趙 迪,柯瑞林,鄒 雄,毛 琳,胡行兵,王金合
(1. 上海大學 納米科學與技術(shù)研究中心,上海 200444;2. 深圳市歐姆陽科技有限公司,廣東 深圳 518035; 3. 揚州亞光電纜有限公司, 江蘇 揚州 225600))
氮化硼納米片制備方法研究進展*
趙 迪1,柯瑞林2,鄒 雄1,毛 琳1,胡行兵3,王金合1
(1. 上海大學 納米科學與技術(shù)研究中心,上海 200444;2. 深圳市歐姆陽科技有限公司,廣東 深圳 518035; 3. 揚州亞光電纜有限公司, 江蘇 揚州 225600))
近年來,由于氮化硼納米片獨特的結(jié)構(gòu)和性能,在物理、化學、電子及材料學界引起了廣泛的研究興趣。綜述了氮化硼納米片的制備方法,包括:化學氣相沉積、化學剝離、超聲剝離和球磨等方法,分析比較了各種方法的優(yōu)缺點,并指出了氮化硼納米片制備方法的發(fā)展趨勢。
氮化硼;氮化硼納米片;制備;研究進展
自2004年石墨烯發(fā)現(xiàn)以來,由于其優(yōu)異的機械、光學和電性能在材料科學的引起了廣泛的關(guān)注。作為石墨烯等電子、同構(gòu)型的類似物,氮化硼納米片(boron nitride nanosheets, BNNSs)同樣具有許多獨特的性能,從而也備受青睞。其晶格結(jié)構(gòu)如圖1所示[1],是由交替的B和N原子sp2雜化組成的六邊形二維蜂窩狀晶格結(jié)構(gòu)[2]。
圖1 氮化硼納米片結(jié)構(gòu)基礎(chǔ)[1]
BNNSs表現(xiàn)出許多優(yōu)異的性質(zhì),如良好的機械性能(彈性模量700~900 GPa,斷裂強度120~160 GPa,斷裂應變0.28%~0.33%)[3]、高熱穩(wěn)定性(抗氧化溫度約850 ℃,其結(jié)構(gòu)穩(wěn)定性在真空條件下高達3 000 ℃)[4]和高導熱性(常溫面內(nèi)導熱系數(shù)2 000 W/(m·K))等[5-6],同時BNNSs還具有電絕緣性[7](約5~6 eV的帶隙)、抗氧化性[8-9]、潤滑性[10-11]、氣敏性[12]和電磁性等[13-14]特殊性能。這些優(yōu)異的性能使得BNNSs材料倍受關(guān)注。
由于BNNSs優(yōu)異的性能,BNNSs在許多領(lǐng)域存在潛在的應用。BNNSs作為無機填料添加到高分子基質(zhì)中制備高分子復合材料,從而提高復合材料的機械性能[15-17]、導熱性能[18-19]、抗氧原子腐蝕作用等等[20]。BNNSs可用于功能性涂料制備,如各種防腐涂料[21-23],自清潔涂料等[24-25]。最近,BNNSs在納米電子設備[26]和紫外光發(fā)射設備[27]上的應用取得了一定的進展。同時,BNNSs作為載體可提高金屬顆粒的催化作用[28]和多孔BNNSs的水凈化作用[29]的應用上存在著巨大的潛力。雖然BNNSs是近幾年才開始研究,但其優(yōu)異的性能使產(chǎn)業(yè)界迅速看到了其在電子、半導體、新能源、功能材料、航天航海、軍工等領(lǐng)域可能的應用潛力,成為國內(nèi)外研究熱點和競爭焦點。
然而,BNNSs的制備是其走向應用的關(guān)鍵,如何大規(guī)模制備高質(zhì)量大尺寸低成本的BNNSs是產(chǎn)業(yè)化亟待解決的問題。本文詳細綜述了BNNSs的各種制備方法和機理、各方法的優(yōu)缺點及目前的研究進展。
由于單層或多層BNNSs材料具有獨特的性能并且廣泛應用于各種領(lǐng)域,單層或多層BNNSs材料的制備方法成為國內(nèi)外學者的研究焦點。各種制備BNNSs薄層材料的新方法、新技術(shù)層出不窮。目前,制備BNNSs薄層材料的方法主要有以下幾種。
1.1 微機械剝離法
