雜質(zhì)在部件表面的沉積。
因此,不論是進(jìn)氣過(guò)濾系統(tǒng)還是清洗劑,都使得TBC工作于更加潔凈安全的環(huán)境中,大幅提高了其抵抗環(huán)境腐蝕的能力。前者可大幅降低TBC接觸腐蝕物質(zhì)的幾率,后者可有效降低腐蝕物沉積總量,二者通過(guò)控制腐蝕來(lái)源,對(duì)提高TBC抗腐蝕性能簡(jiǎn)單而有效。
2.5 從TBC發(fā)展到EBC
隨著燃?xì)廨啓C(jī)性能的不斷提升,對(duì)葉片材料提出了越來(lái)越高的要求,如圖3所示。受合金熔點(diǎn)限制,當(dāng)前先進(jìn)的單晶高溫合金可承受的最高溫度也低于1 100℃,因此高溫合金未來(lái)勢(shì)必難以滿(mǎn)足渦輪熱端部件的工作要求[66-67]。由于陶瓷基復(fù)合材料(Ceramic Matrix Composite(CMC),主要為Si3N4和SiC兩種材料)熱膨脹系數(shù)低,高溫強(qiáng)度和抗蠕變性能優(yōu)良,可承受1 300℃高溫,被視為高溫合金材料的理想替代者。CMC通常會(huì)在表面生成一層SiO2氧化膜,阻止材料的進(jìn)一步氧化。但是空氣中自帶的水蒸氣和燃料燃燒產(chǎn)物中的水蒸氣在高溫環(huán)境中,與SiO2生成Si(OH)4,造成CMC材料的持續(xù)退化[68]。此外,制備CMC材料所添加的Y2O3,A12O3,LU2O3及其他稀有金屬氧化物,在高溫氧化環(huán)境下會(huì)從晶界處遷移到材料表面,嚴(yán)重影響材料的力學(xué)性能和抗氧化能力,因此CMC材料同樣需要涂層保護(hù)。這種將噴涂于CMC材料表面以抵抗外界環(huán)境各種不利影響的涂層叫做環(huán)境障涂層(Environmental Barrier Coatings,EBC)。常用的EBCs涂層材料有莫來(lái)石[68]、硅酸釔和硅酸鐿[66]等。但是在沙塵環(huán)境下,這些常用的EBC材料存在CMAS的侵蝕破壞現(xiàn)象,造成EBC熔點(diǎn)降低、阻止外界腐蝕物擴(kuò)散和滲透的性能退化、力學(xué)性能下降、晶界開(kāi)裂等劣化現(xiàn)象。
NASA針對(duì)此研發(fā)了先進(jìn)EBC材料,采用HfO2、稀有金屬氧化物、SiO2三者的復(fù)合材料制備先進(jìn)EBC,再配合Yb-Si復(fù)合的粘結(jié)層,顯示出良好的抗CMAS和水蒸氣腐蝕的性能[66]。可以預(yù)見(jiàn),隨著CMC材料的逐步推廣應(yīng)用,研究的重點(diǎn)將從TBC逐步轉(zhuǎn)向EBC。
陶瓷層高溫相變作用、粘結(jié)層氧化腐蝕、鹽霧腐蝕、CMAS腐蝕,以及燃料雜質(zhì)腐蝕等是TBC系統(tǒng)主要的腐蝕方式。為提高TBC的抗腐蝕性能,主要從發(fā)展新的抗高溫腐蝕涂層材料、涂層表面處理、改進(jìn)涂層結(jié)構(gòu)設(shè)計(jì)及改善燃?xì)廨啓C(jī)輔助清潔功能四方面開(kāi)展研究工作。其中開(kāi)發(fā)性能更好的涂層材料依然是主流發(fā)展方向,改進(jìn)涂層結(jié)構(gòu)設(shè)計(jì),納米化顆粒涂層在未來(lái)充滿(mǎn)潛力。隨著CMC材料的逐步應(yīng)用,對(duì)燃?xì)廨啓C(jī)熱端部件的涂層防護(hù)研究將逐步從TBC轉(zhuǎn)向EBC。另外,改進(jìn)燃?xì)廨啓C(jī)進(jìn)氣過(guò)濾系統(tǒng)和提高清洗劑清潔效果可有效控制腐蝕物來(lái)源,從另一側(cè)面提高TBC的抗腐蝕能力。
[1] MILLER R A.History of thermal barrier coatings for gas turbine engines:NASA/TM-2009-215459[R]. Cleveland,Ohio:Glenn Research Center,2009.
