邱 振 董大忠 盧 斌 周 杰 施振生 王紅巖 吝 文 張晨晨 劉德勛
(1.中國石油勘探開發(fā)研究院 北京 100083;2.中國石油勘探開發(fā)研究院廊坊分院 河北廊坊 065007)
?
中國南方五峰組—龍馬溪組頁巖中筆石與有機(jī)質(zhì)富集關(guān)系探討
邱 振1,2董大忠1,2盧 斌2周 杰2施振生2王紅巖2吝 文2張晨晨1劉德勛2
(1.中國石油勘探開發(fā)研究院 北京 100083;2.中國石油勘探開發(fā)研究院廊坊分院 河北廊坊 065007)
中國南方奧陶紀(jì)—志留紀(jì)之交廣泛沉積了以五峰組和龍馬溪組為代表的筆石頁巖?;趯?duì)重慶巫溪地區(qū)五峰組—龍馬溪組底部頁巖段中近400件頁巖樣品中筆石豐度的統(tǒng)計(jì)及100件頁巖樣品有機(jī)碳含量(TOC,%)的分析測試結(jié)果,選擇其中23件不同筆石豐度與TOC的頁巖樣品開展頁巖中筆石體與圍巖(非筆石體部分)TOC的對(duì)比實(shí)驗(yàn),并結(jié)合能譜分析測試結(jié)果,探討筆石與有機(jī)質(zhì)富集的關(guān)系。初步研究認(rèn)為:①五峰組—龍馬溪組頁巖中筆石體的C、O等元素含量較高,其TOC明顯高于圍巖,是頁巖有機(jī)質(zhì)的貢獻(xiàn)者之一;②五峰組—龍馬溪組頁巖全巖TOC與筆石豐度及筆石體TOC相關(guān)性均較差,而與圍巖TOC相關(guān)性較好,這指示著頁巖中筆石豐度對(duì)有機(jī)質(zhì)富集影響較小。
筆石 頁巖氣 五峰組 龍馬溪組 有機(jī)質(zhì)富集 巫溪地區(qū)
我國華南奧陶紀(jì)—志留紀(jì)之交廣泛沉積了以五峰組和龍馬溪組為代表的筆石頁巖[1-3](圖1),是我國頁巖氣勘探開發(fā)的重點(diǎn)層系[4-7]。目前已在該層系發(fā)現(xiàn)了威遠(yuǎn)、長寧、焦石壩3個(gè)頁巖氣田,并形成了富順—永川、彭水等頁巖氣產(chǎn)氣區(qū)[8-11],探明地質(zhì)儲(chǔ)量已超5千億方[10],資源潛力巨大。近些年來,勘探家們開始重視五峰組—龍馬溪組頁巖氣富集機(jī)理及主控因素研究,普遍認(rèn)為五峰組—龍馬溪組富有機(jī)質(zhì)頁巖是頁巖氣富集的物質(zhì)基礎(chǔ)[9-10,12]。特別是五峰組—龍馬溪組底部的富筆石頁巖,有機(jī)碳含量(TOC,%)一般高于2%,最高達(dá)8%以上[10],且TOC與含氣量具有較好的正相關(guān)關(guān)系[13],是目前頁巖氣勘探開發(fā)的目標(biāo)層段[8]。因此,前人對(duì)這段筆石頁巖開展了大量基礎(chǔ)研究,主要包括古生物及地層學(xué)[2,14-16]、巖石學(xué)[17-19]、沉積儲(chǔ)層[20-23]、地球化學(xué)[24-29]等方面,均取得了重要成果與認(rèn)識(shí)。與此同時(shí),一些學(xué)者對(duì)五峰組—龍馬溪組筆石頁巖中有機(jī)質(zhì)富集主控因素進(jìn)行了探討,總體上認(rèn)為缺氧保存條件是有機(jī)質(zhì)富集的主控因素[10,24-30]。但作為五峰組—龍馬溪組頁巖中的重要組成部分——筆石生物,對(duì)頁巖中有機(jī)質(zhì)貢獻(xiàn)多少或者與有機(jī)質(zhì)富集的關(guān)系等方面的研究相對(duì)較少。
圖1 中國南方志留系魯?shù)ぴ缙邶堮R溪組黑色頁巖分布(修改自Chen, et al.[1]和樊雋軒等[2])及研究區(qū)位置(粉紅色框:重慶巫溪地區(qū))Fig.1 The distribution of early Rhuddanian Longmaxi shale in South China (modified from Chen, et al.[1] and Fan, et al.[2] ) and location of the study area (red rectangle: Wuxi, Chongqing)
五峰組—龍馬溪組黑色筆石頁巖在我國南方地區(qū)廣泛發(fā)育(圖1),前人已對(duì)該地區(qū)黑色筆石頁巖的分布特征開展了大量研究[1-3,40-42]。研究表明,五峰期黑色硅質(zhì)和碳質(zhì)筆石頁巖發(fā)育于揚(yáng)子地臺(tái)的大部分區(qū)域[1],揚(yáng)子地區(qū)五峰組與龍馬溪組黑色筆石頁巖巖相均表現(xiàn)為淺水(陸棚海)、盆地型(揚(yáng)子型)[40]。其中,五峰組黑色筆石頁巖以含碳粉砂巖、粉砂質(zhì)泥巖為主,局部發(fā)育硅質(zhì)巖,沉積構(gòu)造以毫米級(jí)紋層為主,且發(fā)育有分散狀的黃鐵礦晶體,厚度為3~40 m,含有大量筆石,超過30個(gè)以上的屬,主要分布在四川、滇東、貴州、湖北、湘西北等整個(gè)揚(yáng)子地臺(tái)區(qū)[40]。早魯?shù)て?,黑色硅質(zhì)筆石頁巖在整個(gè)揚(yáng)子地臺(tái)上廣泛分布[1]。龍馬溪組黑色筆石頁巖巖性以黑色含碳粉砂巖、泥巖為主,沉積范圍小于五峰期,且其沉積厚度及巖相在橫向上表現(xiàn)出規(guī)律性變化。在上揚(yáng)子陸架—海盆內(nèi),黑色筆石頁巖厚度由黔中古陸向西北方向逐漸增厚,從30多米增大到700多米[43],水平紋層發(fā)育[40],筆石種類豐富,跨越了從奧陶系頂部到志留系蘭多維列統(tǒng)的10個(gè)筆石帶[2]。揚(yáng)子地區(qū)龍馬溪期具有與五峰期相同的滯流陸架—盆地環(huán)境,而在贛西北和湘中地區(qū)由陸架相逐漸變?yōu)樾逼孪?。早志留世后期,隨著湘中、贛北及揚(yáng)子地區(qū)等地上升,海水逐漸變淺,揚(yáng)子地臺(tái)也全部轉(zhuǎn)變?yōu)檎\海環(huán)境[40]。
