朱旭生,傅春燕,趙康鑫,王 莉
(華東交通大學(xué)理學(xué)院,江西 南昌330013)
帶非線性阻尼的歐拉方程組正規(guī)解的爆破
朱旭生,傅春燕,趙康鑫,王 莉
(華東交通大學(xué)理學(xué)院,江西 南昌330013)
研究了n(n≥1)維空間理想可壓縮流中帶有非線性阻尼項(xiàng)的等熵歐拉方程組的初值問(wèn)題。當(dāng)初始密度有緊支集時(shí),利用泛函結(jié)合特征線的方法,證明了在真空情形下帶有形如-αρ|u|θu阻尼項(xiàng)的可壓縮等熵歐拉方程組,其阻尼系數(shù)α為正常數(shù)時(shí)的正規(guī)解在初始數(shù)據(jù)一定大時(shí)必定爆破,其中0<θ<1。
等熵歐拉方程組;泛函方法;爆破
考慮下列n(n≥1)維空間中帶阻尼項(xiàng)的等熵歐拉方程組:
的Cauchy問(wèn)題.其初始條件為
其中:ρ,u,p分別表示氣體的密度,速度和壓力;狀態(tài)方程為p=Aργ(A>0);γ為絕熱指數(shù)(γ>1);其中常數(shù)α>0;0<θ<1。
對(duì)帶阻尼項(xiàng)的歐拉方程組的研究有很多成果,大多是研究ρ>0的情形,當(dāng)初值是在一個(gè)擴(kuò)散波或者常狀態(tài)的平衡解附近的小擾動(dòng),經(jīng)典解整體存在詳情參見(jiàn)[1-3];但關(guān)于歐拉方程組的爆破也有大量的研究,例如[4-11]。文獻(xiàn)[4-6]研究了初值具有緊支集的情形,證明了某些情況下正規(guī)解會(huì)在有限時(shí)間內(nèi)爆破;文獻(xiàn)[7]研究三維空間的可壓縮流的非等熵歐拉方程組的奇性的形成;文獻(xiàn)[8-9]研究等熵歐拉方程組初邊值問(wèn)題的軸對(duì)稱解的爆破;文獻(xiàn)[10]考察運(yùn)用泛函方法證明一維空間中帶非線性阻尼項(xiàng)的等熵歐拉方程組在初始密度有緊支集時(shí)正規(guī)解的爆破;文獻(xiàn)[11]研究了阻尼系數(shù)為常數(shù)的歐拉方程組和帶退化阻尼的等熵歐拉方程組,得到了在初始密度有緊支集時(shí),正規(guī)解都將在有限時(shí)間內(nèi)爆破。本文在文獻(xiàn)[4,8,10,11]的基礎(chǔ)上運(yùn)用泛函結(jié)合特征線的方法考察了帶有如阻尼的歐拉方程組的情形,其中0<θ<1。而當(dāng)θ=1時(shí)的情形在文獻(xiàn)[10]已有詳細(xì)證明。
參考文獻(xiàn):
[1]HSIAO L,LIU TP.Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping[J].Communications in Mathematical Physics,1992,143(3):599-605.
[2]SIDERIS,THOMAS C THOMASES BECCA,WANG DEHUD.Long time behavior of solutions to the 3D compressible Euler equations with damping[J].Communications in Partial Differential Equations,2003,28(3):795-816.
[3]ZHU CHANGJIANG,JIANG MINA.Lp-decay rates to nonlinear diffusion waves for p-system with nonlinear damping[J].Science in China Series A,2006,49(6):721-739.
[4]LIU T P,YANG T.Compressible Euler equations with vacuum[J].Journal of Differential Equations,1997,140(2):223-237.
[5]LIU TAIPING.Compressible flow with damping and vacuum[J].Japan Journal of Industrial and Applied Mathematics,1996,13(1):25-32.
[6]LI TIANHONG,WANG DEHUA.Blowup phenomena of solutions to the Euler equations for compressible fluid flow[J].Journal of Differential Equations,2006,221(1):91-101.
[7]THOMAS C SIDERIS.Formation of singularities in three-dimensional compressible fluids[J].Communications in Mathematical Physics,1985,101(4):475-485.
[8]ZHU XUSHENG,TU ARHUA.Blowup of the axis-symmetric solutions for the IBVP of the isentropic Euler equations[J].Nonlinear Analysis:Theory,Methods&Applications,2014,95:99-106.
[9]朱旭生,俞銀晶,李翠.帶阻尼項(xiàng)的三維等熵可壓縮歐拉方程組軸對(duì)稱解的爆破[J].廈門(mén)大學(xué)學(xué)報(bào):自然科學(xué)版,2014,53(6):780-784.
[10]熊顯萍,朱旭生.帶非線性阻尼項(xiàng)的等熵歐拉方程組正規(guī)解的爆破[J].西南大學(xué)學(xué)報(bào):自然科學(xué)版,2014,36(3):71-76.
[11]ZHU XUSHENG,WANG WEIKE.The regular solutions of the isentropic Euler equations with degenerate linear damping[J]. Chinese Annals of Mathematics,2005,26(4):583-598.
Blowup of the Regular Solutions of the Euler Equations with Nonlinear Damping
Zhu Xusheng,F(xiàn)u Chunyan,Zhao Kangxin
(School of Science,East China Jiaotong University,Nanchang 330013,China)
The regular solutions of then-dimensional isentropic Euler equations with the nonlinear damping for a perfect gas are investigated in this paper.Utilizing the methods of the functional in combination with characteristics,we prove the compressible isentropic Euler equations in vacuum case with the damp like-αρ|u|θu.If its damping coefficientαis positive constant when the initial data are large enough the regular solutions would blow up in finite time.
isentropic Euler equation;functional methods;blowup
O175.4
A
1005-0523(2016)06-0137-06
(責(zé)任編輯 劉棉玲)
2016-02-28
國(guó)家自然科學(xué)基金項(xiàng)目(11161021,11561024);江西省自然科學(xué)基金項(xiàng)目(20151BAB201017)
朱旭生(1968—),男,副教授,博士,研究方向?yàn)槠⒎址匠獭?/p>