[2] PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
[3] 郭洪波,宮聲凱,徐惠彬.新型高溫/超高溫?zé)嵴贤繉蛹爸苽浼夹g(shù)研究進(jìn)展[J].航空學(xué)報(bào),2014,35(10):2722-2732.
GUO H B,GONG S K,XU H B.Research progress on new high/ultra-high temperature thermal barrier coat?ings and processing technologies[J].Acta Aeronauti?caet Astronautica Sinica,2014,35(10):2722-2732(in Chinese).
[4] STECURA S.Effects of compositional changes on the performance of a thermal barrier coating system:NASA TM-78976[R].Cleveland,Ohio:Lewis Research Center,1979.
[5] KITAZAWA R,TANAKA M,KAGAWA Y,et al. Damage evolution of TBC system under in-phase ther?mo-mechanical tests[J].Materials Science and Engi?neering:B,2010,173(1/2/3):130-134.
[6] KR?MER S,YANG J,LEVI C G,et al.Thermochem?ical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS)deposits[J].Journal of the American Ceramic Society,2006,89(10):3167-3175.
[7] MILLER R A,GARLICK R G,SMIALEK J L.Phase distributions in plasma-sprayed zirconia-yttria[J]. American Ceramic Society Bulletin,1983,62(12):1355-1358.
[8] MILLER R A,SMIALEK J L,GARLICK R G.Phase stability in plasma-sprayed,partially stabilized zirco?nia-yttria[M]//HEUER AH,HOBBSLW.Advances in ceramics,Vol.3:science and technology of zirconia. Columbus,OH:American Ceramic Society,1981:241-252.
[9] EVANS AG,MUMM D R,HUTCHINSON J W,et al. Mechanisms controlling the durability of thermal barri?er coatings[J].Progress in Materials Science,2001,46(5):505-553.
[10] JONES R L,GADOMSKI S T.The hot corrosion of CoCrAlY turbine blade coatings by Na2SO4and vapor? ous NaCl[J].Journal of the Electrochemical Society,1977,124(10):1641-1648.
[11] 項(xiàng)民,駱軍華,張琦.鹽霧腐蝕對(duì)熱障涂層高溫循環(huán)氧化性能的影響[J].航空學(xué)報(bào),2006,27(1):138-141.
XIANG M,LUO J H,ZHANG Q.Influence of salt spray corrosion on high-temperature cyclic oxidation behavior of thermal barrier coatings[J].Acta Aero?nauticaetAstronautica Sinica, 2006, 27(1):138-141(in Chinese).
[12] EVANS A G,F(xiàn)LECK N A,F(xiàn)AULHABER S,et al. Scalinglaws governing the erosion andimpact resis?tance of thermal barrier coatings[J].Wear,2006,260(7/8):886-894.
[13] DREXLER J M,SHINODA K,ORTIZ AL,et al. Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J].Acta Materialia,2010,58(20):6835-6844.
[14] STOTT F H,DE WET D J,TAYLOR R.Degradation of thermal-barrier coatings at very high temperatures[J].MRS Bulletin,1994,19(10):46-49.
[15] PENG H,WANG L,GUO L,et al.Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits[J].Progress in Natural Science:Materials International,2012,22(5):461-467.
[16] KRAUSE A R,GARCES H F,DWIVEDI G,et al. Calcia-magnesia-alumino-silicate (CMAS) -in?duced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings[J]. Acta Materialia,2016,105:355-366.