研究區(qū)為我國南方重慶巫溪地區(qū),位于揚(yáng)子臺(tái)地北緣(圖1)。該區(qū)五峰組—龍馬溪組筆石頁巖段相對(duì)較厚,局部可達(dá)90 m,TOC平均為2.5%[44],巖性主要為黑色碳質(zhì)泥頁巖、硅質(zhì)頁巖等[45-46]。樣品主要來自該區(qū)鉆井巖芯的五峰組—龍馬溪組底部筆石頁巖段,總厚度約44 m,共采集100余件樣品。樣品分布范圍包括五峰組、龍馬溪組底部(筆石帶Normalograptus Persculptus 至Lituigraptus convolutus)(圖2)。
首先,基于鉆井巖芯觀察,詳細(xì)統(tǒng)計(jì)了五峰組—龍馬溪組底部頁巖段中近400塊頁巖層面上的筆石豐度。同時(shí),自下而上,采集了100余件頁巖樣品,進(jìn)行TOC分析測試。其次,在此基礎(chǔ)上,選擇其中19件不同筆石豐度與TOC的頁巖樣品,分別開展頁巖中筆石體與圍巖的TOC分析測試。同時(shí),考慮到頁巖中筆石體分布具有強(qiáng)烈的非均一性,選擇8件頁巖樣品(其中4件為新加樣品)開展筆石體、圍巖(非筆石體部分)及全巖(即筆石體分布紋層,僅包括筆石體和圍巖)TOC的分析測試。這些是通過牙鉆對(duì)頁巖層面上的筆石體及無筆石巖石進(jìn)行微區(qū)取樣實(shí)現(xiàn)的,在這一過程中盡量保證微區(qū)樣品的純度,特別是筆石體的純度,盡量減小圍巖的污染。有機(jī)碳含量測定在美國生產(chǎn)的LECO碳硫分析儀CS230上完成。實(shí)驗(yàn)步驟如下:①裝樣:稱取50~100 mg樣品裝入經(jīng)過高溫烘干過的透水坩堝中;②泡樣:將濃鹽酸與去離子水按1:7的比例稀釋,把裝有樣品的透水坩堝浸泡在稀鹽酸中,并進(jìn)行水浴加熱(60℃)兩小時(shí);③洗樣:利用去離子水將透水坩堝中樣品的鹽酸洗去,直到變成中性;④烘樣:將透水坩堝置于烘干箱中(80℃)烘干兩小時(shí);⑤測試:將樣品上機(jī)進(jìn)行測試,記錄實(shí)驗(yàn)數(shù)據(jù)。
圖2 重慶巫溪地區(qū)XX鉆井五峰組—龍馬溪組底部頁巖TOC與筆石含量分布Fig.2 Graptolite abundance and TOC of the Wufeng and Longmaxi shales from XX borehole in Wuxi area, Chongqing
為了進(jìn)一步詳細(xì)對(duì)比筆石體與圍巖的C等元素差異,選擇了4件龍馬溪組頁巖樣品進(jìn)行能譜測試。采用配置有電子背散射衍射(EBSD)和能譜成分測試(EDS)的聚焦粒子束雙束掃描電鏡FIB(Nova 200 NanoLab)對(duì)頁巖樣品中筆石體與圍巖分別進(jìn)行元素相對(duì)原子比測試,探測靈敏度為原子摩爾分?jǐn)?shù)0.1%~1.0%。4件測試樣品中共測試96個(gè)點(diǎn),其中筆石體和圍巖各占一半。
3.1 分析結(jié)果
五峰組—龍馬溪組底部頁巖TOC變化較大,為0.3%~6.8%,平均值4.6%,整體上屬于富有機(jī)質(zhì)頁巖(圖2)。其中五峰組頁巖TOC變化較大,為0.3%~6.4%,平均值3.7%;龍馬溪組底部頁巖為3.5%~6.8%,平均值5.1%,明顯高于五峰組。五峰組—龍馬溪組底部頁巖筆石豐度變化也較大(圖3),一般為低于20%,高者可達(dá)80%(圖2)。其中五峰組頁巖筆石豐度整體偏低,低于10%,而在龍馬溪組底部則相對(duì)較高。
19件不同筆石豐度與TOC的頁巖樣品的筆石體與圍巖TOC對(duì)比分析結(jié)果如表1所示。不同頁巖中筆石體的TOC相對(duì)較高,為3.6%~9.7%,明顯高于圍巖及頁巖全巖的TOC(圖4)。頁巖全巖與圍巖的TOC相近,分別為3.2%~6.2%和3.0%~7.1%(圖4)。
五峰組—龍馬溪組底部頁巖能譜分析測試結(jié)果如圖4所示,C、O、Si和Al四種元素是筆石體和圍巖的主要組成元素,其中C、O和Si含量相對(duì)較高,并存在一定差異。K、Na、S、Fe、Mg等元素含量明顯偏低,且差異相對(duì)較小。
3.2 頁巖中筆石與有機(jī)質(zhì)富集關(guān)系探討
⑤從排沙角度,長江流域的雅礱江、金沙江、青衣江、嘉陵江、涪江、渠江、漢江的丹江口以上屬于多沙區(qū),而金沙江和雅礱江的源頭、岷江、烏江、洞庭湖水系、鄱陽湖水系為少沙區(qū),在其他條件相同的情況下,少沙區(qū)水庫蓄水時(shí)間可以適當(dāng)提前,而多沙區(qū)水庫蓄水應(yīng)該滯后。