微機械剝離法是最早用于制備石墨烯的物理方法。而BNNSs首次是由Pacile等[30]在光學顯微鏡下,附著到300 nm厚的SiO2基板上采用膠帶法將h-BN剝離出BN層從而制備BNNSs。雖然微機械剝離是一種簡單的制備高質(zhì)量BNNSs的方法,但是它費時費力,難以精確控制,重復性較差,也難以大規(guī)模制備。
1.2 化學氣相沉積法
化學氣相沉積 (chemical vapor deposition,CVD)是利用氣態(tài)或蒸汽態(tài)的物質(zhì)在氣相或氣固界面上反應生成固態(tài)沉積物的技術(shù)[31]。CVD方法是工業(yè)上應用最廣泛的一種大規(guī)模制備半導體薄膜材料的方法,也是制備BNNSs的一種常用方法,許多研究學者采用CVD方法來制備單層或多層BNNSs。CVD制備工藝技術(shù)具有簡單易行、高產(chǎn)、面積可控并且可以得到高品質(zhì)、性能好的固體材料等優(yōu)點,引發(fā)了使用CVD方法制備BNNSs材料的研究熱潮。Yu等[32]使用微波等離子體 CVD 技術(shù)在硅基板從BF3-N2-H2的混合氣體的合成BNNSs,通過BF3和H2的氣流速度與其比率的改變控制BNNSs大小、形狀和密度,從而制備的BNNSs厚度小至5 nm。Qin等[33]也是運用了微波等離子體 CVD 技術(shù)在硅基板從BF3-N2-H2的混合氣體的合成BNNSs,不同的是同時調(diào)節(jié)N2、BF3和H2的氣流速度,通過保持BF3和H2的氣流速度為常量增加N2氣體流速,最終在BF3、H2和N2的流速分別為3,10和1 200 mL/min條件下得到長度范圍在0.8~2.5 μm,厚度約為一個或幾個原子層的BNNSs。CVD方法制備BNNSs的化學原料通常為BF3/NH3、BCl3/NH3、B2H6/NH3,控制硼源和氣體的流速是制備關(guān)鍵。此外,沉積速率受到硼源和NH3的摩爾比影響。Ismach等[34]采用低壓化學氣相沉積法 (low-pressure chemical vapor deposition, LPCVD),用乙硼烷和氨氣作為前驅(qū)體制備BNNSs。LPCVD是由生長條件、溫度、時間以及氣體分壓共同控制BNNSs的層數(shù)。Chatterjee等[35]則以十硼烷與氨為前驅(qū)體在多晶Ni或Cu箔上利用CVD方法有效的合成高質(zhì)量BNNSs。十硼烷作為前驅(qū)體容易處理,且便于輸送到CVD爐的反應區(qū)中。另外,通過對單一硼源,如環(huán)硼氮烷[36](B3N3H6)、三氯代環(huán)硼氮烷(B3N3H3Cl3)或六氯環(huán)硼氮烷(B3N3Cl6),熱解得到BNNSs的方法也有許多研究。Shi等[37]用非氣體作為前驅(qū)體材料,在多晶Ni片上采用常壓化學氣相沉積法 (ambient pressure chemical vapor deposition, APCVD) 由環(huán)硼氮烷 (B3N3H6) 制備具有光滑表面的少層BNNSs。Tay等[38]用硼烷氨作為前驅(qū)體在Cu箔上利用APCVD方法研究h-BN的可控生長。非氣體硼源具有許多優(yōu)點,其中環(huán)硼氮烷的毒性較小,然而這種方法同樣需要較高的溫度。雖然CVD技術(shù)有著各種工藝優(yōu)點,但該方法對設備及外圍設施依賴性較強,而且影響因素多,反應過程需要高真空度,使BNNSs制備成本不能得到有效的降低。
1.3 化學剝離法