[17] VIDAL-SETIF M H,CHELLAH N,RIO C,et al. Calcium-magnesium-alumino-silicate(CMAS)deg?radation of EB-PVD thermal barrier coatings:charac?terization of CMAS damage on ex-service high pres?sure blade TBCs[J].Surface and Coatings Technolo?gy,2012,208:39-45.
[18] 張小鋒,周克崧,宋進(jìn)兵,等.等離子噴涂—物理氣相沉積7YSZ熱障涂層沉積機(jī)理及其CMAS腐蝕失效機(jī)制[J].無(wú)機(jī)材料學(xué)報(bào),2015,30(3):287-293.
ZHANG X F,ZHOU K S,SONG J B,et al.Deposi?tion and CMAS corrosion mechanism of 7YSZ thermal barriercoatings prepared by plasma spray-physical va?por deposition[J].Journal of Inorganic Materials,2015,30(3):287-293(in Chinese).
[19] JONES R L.Some aspects of the hot corrosion of ther?mal barrier coatings[J].Journal of Thermal Spray Technology,1997,6(1):77-84.
[20] BRATTON R J,LAU S K,ANDERSSON C A,et al. Studies of thermal barrier coatings for heat engines[C]//Proceedings of the 2nd Conference on AdvancedMaterialsforAlternative-Fuel-CapableHeatEn?gines.Palo Alto,America:Electric Power Research Institute,1982:6-101.
[21] KVEMES I,SOLBERG J K,LILLERUD K P.Ceram?ic coatings on diesel engine components[C]//Proceed?ings of the 1st Conference onAdvanced Materials for Alternative Fuel Capable Directly Fired Heat Engines. US:U.S.Dept.of Energy,CONF-790749,1979:233-257.
[22] HAMILTON J C,NAGELBERG A S.In Situ Raman spectroscopic study of yttria-stabilized zirconia attack by molten sodium vanadate[J].Journal of the Ameri?can Ceramic Society,1984,67(10):686-690.
[23] BARKALOW R H,PETTIT E S.Mechanisms of hot corrosion attack of ceramic coating materials[C]//Pro?ceedings of the 1st Conference onAdvanced Materials for Alternative Fuel Capable Directly Fired Heat En?gines,CONF-790749.US:U.S.Dept.of Energy,1979:704-714.
[24] SINGHAL S C,BRATTON R J.Stability of a ZrO2(Y2O3)thermal barrier coating in turbine fuel with contaminants[J].Journal of Engineering for Power,1980,102(4):770-775.
[25] JONES R L.The development of hot-corrosion-resis?tant zirconia thermal barrier coatings[J].Materials at High Temperatures,1991,9(4):228-236.
[26] MCKEE D W,LUTHRA K L,SIEMERS P,et al. Resistance of thermal barrier ceramic coatings to hot salt corrosion[C]//Proceedings of the 1st Conferen?ceon Advanced Materials for Alternative Fuel Capa?ble Directly Fired Heat Engines.US:U.S.Dept.of En?ergy,1979:258-269.
[27] VASSEN R,CAO X Q,TIETZ F,et al.Zirconates as new materials for thermal barrier coatings[J].Jour?nal of the American Ceramic Society,1999,83(8):2023-2028.
[28] YUGESWARAN S,KOBAYASHI A,ANANTHA?PADMANABHAN P V.Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7thermal barri?er coatings[J].Journal of the European Ceramic Soci?ety,2012,32(4):823-834.
[29] YUGESWARAN S,KOBAYASHI A,ANANTHA?PADMANABHAN P V.Initial phase hot corrosion mechanism of gas tunnel type plasma sprayed thermal barrier coatings[J].Materials Science and Engineer?ing:B,2012,177(7):536-542.
[30] XIE X Y,GUO H B,GONG S K,et al.Hot corro?sion behavior of double-ceramic-laye LaTi2Al9O19/ YSZ thermal barrier coatings[J].Chinese Journal of Aeronautics,2012,25(1):137-142.