筆石作為一類已經(jīng)絕滅的海生群體動(dòng)物,保存下來的僅是筆石蟲體所分泌的骨骼即筆石體[47]。國內(nèi)外一些學(xué)者對(duì)含筆石頁巖相關(guān)研究結(jié)果均表明:筆石是頁巖中有機(jī)質(zhì)的組成部分之一[37-39,48-49]。筆石被認(rèn)為對(duì)有機(jī)質(zhì)有貢獻(xiàn)主要是基于筆石體成分的研究,一些學(xué)者認(rèn)為筆石體主要由C元素組成[37-38],可能是由含O、N等雜原子基團(tuán)的高分子化合物的聚合物蛋白質(zhì)組成[38]。4件龍馬溪組筆石頁巖樣品能譜測試分析結(jié)果(圖5)表明:C、O、Si和Al四種元素是筆石體的主要組成元素,其中C、和O相對(duì)含量最高,指示著筆石體主要由C、O等有機(jī)質(zhì)元素組成。19件不同筆石豐度與TOC的頁巖樣品的筆石體與圍巖TOC對(duì)比分析結(jié)果(圖4)也表明:筆石體的TOC明顯高于圍巖及頁巖全巖的TOC。這些特征均指示著筆石是頁巖有機(jī)質(zhì)的貢獻(xiàn)者,但這是否可以說明五峰組—龍馬溪組頁巖中有機(jī)質(zhì)富集與筆石豐度存在一定關(guān)系?
圖3 五峰組—龍馬溪組底部頁巖及筆石豐度 a.樣品筆石豐度45%,TOC=3.9%;b.樣品筆石豐度30%,TOC=4.8%;c.樣品筆石豐度15%,TOC=4.7%;d.樣品筆石豐度5%,TOC=4.4%Fig.3 Graptolite abundance (GA) in the Wufeng and Longmaxi shalesa. GA=45%, TOC=3.9%; b. GA=30%, TOC=4.8%; c. GA=15%, TOC=4.7%; d. GA=5%, TOC=4.4%
樣品序號(hào)筆石豐度/%筆石體TOC/%圍巖TOC/%頁巖全巖TOC/%1204.74.13.72404.73.63.53103.63.43.24454.83.63.95354.43.03.96156.24.03.57305.83.94.58156.34.64.7955.54.04.410154.44.04.711305.14.74.812108.45.16.213107.86.45.814509.56.95.515609.67.15.516209.76.15.917256.84.7518206.55.74.919406.33.34.4
圖4 五峰組—龍馬溪組底部不同筆石豐度的頁巖中筆石體、圍巖及全巖的TOC變化Fig.4 TOC variations of graptolite, host shales and bulk rocks in the Wufeng and Longmaxi Formations
圖5 五峰組—龍馬溪組底部頁巖筆石體及圍巖元素分析Fig.5 Element distributions of graptolite and the host in the Wufeng and Longmaxi shales
已有學(xué)者提出五峰組—龍馬溪組頁巖中筆石豐度與TOC呈正相關(guān)關(guān)系[38]。然而,巫溪地區(qū)五峰組—龍馬溪組底部頁巖段中近400塊頁巖層面上的筆石豐度統(tǒng)計(jì)及TOC分析測試(圖2,6)結(jié)果表明:頁巖中筆石豐度與頁巖TOC相關(guān)性較差(圖6)。例如,筆石豐度為45%頁巖(圖3a)TOC為3.9%,明顯低于筆石豐度為30%、15%和5%的頁巖(圖3b,c,d),它們TOC分別為4.8%、4.7%和4.4%。由于筆石是作為頁巖宏觀上唯一可識(shí)別的大化石類型,其保存方式多為沿頁巖紋層面以疊加式或聚集式堆積,不同紋層面的筆石豐度變化較大(圖2,3),這可能是造成其與頁巖TOC相關(guān)性差的主要因素之一。
此外,19件不同筆石豐度與TOC的頁巖樣品中筆石體與圍巖TOC的對(duì)比分析結(jié)果(圖4)表明:①圍巖TOC明顯低于筆石體TOC,兩者之間相關(guān)性較差,這說明頁巖中筆石豐度對(duì)同沉積圍巖TOC影響不大;②頁巖全巖TOC與圍巖的TOC相近,盡管兩者之間相關(guān)性也相對(duì)較差,但在一定程度上說明頁巖TOC受圍巖影響較大。這是因?yàn)樗_展筆石體和圍巖TOC測試的樣品均采自同一頁巖層面,而頁巖全巖TOC則是整個(gè)頁巖樣品(包括頁巖層面)。由于頁巖中沉積紋層物質(zhì)組成具有一定差異,頁巖全巖TOC并不是真正代表筆石頁巖層(筆石體和圍巖采集紋層)的TOC,故可能造成這兩者相關(guān)性較差。
為了進(jìn)一步客觀評(píng)價(jià)頁巖中筆石體、圍巖及頁巖全巖TOC之間關(guān)系,對(duì)8件不同筆石豐度的頁巖樣品開展同一層面上筆石體、圍巖及全巖(即筆石體分布紋層,僅包括筆石體和圍巖)TOC分析測試。結(jié)果表明(圖7):①所有樣品的筆石體TOC均明顯高于圍巖及頁巖全巖的TOC,這與前述認(rèn)識(shí)較一致(圖4);②所有樣品的筆石豐度與TOC相關(guān)性較差,這進(jìn)一步說明筆石豐度與頁巖中有機(jī)質(zhì)富集關(guān)系不明顯;③所有樣品的圍巖TOC與全巖相接近,且兩者相關(guān)性較好,這也進(jìn)一步說明了頁巖全巖TOC主要受圍巖TOC控制,指示著圍巖中浮游藻類等浮游生物才是有機(jī)質(zhì)富集的主要貢獻(xiàn)者(圖4)。
圖6 五峰組—龍馬溪組底部頁巖筆石豐度與TOC關(guān)系Fig.6 Cross plot of graptolite abundance and TOC in the Wufeng and Longmaxi shales