化學剝離法是反應物在溶液中插入六方晶型BN(h-BN)層層之間,并發(fā)生化學反應,利用反應生成物的自由運動克服h-BN層間的范德華力,從而得到BNNSs。該方法操作簡單,不需要高溫高壓,并且可以制備面積大、厚度薄的BNNSs,但也常常伴有BNNSs團聚的現(xiàn)象。Du等[39]利用濃H2SO4、KMnO4和H2O2發(fā)生化學反應制備BNNSs。其反應機理如下:(1) 將h-BN粉末和濃H2SO4混合均勻使得H+插入h-BN層間,從而使層間距拉大;(2) 隨后,加入的KMnO4與濃H2SO4反應生成MnO2納米粒子,MnO2納米粒子也可以插入到增大的氮化硼層間內(nèi)使BNNSs進一步剝離且阻止其發(fā)生團聚;(3) 最后,MnO2納米粒子由加入的H2O2除去且生成的O2使得層狀BN剝落制備了BNNSs。圖2表明了剝離機理。
圖2 BNNSs從六方氮化硼中剝離的過程[39]
Fig 2 The process of BNNSs exfoliated from h-BN powder[39]
Li等[40]利用熔融的氫氧化物實現(xiàn)h-BN層與層之間的剝離獲得卷曲的BNNSs。該方法原材料易得、設備使用簡單便宜,但得到的BNNSs產(chǎn)率低且易發(fā)生自卷曲。Du等[41]用氟化銨(NH4F)剝離和氟化BNNSs,一步合成具有鐵磁性的F-BNNSs。剝離機理為氟化作用使h-BN的表面卷曲,從而銨離子插入剝離?;瘜W剝離法的缺點在于制得的產(chǎn)物在酸性或堿性溶液中,需要處理接近中性,并且這種方法制備得到單層BNNSs產(chǎn)量較少。
1.4 聲波降解法
通常直接把h-BN加在某種有機溶劑或水中,借助超聲波的作用制備一定濃度的單層或少層BNNSs溶液。采用聲波降解法制備BNNSs對所選擇的溶劑有一定的要求,若該溶劑是h-BN的良溶劑則有助于BNNSs的剝離得到穩(wěn)定的BNNSs且不易團聚;若該溶劑是h-BN的不良溶劑常常會使制得的BNNSs發(fā)生團聚而無法制得高質(zhì)量、高產(chǎn)率的BNNSs。圖3為良/不良溶劑下BNNSs剝離機理圖[42]。
May等[43]研究了溶劑的溶解度參數(shù)對二維氮化硼納米片在溶液中的穩(wěn)定分散所起的作用,提出溶劑或高分子溶液的表面能和氮化硼表面能相近有助于氮化硼的剝離及穩(wěn)定分散,該理論為制備氮化硼納米片高分子復合材料的溶劑選擇提供了簡便方法。Lin等[44]在超聲輔助的作用下以水為分散液超聲剝離層狀h-BN結(jié)構(gòu),制備潔凈的BNNSs,但由于超聲輔助水解作用會使h-BN平面切斷從而導致納米片的橫向尺寸減小。
Zhi等[45]則采用強極性溶劑N, N-二甲基甲酰胺 (DMF) 為分散劑超聲剝離h-BN材料10 h,通過離心分離制得的BNNSs,BNNSs的平均厚度和離心速率有關(guān),5 000 r/min時得到層數(shù)低于20層、厚度小于7 nm的BNNSs,8 000 r/min時層數(shù)小于10層、厚度降到3 nm。制得的BNNSs直接應用于聚甲基丙烯酸甲酯 (PMMA) 復合材料,提高了復合材料的機械性能和熱性能。Wang等[46]則將0.2 g h-BN分散于在100 mL的甲基磺酸 (MSA) 中超聲處理8 h,最后得到0.3 mg/mL BNNSs的MSA溶液,BNNSs的厚度小于3 nm,其產(chǎn)率可高達15%。最近,Cao等[47]利用混合溶劑對h-BN超聲處理進行研究,開發(fā)了一種新穎溫和的混合溶劑,即異丙醇和氨水的混合溶液,并通過聲波降解法剝離制備BNNSs。由于h-BN中硼原子缺電子,路易斯酸-堿相互作用被認為是h-BN的剝離的機理。當混合溶液氨水∶異丙醇等于3∶2時,超聲剝離35 h得到產(chǎn)率約為20%的BNNSs。Marsh等[48]對簡單的溶劑聲波降解h-BN的剝離效果進行研究,并討論溶劑表面張力和分子量在h-BN剝離的作用,提出助溶劑剝離機理,其助溶劑體系為丙酮、甲醇、乙醇、1-丙醇、異丙醇和四丁醇。濃度為2 mg/mL的h-BN粉末超聲3 h,在四丁醇水溶液中超聲剝離BNNSs效率高且分散穩(wěn)定。