[31] HABIBI M H,WANG L,LIANG J D,et al.An in? vestigation on hot corrosion behavior of YSZ-Ta2O5in Na2SO4+V2O5salt at 1100℃[J].Corrosion Science,2013,75:409-414.
[32] HABIBI M H,YANG S Z,GUO S M.Phase stability and hot corrosion behavior of ZrO2-Ta2O5compound in Na2SO4-V2O5mixtures at elevated temperatures[J]. Ceramics International,2014,40(3):4077-4083.
[33] CHEN X L,ZHAO Y,GU L J,et al.Hot corrosion behaviour of plasma sprayed YSZ/LaMgAl11O19com?posite coatings in molten sulfate-vanadate salt[J]. Corrosion Science,2011,53(6):2335-2343.
[34] JONES R L.Scandia-stabilized zirconia for resis?tance to molten vanadate-sulfate corrosion[J].Sur?face and Coatings Technology,1989,39/40:89-96.
[35] STECURA S.New ZrO2-Yb2O3plasma-sprayed coat?ings for thermal barrier applications[J].Thin Solid Films,1987,150(1):15-40.
[36] JONES R L,MESS D.India as a hot corrosion-resis?tant stabilizer for zirconia[J].Journal of the Ameri?can Ceramic Society,1992,75(7):1818-1821.
[37] PARKA S Y,KIM J H,KIM M C,et al.Microscopic observation of degradation behavior in yttriaand ceria stabilized zirconia thermal barrier coatings under hot corrosion[J].Surfaceand CoatingsTechnology,2005,190(2/3):357-365.
[38] KHOR K A,YANG J.Plasma sprayed ZrO2-Sm2O3coatings:lattice parameters,tetragonality(c/a)and transformability of tetragonal zirconia phase in plas?ma-sprayed ZrO2-Er2O3 coatings[J].Journal of Ma?terials Science Letters,1997,16(12):1002-1004.
[39] SURESH A,MAYO M J,POTER W D.Thermody?namics of the tetragonal-to-monoclinic phase trans?formation in fine and nanocrystallineyttria-stabilized zirconia powders[J].Journal of Materials Research,2003,18(12):2912-2921.
[40] GARVIE R C,GOSS M F.Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals[J].JournalofMaterialsScience,1986,21(4):1253-1257.
[41] GHASEMI R,SHOJA-RAZAVI R,MOZAFARINIA R,et al.Comparison of microstructure and mechani?cal properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J].Ceramics International,2013,39(8):8805-8813.
[42] JAMALI H,MOZAFARINIA R,RAZAVI R S,et al. Fabrication and evaluation of plasma-sprayed nano?structured and conventional YSZ thermal barrier coat?ings[J].Current Nanoscience,2012,8(3):402-409.
[43] LIMA R S,MARPLE B R.Toward highly sinter?ing-resistant nanostructured ZrO2-7 wt.%Y2O3coat?ings for TBC applications by employing differential sintering[J].Journal of Thermal Spray Technology,2008,17(5/6):846-852.
[44] LIMA R S,MARPLE B R.Nanostructured YSZ ther?mal barrier coatings engineered to counteract sinter?ing effects[J].Materials Science and Engineering:A,2008,485(1/2):182-193.
[45] WU J,GUO H B,ZHOU L,et al.Microstructure and thermal properties of plasma sprayed thermal bar?rier coatings from nanostructured YSZ[J].Journal of Thermal Spray Technology,2010,19(6):1186-1194.
[46] JAMALI H,MOZAFARINIA R,SHOJA-RAZAVI R,et al.Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vana?dium pentoxide and sodium sulfate[J].Journal of the European Ceramic Society,2014,34(2):485-492.
[47] TSAI P C,HSU C S.High temperature corrosion re?sistance and microstructural evaluation of la?ser-glazed plasma-sprayed zirconia/MCrAlY thermal barrier coatings[J].Surface and Coatings Technolo?gy,2004,183(1):29-34.
[48] TSAI P C,LEE J H,HSU C S.Hot corrosion behav?ior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5[J].Surface and Coatings Technology,2007,201(9/10/11):5143-5147.