筆石生物在五峰組—龍馬溪組沉積時(shí)期分異度(多樣性)及豐度相對(duì)較高[3,39],可以推測其賴以生存的食物鏈底層生物(藻類等)的多樣性和豐度更大[3],但并不能指示著筆石與有機(jī)質(zhì)富集關(guān)系密切。一方面,這是因?yàn)楣P石生物大量存在會(huì)消費(fèi)掉大量的浮游生物,減少了有機(jī)質(zhì)的輸出,不利于有機(jī)質(zhì)的富集。此外,從圖2中也可看出,筆石豐度向上整體是增加的,但有機(jī)質(zhì)豐度是逐漸降低的。由于筆石生物為需氧呼吸型生物,這反應(yīng)了水體的含氧度向上是逐漸增高的,這與沉積物顆粒向上逐漸變粗[10]趨勢相吻合,這種情況顯然不利于有機(jī)質(zhì)的保存;同時(shí),由于向上沉積速率逐漸增加[10],也會(huì)造成有機(jī)質(zhì)的稀釋。雖然筆石本身死亡后保存一部分有機(jī)質(zhì),但也不足以彌補(bǔ)這些有機(jī)質(zhì)的損失。
有機(jī)質(zhì)富集的控制因素一直存在著較大爭論[50-55],其爭論焦點(diǎn)是保存條件(水體氧化還原條件)和海洋表層生產(chǎn)力,到底哪個(gè)是有機(jī)質(zhì)富集的主控因素。早期研究普遍認(rèn)為缺氧的保存條件是富有機(jī)質(zhì)沉積的主要控制因素[50,56-58]。然而,一些學(xué)者對(duì)洋流上涌地區(qū)(如秘魯西部、非洲西北部、加利福尼亞以及南極洲北部等海域)的研究發(fā)現(xiàn):由于富營養(yǎng)水體的上涌,表層生物極為繁盛說明其生物生產(chǎn)力較高,而海底沉積物中有機(jī)質(zhì)含量很高但普遍見到生物擾動(dòng),表明底部水體并不缺氧,并由此推斷高生產(chǎn)力才是富有機(jī)質(zhì)沉積形成的主要控制因素[51]。這一認(rèn)識(shí)也逐漸得到一些學(xué)者的認(rèn)可,他們認(rèn)為有機(jī)質(zhì)富集沉積與海洋表層較高的(初級(jí))生產(chǎn)力關(guān)系密切[59-62]。在五峰組—龍馬溪組筆石頁巖中有機(jī)質(zhì)富集主控因素的研究方面,已有成果表明,缺氧保存條件是有機(jī)質(zhì)富集的主控因素[10,24-30],而不是古生產(chǎn)力。但僅是作為有機(jī)質(zhì)貢獻(xiàn)者之一,而圍巖中浮游藻類等才是有機(jī)質(zhì)的主要貢獻(xiàn)者(圖7)。
圖7 五峰組—龍馬溪組底部不同筆石豐度的頁巖中筆石體、圍巖及全巖的TOC變化Fig.7 TOC variations of graptolites, the host shales and bulk rocks with different graptolite abundances in the Wufeng and Longmaxi formations
綜上所述,可以認(rèn)為筆石雖然是頁巖中有機(jī)質(zhì)貢獻(xiàn)者之一,但其豐度對(duì)頁巖有機(jī)質(zhì)富集影響較小。
劉大猛等[37]研究認(rèn)為,筆石體主要是由含O、N等雜原子基團(tuán)的高分子化合物的聚合物蛋白質(zhì)組成,并認(rèn)為其在成熟度較低時(shí)是一種極好的成烴母質(zhì)。雖然本文研究認(rèn)為筆石豐度對(duì)頁巖有機(jī)質(zhì)富集的影響較小,但這只是針對(duì)我國南方高成熟度的五峰組—龍馬溪組頁巖所取得的初步認(rèn)識(shí),該層系中筆石體反射率一般較高(2.68%~3.08%)[38]。因此,下一步可以開展未成熟—低成熟度頁巖中筆石生烴方面的相關(guān)研究。
此外,五峰組—龍馬溪組筆石頁巖段是頁巖氣優(yōu)質(zhì)儲(chǔ)集段,是目前我國頁巖氣勘探開發(fā)的目標(biāo)層段。已有研究表明,筆石體具有粒狀、紋層狀的顯微構(gòu)造[63-64],顯示網(wǎng)格狀的內(nèi)部結(jié)構(gòu)[37],發(fā)育大量孔隙[39]。利用高分辨掃描電鏡可識(shí)別出筆石體具有兩類孔隙,即粒間孔隙(有機(jī)質(zhì)與基質(zhì)顆粒之間的孔隙)和有機(jī)質(zhì)孔(生物結(jié)構(gòu)孔隙和生物組織孔隙)[65]或體腔孔隙[66],大小從幾十納米到幾微米[65]。這些均直觀地揭示了筆石體對(duì)頁巖氣儲(chǔ)層的儲(chǔ)集能力有一定的貢獻(xiàn),但貢獻(xiàn)大小如何有待深入研究。
(1) 五峰組—龍馬溪組頁巖中筆石體C、O等元素含量較高,其TOC明顯高于頁巖全巖及圍巖的TOC,是頁巖有機(jī)質(zhì)的貢獻(xiàn)者之一。
(2) 五峰組—龍馬溪組頁巖全巖TOC與筆石豐度及筆石體TOC相關(guān)性均較差,而與圍巖TOC相關(guān)性較好,這指示著頁巖中筆石豐度對(duì)有機(jī)質(zhì)富集影響較小。
(3) 筆石生烴及儲(chǔ)集特征對(duì)頁巖氣有效勘探開發(fā)具有重要意義,是需要進(jìn)一步研究的問題。
致謝 本文在撰寫和研究中得到中國科學(xué)院陳旭院士、中國石油勘探開發(fā)研究院鄒才能教授的指導(dǎo)和幫助。同時(shí)感謝中國石油勘探開發(fā)研究院廊坊分院拜文華、趙群、梁峰、郭偉、薛華慶及中國石油勘探開發(fā)研究院王玉滿、李新景等諸同事的支持與幫助。特別感謝特邀主編陳代釗研究員提出的寶貴修改意見。
References)