圖3 良/不良溶劑對BNNSs剝離機理[42]
聲波降解法主要是h-BN在有機溶劑或水中利用超聲波的作用將h-BN層與層之間剝離,該方法操作簡單,產(chǎn)物易得,但使用的有機溶劑往往有毒,產(chǎn)物的片層面尺寸減小明顯。
1.5 球磨法
球磨法是在機械力的作用下將尺寸較大的h-BN經(jīng)過一段時間的機械力作用得到BNNSs。球磨在h-BN層狀材料上產(chǎn)生兩種力,剪切力和壓縮力。剪切力從它們的外表面切割層狀材料,而壓縮力從層狀材料的邊緣剝離納米片。其制備BNNSs機理如圖4所示[49]。
圖4 低能球磨機理示意圖[49]
Li等[50]采用低能球磨法以苯甲酸芐酯為球磨劑,在氣壓為200 kPa轉(zhuǎn)速為150 r/min的行星球磨機中球磨15 h,制備了寬度在一百到幾百納米、厚度約為2~4 nm的BNNSs。Lee等[51]將氫氧化物作為輔助物采用簡單的球磨法制備BNNSs,該制備過程是化學剝離和機械剪切作用的協(xié)同作用,從而提高產(chǎn)率和分散性。最近,Lin等[52]選用N-甲基-2-吡咯烷酮(NMP)作為球磨劑將h-BN粉末球磨48 h制備BNNSs。該方法在不同球磨劑條件下制得了BNNSs,其特點是操作簡單、成本低,但產(chǎn)品純度低、易產(chǎn)生缺陷且尺寸分布不均勻。
1.6 其它制備方法
除上述常用的幾種制備BNNSs的路線外,國內(nèi)外學者仍不斷探索BNNSs新的制備途徑。Sajjad等[53]在350 ℃利用CO2脈沖激光等離子體沉積(CO2-PLD)技術(shù)通過輻射熱解h-BN制備了BNNSs,在真空0.2 Pa的壓力下得到的多晶BNNSs,或在H2氛圍中26 Pa壓力下得到的單晶BNNSs,表現(xiàn)出較高的純度和較好結(jié)晶度。Sokoowska等[54]探索了在電場(f=40 Hz,E=7 mV/μm)的作用下通過液相剝離在極性溶劑中制備六方BNNSs的實驗,該方法表明電能可以增強h-BN液相剝離效果,電場輔助過程的能量效率較高且與超聲剝離相比更加節(jié)能。Wang等[55]提出使用化學鼓泡法制備BNNSs,該方法使用硼烷氨為前驅(qū)體通過多階段加熱釋放出氫氣并使生成的BN吹鼓成泡,經(jīng)過高溫熱處理和BN泡的塌陷制備出結(jié)構(gòu)有序的BNNSs,BNNSs的產(chǎn)率高達25%(質(zhì)量分數(shù))。然而,為了制備出高產(chǎn)量高質(zhì)量的BNNSs,很多學者仍在進行探索。
在相對較短的幾年內(nèi),BNNSs以其具有的優(yōu)異的性能及各種潛在的應用前景,推動了BNNSs快速的研究和發(fā)展。與此同時,人們需要大量高質(zhì)量、結(jié)構(gòu)完整的BNNSs,研究者們也致力于在不同領(lǐng)域嘗試不同方法制備高質(zhì)量、 大面積BNNSs材料。微機械法顯然不能滿足未來工業(yè)化的要求,化學氣相沉積法雖然可以制備出高質(zhì)量的BNNSs薄膜材料,但現(xiàn)有的工藝不成熟以及成本較高都限制了其大規(guī)模的生產(chǎn)應用;聲波降解法和球磨法等機械剝離法能制備出高質(zhì)量的BNNSs,但產(chǎn)率太低、耗時太長且易團聚,因此還需進一步探索、完善。如何大量、低成本制備出高質(zhì)量的BNNSs材料并逐步走向產(chǎn)業(yè)化仍是未來研究的一個重點。
[1] Lin Y, Connell J W. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with grapheme [J]. Nanoscale, 2012, 4(22): 6908-6939.