[49] BATISTA C,PORTINHA A,RIBEIRO R M,et al. Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts[J].Surface and Coatings Technology,2006,200(24):6783-6791.
[50] YAN S,SHANG Y J,XU X F,et al.Improving an?ti-corrosion property of thermal barrier coatings by in?tense pulsed ion beam irradiation[J].Nuclear Instru?ments and Methods in Physics Research Section B,2012,272:450-453.
[51] CHEN Z,WU N Q,SINGH J,et al.Effect of Al2O3overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate-vanadate salt[J]. Thin Solid Films,2003,443(1/2):46-52.
[52] AFRASIABI A,SAREMI M,KOBAYASHI A.A comparative study on hot corrosion resistance of three types of thermal barrier coatings:YSZ,YSZ+Al2O3and YSZ/Al2O3[J].Materials Science and Engineer?ing:A,2008,478(1/2):264-269.
[53] ZHONG X H,WANG Y M,XU Z H,et al.Hot-cor?rosion behaviors of overlay-clad yttria-stabilized zir?conia coatings in contact with vanadate-sulfate salts[J].Journal of the European Ceramic Society,2010, 30(6):1401-1408.
[54] NEJATI M,RAHIMIPOUR M R,MOBASHER?POUR I.Evaluation of hot corrosion behavior of CSZ,CSZ/microAl2O3and CSZ/nanoAl2O3plasma sprayed thermal barrier coatings[Z].Ceramics International,2014,40(3):4579-4590.
[55] KNUUTTILA J,SORSA P,M?NTYL? T,et al. Sealing of thermal spray coatings by impregnation[J]. Journal of Thermal Spray Technology,1999,8(2):249-257.
[56] TROCZYNSKI T,YANG Q,JOHN G.Post-deposi?tion treatment of zirconia thermal barrier coatings us?ing Sol-Gel alumina[J].Journal of Thermal Spray Technology,1999,8(2):229-234.
[57] 曹雪強(qiáng).熱障涂層材料[M].北京:科學(xué)出版社,2007:11.
CAO X Q.Thermal barrier coating materials[M].Bei?jing:Science Press,2007:11(in Chinese).
[58] MüLLER J,NEUSCHüTZ D.Efficiency ofα-alumi?na as diffusion barrier between bond coat and bulk material of gas turbine blades[J].Vacuum,2003,71(1/2):247-251.
[59] KURANISHI T,HABAZAKI H,KONNO H.Oxida?tion-resistant multilayer coatings using an anodic alu?mina layer as a diffusion barrier onγ-TiAl substrates[J].Surface and Coatings Technology,2005,200(7):2438-2444.
[60] 張曉囡,張華芳,李慶芬,等.熱障涂層界面擴(kuò)散阻擋層研究進(jìn)展[J].材料導(dǎo)報(bào),2008,22(4):14-17.
ZHANG X N,ZHANG H F,LI Q F,et al.Research development of interface diffusion barriers in thermal barrier coatings[J].Materials Review,2008,22(4):14-17(in Chinese).
[61] 蔡妍,易軍,陸峰,等.熱障涂層金屬元素?cái)U(kuò)散阻擋層研究進(jìn)展[J].材料工程,2011(9):92-96.
CAI Y,YI J,LU F,et al.Development in research on metal diffusion barrier of TBCs[J].Journal of Ma?terials Engineering,2011(9):92-96(in Chinese).
[62] 蔡妍,李建平,陸峰,等.電弧離子鍍TiC擴(kuò)散障結(jié)構(gòu)及抗高溫氧化性能研究[J].真空,2010,47(5):5-8.
CAI Y,LI J P,LU F,et al.Structure and antioxida?tion behavior of TiC diffusion barrier prepared by arc ion plating[J].Vacuum,2010,47(5):5-8(in Chi?nese).
[63] SU Y F.Protective control of the metal-ceramic inter?face behavior of thermal barrier coatings using an arti?ficialα-Al2O3layer[D].USA:Stevens Institute of Technology,2003.