1 Chen Xu, Rong Jiayu, Li Yue, et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3/4): 353-372.
2 樊雋軒,Melchin M J,陳旭,等. 華南奧陶—志留系龍馬溪組黑色筆石頁巖的生物地層學(xué)[J]. 中國科學(xué)(D輯):地球科學(xué),2012,42(1):130-139. [Fan Junxuan, Melchin M J, Chen Xu, et al. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China[J]. Science China(Seri,D): Earth Sciences, 2012, 42(1): 130-139.]
3 陳旭,樊雋軒,張?jiān)獎(jiǎng)樱? 五峰組及龍馬溪組黑色頁巖在揚(yáng)子覆蓋區(qū)內(nèi)的劃分與圈定[J]. 地層學(xué)雜志,2015,39(4):351-358. [Chen Xu, Fan Junxuan, Zhang Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358.]
4 王世謙,陳更生,董大忠,等,等. 四川盆地下古生界頁巖氣藏形成條件與勘探前景[J]. 天然氣工業(yè),2009,29(5):51-58. [Wang Shiqian, Chen Gengsheng, Dong Dazhong, et al. Accumulation conditions and exploitation prospect of shale gas in the Lower Paleozoic Sichuan basin[J]. Natural Gas Industry, 2009, 29(5): 51-58.]
5 鄒才能,董大忠,王社教,等. 中國頁巖氣形成機(jī)理、地質(zhì)特征及資源潛力[J]. 石油勘探與開發(fā),2010,37(6):641-653. [Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.]
6 董大忠,鄒才能,楊樺,等. 中國頁巖氣勘探開發(fā)進(jìn)展與發(fā)展前景[J]. 石油學(xué)報(bào),2012,33(S1):107-114. [Dong Dazhong, Zou Caineng, Yang Hua, et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 2012, 33(S1): 107-114.]
7 郭旭升,郭彤樓,魏志紅,等. 中國南方頁巖氣勘探評(píng)價(jià)的幾點(diǎn)思考[J]. 中國工程科學(xué),2012,14(6):101-105. [Guo Xusheng, Guo Tonglou, Wei Zhihong, et al. Thoughts on shale gas exploration in southern China[J]. Engineering Sciences, 2012, 14(6): 101-105.]
8 郭彤樓,劉若冰. 復(fù)雜構(gòu)造區(qū)高演化程度海相頁巖氣勘探突破的啟示——以四川盆地東部盆緣JY1井為例[J]. 天然氣地球科學(xué),2013,24(4):643-651. [Guo Tonglou, Liu Ruobing. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: Taking Longmaxi Formation in well JY1 as an example[J]. Natural Gas Geoscience, 2013, 24(4): 643-651.]
9 郭旭升. 南方海相頁巖氣"二元富集"規(guī)律—四川盆地及周緣龍馬溪組頁巖氣勘探實(shí)踐認(rèn)識(shí)[J]. 地質(zhì)學(xué)報(bào),2014,88(7):1209-1218. [Guo Xusheng. Rules of two-factor enrichiment for marine shale gas in southern China—Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.]
10 鄒才能,董大忠,王玉滿,等. 中國頁巖氣特征、挑戰(zhàn)及前景(一)[J]. 石油勘探與開發(fā),2015,42(6):689-701. [Zou Caineng, Dong Dazhong, Wang Yuman, et al. Shale gas in China: characteristics, challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.]
11 董大忠,王玉滿,李新景,等. 中國頁巖氣勘探開發(fā)新突破及發(fā)展前景思考[J]. 天然氣工業(yè),2016,36(1):19-32. [Dong Dazhong, Wang Yuman, Li Xinjing, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32.]
12 何治亮,聶海寬,張鈺瑩. 四川盆地及其周緣奧陶系五峰組—志留系龍馬溪組頁巖氣富集主控因素分析[J]. 地學(xué)前緣,2016,23(2):8-17. [He Zhiliang, Nie Haikuan, Zhang Yuying. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2): 8-17.]
13 金之鈞,胡宗全,高波,等. 川東南地區(qū)五峰組—龍馬溪組頁巖氣富集與高產(chǎn)控制因素[J]. 地學(xué)前緣,2016,23(1):1-10. [Jin Zhijun, Hu Zongquan, Gao Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.]
14 陳旭,戎嘉余,樊雋軒,等. 奧陶—志留系界線地層生物帶的全球?qū)Ρ萚J]. 古生物學(xué)報(bào),2000,39(1):100-114. [Chen Xu, Rong Jiayu, Fan Junxuan, et al. A global correlation of biozones across the Ordovician-Silurian boundary[J]. Acta Palaeontologica Sinica, 2000, 39(1): 100-114.]