[2] Wang Y, Ding Y. Structural, electronic, and magnetic properties of the semifluorinated boron nitride bilayer: a first-principles study [J]. J Phys Chem C, 2013, 117(6): 3114-3121.
[3] Han T, Luo Y, Wang C. Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets [J]. J Phys D: Appl Phys, 2014, 47(2): 025303-025310.
[4] Meng W, Huang Y, Fu Y, et al. Polymer composites of boron nitride nanotubes and nanosheets [J]. J Mater Chem C, 2014, 47(2): 10049-10061.
[5] Kuang Z, Chen Y, Lu Y, et al. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity [J]. Small, 2015, 11(14):1655-1659.
[6] Bari R, Parviz D, Khabaz F, et al. Liquid phase exfoliation and crumpling of inorganic nanosheets [J]. Phys Chem Chem Phys, 2015, 17(14): 9383-9393.
[7] Yuan J, Liew K M. Structure stability and high-temperature distortion resistance of trilayer complexes formed from graphenes and boron nitride nanosheets [J]. Phys Chem Chem Phys, 2014, 16(1): 88-94.
[8] Li L H, Cervenka J, Watanabe K, et al. Strong oxidation resistance of atomically thin boron nitride nanosheets [J]. ACS Nano, 2014, 8(2): 1457-1462.
[9] Liu L, Shen Z, Zheng Y, et al. Boron nitride nanosheets with controlled size and thickness for enhancing mechanical properties and atomic oxygen erosion resistance [J]. RSC Advances, 2014, 4(71): 37726-37732.
[10] Cho D H, Kim J S, Kwon S H, et al. Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water [J]. Wear, 2013, 302(1-2): 981-986.
[11] Deepika K, Li L H, Glushenkov A M, et al. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil [J]. Scientific Reports, 2014, (4): 7288-7296.
[12] Sajjad M, Feng P. Study the gas sensing properties of boron nitride nanosheets [J]. Materials Research Bulletin, 2014, 49: 35-38.
[13] Wang Y, Ding Y. Tunable magnetic and electronic properties of BN nanosheets with triangular defects: a first-principles study [J]. J Phys: Condens Matter, 2014, 26(43): 435302.
[14] Si M S, Gao D, Yang D, et al. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets [J]. J Chem Phys, 2014, 140(20):204701.
[15] Wang X, Pakdel A, Zhi C, et al. High-yield boron nitride nanosheets from ‘chemical blowing’: towards practical applications in polymer composites [J]. J Phys: Condens Matter, 2012, 24(31): 314205-314214.
[16] Jan R, May P, Bell A P, et al. Enhancing the mechanical properties of BN nanosheet-polymer composites by uniaxial drawing [J]. Nanoscale, 2014, 6(9): 4889- 4895.
[17] Khan U, May P, O’Neill A, et al. Polymer reinforcement using liquid-exfoliated boron nitride nanosheets [J]. Nanoscale, 2013, 5(2): 581-587.