[64] TAKAHASHI M,ITOH Y,MIYAZAKIA M.Ther?mal barrier coatings design for gas turbine[C]//OHM?ORI A.Proceedings of 14th International Thermal Spraying.Kobe Japan:High Temperature Society of Japan,1995:83-88.
[65] KAWASAKI A,WATANABE R.Cyclic thermal frac?ture behavior and spallation life of PSZ/NiCrAlY func?tionally graded thermal barrier coatings[J].Materials Science Forum,1999,308/311:402-409.
[66] ZHU D M,MILLER R A.Thermal and environmental barrier coatings for advanced propulsion engine sys?tems:NASA/TM-2004-213129[R].Cleveland,Ohio:Lewis Research Center,2004.
[67] 周益春,劉奇星,楊麗,等.熱障涂層的破壞機(jī)理與壽命預(yù)測(cè)[J].固體力學(xué)學(xué)報(bào),2010,31(5):504-531. ZHOU Y C,LIU Q X,YANG L,et al.Failure mech?anisms and life prediction of thermal barrier coatings[J].Chinese Journal of Solid Mechanics,2010,31(5):504-531(in Chinese).
[68] RAMASAMY S,TEWARIS N,LEEK N,et al.EBC development for hot-pressed Y2O3/Al2O3doped silicon nitride ceramics[J].Materials Science and Engineer?ing:A,2010,527(21/22):5492-5498.
Review of hot corrosion of thermal barrier coatings of gas turbine
LIU Yongbao1,LIU Jianhua1,YU Youhong1,HE Xing1,LIU Li2
1 College of Power Engineering,Naval University of Engineering,Wuhan 430033,China
2 College of Physics Science and Engineering Technology,Yichun University,Yichun 336000,China
The review was done in order to make clear the problem of the hot corrosion of the Thermal Barrier Coatings(TBCs)during gas turbine serving.This paper summarizes the factors resulting from the hot corrosion of TBCs during turbine service and classifies methods for enhancing the corrosive resistance of TBCs.A prospective methodology for improving corrosion resistance is also formulated.The main types of corrosion coating include phase reaction,oxidizing of the bond coating,salt-fog corrosion,CMAS corrosion and fuel impurity corrosion.So far,methods for improving the corrosion resistance of TBCs include developing new coating materials,anticorrosive treatment on the surface of TBCs,modifying the stacking configuration and improving the cleansing functions of the gas turbines.In the future,developing new materials with excellent performance will still be the main direction for boosting the improvement of the hotcorrosion resistance ofTBCs.Simultaneously,improving the tacking configuration and nanotechnology of TBC coatings are potential approaches for improving corrosion resistance.With the development of a Ceramic Matrix Composite(CMC),the focus of the hot corrosion of TBCs may turn to that of Environmental Barrier Coatings(EBCs).
gas turbine;thermal barrier coatings;hot corrosion;review
U668.3;TK47
A
10.3969/j.issn.1673-3185.2017.02.014
http://kns.cnki.net/kcms/detail/42.1755.TJ.20170313.1559.012.html
劉永葆,劉建華,余又紅,等.燃?xì)廨啓C(jī)熱障涂層高溫腐蝕研究綜述[J].中國(guó)艦船研究,2017,12(2):107-115.
LIU Y B,LIU J H,YU Y H,et al.Review of hot corrosion of thermal barrier coatings of gas turbine[J].Chinese Journal of Ship Research,2017,12(2):107-115.
2016-07-25 < class="emphasis_bold"> 網(wǎng)絡(luò)出版時(shí)間:
時(shí)間:2017-3-13 15:59
劉永葆,男,1967年生,博士,教授。研究方向:燃?xì)廨啓C(jī)監(jiān)測(cè)、控制與故障診斷。
E-mail:yongbaoliu@aliyun.com
劉建華(通信作者),男,1983年生,博士生。研究方向:燃?xì)廨啓C(jī)監(jiān)測(cè)、控制與故障診斷。
E-mail:ljh363418@sina.cn
期刊網(wǎng)址:www.ship-research.com