15 Chen Xu, Rong Jjiayu, Fan Junxuan, et al. The global boundary stratotype section and point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System)[J]. Episodes, 2006, 29(3): 183-196.
16 戎嘉余,陳旭,詹仁斌,等. 貴州桐梓縣境南部奧陶系—志留系界線地層新認(rèn)識(shí)[J]. 地層學(xué)雜志,2010,34(4):337-348. [Rong Jiayu, Chen Xu, Zhan Renbin, et al. New observation on Ordovician-Silurian boundary strata of southern Tongzi county, northern Guizhou, southwest China[J]. Journal of Stratigraphy, 2010, 34(4): 337-348.]
17 梁超,姜在興,楊鐿婷,等. 四川盆地五峰組—龍馬溪組頁巖巖相及儲(chǔ)集空間特征[J]. 石油勘探與開發(fā),2012,39(6):691-698. [Liang Chao, Jiang Zaixing, Yang Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698.]
18 王玉滿,王淑芳,董大忠,等. 川南下志留統(tǒng)龍馬溪組頁巖巖相表征[J]. 地學(xué)前緣,2016,23(1):119-133. [Wang Yuman, Wang Shufang, Dong Dazhong, et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1): 119-133.]
19 蔣裕強(qiáng),宋益滔,漆麟,等. 中國海相頁巖巖相精細(xì)劃分及測井預(yù)測:以四川盆地南部威遠(yuǎn)地區(qū)龍馬溪組為例[J]. 地學(xué)前緣,2016,23(1):107-118. [Jiang Yuqiang, Song Yitao, Qi Lin, et al. Fine lithofacies of China's marine shale and its logging prediction: A case study of the Lower Silurian Longmaxi marine shale in Weiyuan area, southern Sichuan Basin, China[J]. Earth Science Frontiers, 2016, 23(1): 107-118.]
20 王玉滿,董大忠,李建忠,等. 川南下志留統(tǒng)龍馬溪組頁巖氣儲(chǔ)層特征[J]. 石油學(xué)報(bào),2012,33(4):551-561. [Wang Yuman, Dong Dazhong, Li Jianzhong, et al. Reservoir characteristics of shale gas in Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Acta Petrolei Sinica, 2012, 33(4): 551-561.]
21 劉樹根,王世玉,孫瑋,等. 四川盆地及其周緣五峰組—龍馬溪組黑色頁巖特征[J]. 成都理工大學(xué)學(xué)報(bào):自然科學(xué)版,2013,40(6):621-639. [Liu Shugen, Wang Shiyu, Sun Wei, et al. Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2013, 40(6): 621-639.]
22 蒲泊伶,董大忠,吳松濤,等. 川南地區(qū)下古生界海相頁巖微觀儲(chǔ)集空間類型[J]. 中國石油大學(xué)學(xué)報(bào):自然科學(xué)版,2014,38(4):19-25. [Pu Boling, Dong Dazhong, Wu Songtao, et al. Microscopic space types of Lower Paleozoic marine shale in southern Sichuan Basin[J]. Journal of China University of Petroleum: Edition of Natural Science, 2014, 38(4): 19-25.]
23 Yang Feng, Ning Zhengfu, Wang Qing, et al. Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin, China: insights to pore development and gas storage mechanism[J]. International Journal of Coal Geology, 2016, 156: 12-24.
24 李雙建,肖開華,沃玉進(jìn),等. 南方海相上奧陶統(tǒng)——下志留統(tǒng)優(yōu)質(zhì)烴源巖發(fā)育的控制因素[J]. 沉積學(xué)報(bào),2008,26(5):872-880. [Li Shuangjian, Xiao Kaihua, Wo Yujin, et al. Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence, South China[J]. Acta Sedimentologica Sinica, 2008, 26(5): 872-880.]
25 李雙建,肖開華,沃玉進(jìn),等. 中上揚(yáng)子地區(qū)上奧陶統(tǒng)—下志留統(tǒng)烴源巖發(fā)育的古環(huán)境恢復(fù)[J]. 巖石礦物學(xué)雜志,2009,28(5):450-458. [Li Shuangjian, Xiao Kaihua, Wo Yujin, et al. Palaeo-environment restoration of Upper Ordovician-Lower Silurian hydrocarbon source rock in Middle-Upper Yangtze area[J]. Acta Petrologica et Mineralogica, 2009, 28(5): 450-458.]
26 Yan Detian, Chen Daizhen, Wang Qingchen, et al. Predominance of stratified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition[J]. Chemical Geology, 2012, 291: 69-78.
27 張春明,姜在興,郭英海,等. 川東南—黔北地區(qū)龍馬溪組地球化學(xué)特征與古環(huán)境恢復(fù)[J]. 地質(zhì)科技情報(bào),2013,32(2):124-130. [Zhang Chunming, Jiang Zaixing, Guo Yinghai, et al. Geochemical characteristics and paleoenvironment reconstruction of the Longmaxi Formation in Southeast Sichuan and northern Guizhou[J]. Geological Science and Technology Information, 2013, 32(2): 124-130.]
28 王淑芳,董大忠,王玉滿,等. 四川盆地南部志留系龍馬溪組富有機(jī)質(zhì)頁巖沉積環(huán)境的元素地球化學(xué)判別指標(biāo)[J]. 海相油氣地質(zhì),2014,19(3):27-34. [Wang Shufang, Dong Dazhong, Wang Yuman, et al. Geochemistry evaluation index of redox-sensitive elements for depositional environments of Silurian Longmaxi organic-rich Shale in the South of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2014, 19(3): 27-34.]