[18] Cho H B, Nakayama T, Suzuki T, et al. Formation and structural characteristic of perpendicularly aligned boron nitride nanosheet bridges in polymer/boron nitride composite film and its thermal conductivity [J]. Jpn J Appl Phys, 2011, 50, 01BJ05-6.
[19] Wang X, Pakdel A, Zhang J, et al. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties [J]. Nanoscale Research Letters, 2012, (7): 662-668.
[20] Yi M, Shen Z, Zhang W, et al. Hydrodynamics-assisted scalable production of boron nitride nanosheets and their application in improving oxygen-atom erosion resistance of polymeric composites [J]. Nanoscale, 2013, 5(21): 10660-10667.
[21] Yi M, Shen Z, Zhao X, et al. Boron nitride nanosheets as oxygen-atom corrosion protective coatings [J]. Appl Phys Lett, 2014, 104(14): 143101-143105.
[22] Husain E, Narayanan T N, Taha-Tijerina J J, et al. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel [J]. ACS Appl Mater Interfaces, 2013, (5): 4129-4135.
[23] Gyawali G, Adhikari R, Kim H S, et al. Effect of h-BN nanosheets codeposition on electrochemical corrosion behavior of electrodeposited nickel composite coatings [J]. ECS Electrochemistry Letters, 2013, 2(3): C7-C10.
[24] Pakdel A, Zhi C, Bando Y, et al. Boron nitride nanosheet coatings with controllable water repellency [J]. ACS Nano, 2011, 5(8): 6507-6515.
[25] Garcia A G, Neumann M, Amet F, et al. Effective cleaning of hexagonal boron nitride for graphene devices [J]. Nano Lett, 2012, 12(9): 4449-4454.
[26] Sajjad M, Morell G, Feng P. Advance in novel boron nitride nanosheets to nanoelectronic device applications [J]. ACS Appl Mater Interfaces, 2013, 5(11): 5051-5056.
[27] Li L H, Chen Y, Cheng B M, et al. Photoluminescence of boron nitride nanosheets exfoliated by ball milling [J]. Appl Phys Lett, 2012, 100(26):261108.
[28] Huang C, Chen C, Ye X, et al. Stable colloidal boron nitride nanosheet dispersion and its potential application in catalysis [J]. J Mater Chem A, 2013, (1): 12192-12197.
[29] Lei W, Portehault D, Liu D, et al. Porous boron nitride nanosheets for effective water cleaning [J]. Nature Communications, 2013, 4(2):216-219.
[30] Pacilé D, Meyer J C, Girit C O, et al. The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes [J]. Appl Phys Lett, 2008, 92(13): 133107.
[31] 張迎光, 白雪峰, 張洪林,等. 化學氣相沉積技術(shù)的進展[J]. 中國科技信息, 2005,12:82.
[32] Yu J, Qin L, Hao Y, et al. Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity [J]. ACS Nano, 2010, 4(1): 414-422.
[33] Qin L, Yu J, Li M, et al. Catalyst-free growth of mono- and few-atomic-layer boron nitride sheets by chemical vapor deposition [J]. Nanotechnology, 2011, 22(21): 215602.
[34] Ismach A, Chou H, Ferrer D A, et al. Toward the controlled synthesis of hexagonal boron nitride films [J]. ACS Nano, 2012, 6(7): 6378-6385.
[35] Chatterjee S, Luo Z, Acerce M, et al. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions [J]. Chem Mater, 2011, 23(20): 4414-4416.
[36] Sutter P, Lahiri J, Albrecht P, et al. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films [J]. ACS Nano, 2011, 5(9): 7303-7309.
[37] Shi Y, Hamsen C, Jia X, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition [J]. Nano Lett, 2010, 10(10): 4134-4139.
[38] Tay R Y, Wang X, Tsang S H, et al. A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film [J]. J Mater Chem C, 2014, 2(9): 1650-1657.
[39] Du M, Wu Y, Hao X. A facile chemical exfoliation method to obtain large size boron nitride nanosheets [J]. Cryst Eng Comm, 2013, 15(9): 1782-1786.