29 李艷芳,邵德勇,呂海剛,等. 四川盆地五峰組—龍馬溪組海相頁巖元素地球化學(xué)特征與有機(jī)質(zhì)富集的關(guān)系[J]. 石油學(xué)報(bào),2015,36(12):1470-1483. [Li Yanfang, Shao Deyong, Lv Haigang, et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(12): 1470-1483.]
30 嚴(yán)德天,王清晨,陳代釗,等. 揚(yáng)子及周緣地區(qū)上奧陶統(tǒng)—下志留統(tǒng)烴源巖發(fā)育環(huán)境及其控制因素[J]. 地質(zhì)學(xué)報(bào),2008,82(3):322-327. [Yan Detian, Wang Qingchen, Chen Daizhao, et al. Sedimentary environment and development controls of the hydrocarbon sources beds: the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze Area[J]. Acta Geologica Sinica, 2008, 82(3): 322-327.]
31 Riediger C, Goodarzi F, Macqueen R W. Graptolites as indicators of regional maturity in Lower Paleozoic sediments, Selwyn Basin, Yukon and Northwest Territories, Canada[J]. Canadian Journal of Earth Sciences, 1989, 26(10): 2003-2015.
32 穆恩之,李積金. 筆石[M]. 北京:科學(xué)出版社,1960. [Mu Enzhi, Li Jijin. Graptolite[M]. Beijing: Science Press, 1960.]
33 Kozlowski R. On the structure and relationships of graptolites[J]. Journal of Paleontology, 1966, 40(3): 489-501.
34 Combaz A. Les kérogènes vus au microscope[M]//Durand B. Kerogen: Insoluble Organic Matter from Sedimentary Rocks. Paris: Editions Techniq, 1980: 35-62.
35 Towe K M, Urbanek A. Collagen-like structures in Ordovician graptolite periderm[J]. Nature, 1972, 237(5356): 443-445.
36 張永輅,劉冠邦,邊立曾. 古生物學(xué):上冊[M]. 北京:地質(zhì)出版社,1988:343. [Zhang Yonglu, Liu Guanbang, Bian Lizeng. Paleobiology: Upper Part[M]. Beijing: Geological Publishing House, 1988: 343.]
37 劉大錳,侯孝強(qiáng),蔣金鵬. 筆石組成與結(jié)構(gòu)的微區(qū)分析[J]. 礦物學(xué)報(bào),1996,16(1):53-57. [Liu Dameng, Hou Xiaoqiang, Jiang Jinpeng. The composition and structure of graptolite—a micro-area analysis[J]. Acta Mineralogica Sinica, 1996, 16(1): 53-57.]
38 馬施民,鄒曉艷,朱炎銘,等. 川南龍馬溪組筆石類生物與頁巖氣成因相關(guān)性研究[J]. 煤炭科學(xué)技術(shù),2015,43(4):106-109. [Ma Shimin, Zou Xiaoyan, Zhu Yanming, et al. Study on relationship between graptolite and shale gas origin of Longmaxi Formation in southern Sichuan[J]. Coal Science and Technology, 2015, 43(4): 106-109.]
39 Luo Qingyong, Zhong Ningning, Dai Na, et al. Graptolite-derived organic matter in the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) of southeastern Chongqing, China: implications for gas shale evaluation[J]. International Journal of Coal Geology, 2016, 153: 87-98.
40 李志明,全秋琦. 中國南部奧陶—志留紀(jì)筆石頁巖相類型及其構(gòu)造古地理[J]. 地球科學(xué),1992,17(3):261-269. [Li Zhiming, Quan Qiuqi. Lithofacies types and tectonic palaeo-geography of Ordovician and Silurian graptolite-bearing strata in south China[J]. Earth Science, 1992, 17(3): 261-269.]
41 張?jiān)獎(jiǎng)樱愋?,Goldman D,等. 華南早—中奧陶世主要環(huán)境下筆石動(dòng)物的多樣性與生物地理分布[J]. 中國科學(xué)(D輯):地球科學(xué),2010,40(9):1164-1180. [Zhang Yuandong, Chen Xu, Goldman D, et al. Diversity and paleobiogeographic distribution patterns of Early and Middle Ordovician graptolites in distinct depositional environments of South China[J]. Science China (Seri.D): Earth Sciences, 2010, 40(9): 1164-1180.]
42 戎嘉余,陳旭,王懌,等. 奧陶—志留紀(jì)之交黔中古陸的變遷:證據(jù)與啟示[J]. 中國科學(xué):地球科學(xué),2011,41(10):1407-1415. [Rong Jiayu, Chen Xu, Wang Yi, et al. Northward expansion of Central Guizhou Oldland through the Ordovician and Silurian transition: evidence and implications[J]. Scientia Sinica Terrae, 2011, 41(10): 1407-1415.]
43 李志明,戴維聲. 志留系[M]//王鴻禎. 中國古地理圖集. 北京:地圖出版社,1985:47-55. [Li Zhiming, Dai Weisheng. Siliurian[M]//Wang Hongzhen. Atlas of the Palaeogeography of China. Beijing: Map Press, 1985: 47-55.]
44 梁峰,拜文華,鄒才能,等. 渝東北地區(qū)巫溪2井頁巖氣富集模式及勘探意義[J]. 石油勘探與開發(fā),2016,43(3):350-358. [Liang Feng, Bai Wenhua, Zou Caineng, et al. Shale gas enrichment pattern and exploration significance of Well Wuxi-2 in northeast Chongqing, NE Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(3): 350-358.]
45 龍鵬宇,張金川,李玉喜,等. 重慶及其周緣地區(qū)下古生界頁巖氣成藏條件及有利區(qū)預(yù)測[J]. 地學(xué)前緣,2012,19(2):221-233. [Long Pengyu, Zhang Jinchuan, Li Yuxi, et al. Reservoir-forming conditions and favorable area of shale gas in the Lower Paleozoic of Chongqing and its adjacent areas[J]. Earth Science Frontiers, 2012, 19(2): 221-233.]