[40] Li X, Hao X, Zhao M, et al. Exfoliation of hexagonal boron nitride by molten hydroxides [J]. Adv Mater, 2013, 25(15): 2200-2204.
[41] Du M, Li X, Wang A, et al. One-step exfoliation and fluorination of boron nitride nanosheets and a study of their magnetic properties [J]. Angew Chem Int Ed, 2014, 53(14): 3645 -3649.
[42] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials [J]. Science, 2013, 340: 1226419-1226436.
[43] May P, Khan U, Hughes J M, et al. Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers [J]. J Phys Chem C, 2012, 116(20):11393-11400.
[44] Lin Y, Williams T V, Xu T B, et al. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water [J]. J Phys Chem C, 2011, 115: 2679-2685.
[45] Zhi C, Bando Y, Tang C, et al. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties [J]. Adv Mater, 2009, 21(28): 2889-2893.
[46] Wang Y, Shi Z, Yin J. Boron nitride nanosheets: large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole [J]. J Mater Chem, 2011, 21(30): 11371-11377.
[47] Cao L, Emami S, Lafdi K. Large-scale exfoliation of hexagonal boron nitride nanosheets in liquid phase [J]. Mater Express, 2014, 4(2): 165-171.
[48] Marsh K L, Souliman M, Kaner R B. Co-solvent exfoliation and suspension of hexagonal boron nitride [J]. Chem Commun, 2015, 51(1): 187-190.
[49] Yao Y, Lin Z, Li Z, et al. Large-scale production of two-dimensional nanosheets [J]. J Mater Chem, 2012, 22(27): 13494-13499.
[50] Li L H, Chen Y, Behan G, et al. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling [J]. J Mater Chem, 2011, 21(32): 11862-11866.
[51] Lee D, Lee B, Park K H, et al. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling [J]. Nano Lett, 2015, 15: 1238-1244.
[52] Lin Z, Mcnamara A, Liu Y, et al. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation [J]. Composites Science and Technology, 2014, 90: 123-128.
[53] Sajjad M, Ahmadi M, Guinel M J F, et al. Large scale synthesis of single-crystal and polycrystalline boron nitride nanosheets [J]. J Mater Sci, 2013, 48(6): 2543-2549.
[55] Wang X, Zhi C, Li L, et al. “Chemical blowing” of thin-walled bubbles: high-throughput fabrication of large-area, few-layered BN and Cx-BN nanosheets [J]. Adv Mater, 2011, 23(35): 4072-4076.
Research progress on preparation technology of boron nitride nanosheets
ZHAO Di1, KE Ruilin2, ZOU Xiong1, MAO Lin1, HU Xingbing3, WANG Jinhe1
(1. Shanghai University, Nano-Science & Technology Research Center, Shanghai 200444, China;2. Shenzhen Ohm Yang Technology Co. Ltd., Shenzhen 518035, China;3. Yangzhou Yaguang Cable Co. Ltd., Yangzhou 225600, China)
Boron nitride nanosheets has attracted much interest in recent years due to its unique and outstanding properties in physics, chemistry, electronics and materials academia. Preparation methods of boron nitride nanosheets used in recent years are intensively introduced, including chemical vapor deposition, chemical cleavage, ultrasonication exfoliation and low-energy ball milling, ect. Each method’s advantages and shortcomings are further discussed in detail. The preparations of boron nitride nanosheets are also prospected.
boron nitride; boron nitride nanosheets; preparation; research progress
1001-9731(2016)12-12071-05
國家青年科學基金資助項目(51403123);上海市青年科技英才揚帆計劃資助項目(14YF1408800)
2016-03-16
2016-06-15 通訊作者:王金合,E-mail: wangjinhe@shu.edu.cn
趙 迪 (1991-),女,安徽宿州人,在讀碩士,師承王金合副研究員,從事導熱硅橡膠、導熱機理研究。
TB321
A
10.3969/j.issn.1001-9731.2016.12.011