46 張志平,程禮軍,曾春林,等. 渝東北志留系下統(tǒng)龍馬溪組頁巖氣成藏地質(zhì)條件研究[J]. 特種油氣藏,2012,19(4):25-28. [Zhang Zhiping, Cheng Lijun, Zeng Chunlin, et al. Geological study on shale gas reservoirs in the Longmaxi Formation of Lower Silurian in northeast Chongqing[J]. Special Oil and Gas Reservoirs, 2012, 19(4): 25-28.]
47 Rantitsch G. Coalification and graphitization of graptolites in the anchizone and lower epizone[J]. International Journal of Coal Geology, 1995, 27(1): 1-22.
49 Petersen H I, Schovsbo N H, Nielsen A T. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: correlation to vitrinite reflectance[J]. International Journal of Coal Geology, 2013, 114: 1-18.
50 Demaison G J, Moore G T. Anoxic environments and oil source bed genesis[J]. AAPG Bulletin, 1980, 64: 1179-1209.
51 Pedersen T F, Calvert S E. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466.
52 Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88.
53 Murphy A E, Sageman B B, Hollander D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling[J]. Paleoceanography, 2000, 15(3): 280-291.
54 Pichevin L, Bertrand P, Boussafir M, et al. Organic matter accumulation and preservation controls in a deep sea modern environment: an example from Namibian slope sediments[J]. Organic Geochemistry, 2004, 35(5): 543-559.
55 Mort H, Jacquat O, Adatte T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation?[J]. Cretaceous Research, 2007, 28(4): 597-612.
56 Ingall E D, Bustin R M, Van Cappellen P. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales[J]. Geochimica et Cosmochimica Acta, 1993, 57(2): 303-316.
57 Arthur M A, Sageman B B. Marine black shales: depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 499-551.
58 Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3/4): 373-391.
59 Caplan M L, Bustin R M. Palaeoceanographic controls on geochemical characteristics of organic-rich Exshaw mudrocks: role of enhanced primary production[J]. Organic Geochemistry, 1998, 30(2/3): 161-188.
60 Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273.
61 Gallego-Torres D, Martínez-Ruiz F, Paytan A, et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: role of anoxia vs. productivity at time of sapropel deposition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2/3/4): 424-439.
62 Wei H Y, Chen D Z, Wang J G, et al. Organic accumulation in the lower Chihsia Formation (Middle Permian) of South China: constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355: 73-86.
63 陳旭,錢澤書. 蘇北蘭多維列世筆石孤立標(biāo)本的研究[J]. 古生物學(xué)報(bào),1990,29(1):1-11. [Chen Xu, Qian Zeshu. Isolated llandovery graptolites from northern Jiangsu[J]. Acta Palaeontologica Sinica, 1990, 29(1): 1-11.]
64 Bates D E B, Kirk N H, Loydell D. Ultrastructural studies on graptolites using scanning electron microscope[J]. Acta Palaeontologica Sinica, 1988, 27(5): 536-541.
65 戴娜,鐘寧寧,張瑜,等. 氬離子拋光/掃描電鏡分析方法在筆石有機(jī)質(zhì)研究中的應(yīng)用[J]. 電子顯微學(xué)報(bào),2015,34(5):416-420. [Dai Na, Zhong Ningning, Zhang Yu, et al. Ar ion milling/SEM analysis on graptolitinite macerals[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(5): 416-420.]
66 鄧?yán)?,周文,周立發(fā),等. 鄂爾多斯盆地奧陶系平?jīng)鼋M筆石頁巖微孔隙特征及其影響因素[J]. 石油勘探與開發(fā),2016,43(3):378-385. [Deng Kun, Zhou Wen, Zhou Lifa, et al. Influencing factors of micropores in the graptolite shale of Ordovician Pingliang Formation in Ordos Basin, China[J]. Petroleum Exploration and Development, 2016, 43(3): 378-385.]
Discussion on the Relationship between Graptolite Abundance and Organic Enrichment in Shales from the Wufeng and Longmaxi Formation, South China
QIU Zhen1,2DONG DaZhong1,2LU Bin2ZHOU Jie2SHI ZhenSheng2WANG HongYan2LIN Wen2ZHANG ChenChen1LIU DeXun2
(1. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China; 2. Langfang Branch, PetroChina Exploration and Development Research Institute, Langfang, Hebei 065007, China)
The graptolitic shales of the Wufeng and Longmaxi Formations were widely deposited across the Ordovician and Silurian transition in South China. Based on the statistics of graptolite abundance from nearly 400 shale samples and total organic content (TOC) from nearly 100 shale samples in the Ordovician-Silurian boundary succession in Wuxi area of Chongqing, 23 shale samples have been further selected to determine the contribution of the graptolite abundance to overall TOC. The energy spectrum analysis showed the C and O contents in the graptolites are higher than those in the host of Wufeng and Longmaxi shales, and the TOC of the graptolite is apparently higher than that of the surrounding host, showing the graptolite might be one of the contributors of organic matter in the shale. However, the overall TOC in shales generally has a poor correlation with the graptolite abundance in shales, implying that the graptolite abundance in shales has not a great impact on the organic enrichment.
graptolite; shale gas; Wufeng Formation; Longmaxi Formation; organic enrichment; Wuxi area
1000-0550(2016)06-1011-10
10.14027/j.cnki.cjxb.2016.06.001
2016-05-20; 收修改稿日期: 2016-08-22
國家自然基金項(xiàng)目(41602119);國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目(2013CB228001)[Foundation: National Natural Science Foundation, No. 41602119; National Key Basic Research Program of China (973 Program), No. 2013CB228001]
邱 振 男 1984年出生 工程師 沉積學(xué)與非常規(guī)油氣地質(zhì)學(xué) E-mail: qiuzhen316@163.com
P618.13
A