国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

預(yù)給極點(diǎn)的向量連分式插值

2016-12-19 09:53:06趙前進(jìn)王本強(qiáng)
關(guān)鍵詞:重?cái)?shù)有理量值

趙前進(jìn),王本強(qiáng)

(安徽理工大學(xué)理學(xué)院,安徽 淮南 232001)

?

預(yù)給極點(diǎn)的向量連分式插值

趙前進(jìn),王本強(qiáng)

(安徽理工大學(xué)理學(xué)院,安徽 淮南 232001)

為了保證函數(shù)在預(yù)給極點(diǎn)處的重?cái)?shù),給出了一種新算法計(jì)算預(yù)給極點(diǎn)的向量連分式插值。由預(yù)給的極點(diǎn)信息構(gòu)造插值函數(shù)分母多項(xiàng)式的一個(gè)因式,通過每個(gè)向量值乘以一個(gè)確定的數(shù),將預(yù)給極點(diǎn)的向量插值轉(zhuǎn)化為無預(yù)給極點(diǎn)的向量插值,基于向量的Samelson逆構(gòu)造Thiele型向量連分式插值,最終通過除以一個(gè)確定的函數(shù)獲得預(yù)給極點(diǎn)的向量連分式插值。具有預(yù)給的極點(diǎn)且保持原有的重?cái)?shù)。通過數(shù)值實(shí)例對(duì)比不同方法在極點(diǎn)附近的插值誤差,說明了新方法的有效性。

預(yù)給極點(diǎn);重?cái)?shù);向量有理插值;算法

在工程實(shí)踐和科學(xué)研究領(lǐng)域經(jīng)常遇到有極點(diǎn)的奇異函數(shù)的計(jì)算問題,連分式插值與逼近是解決此類問題的有效途徑之一[1-21]。文獻(xiàn)[2]中提出了一個(gè)計(jì)算預(yù)給極點(diǎn)的二元向量有理插值方法,通過設(shè)定極點(diǎn)處的向量函數(shù)值為無窮大向量,將預(yù)給極點(diǎn)和原有的插值節(jié)點(diǎn)都作為新的插值節(jié)點(diǎn),基于向量的Samelson逆來計(jì)算預(yù)給極點(diǎn)的二元向量有理插值,但是無法區(qū)分和保持極點(diǎn)的重?cái)?shù)。本文研究預(yù)給極點(diǎn)的向量連分式插值。由預(yù)給的極點(diǎn)信息構(gòu)造插值函數(shù)分母多項(xiàng)式的一個(gè)因式,通過每個(gè)向量值乘以一個(gè)確定的數(shù),將預(yù)給極點(diǎn)的向量插值轉(zhuǎn)化為常規(guī)的無預(yù)給極點(diǎn)的向量插值,進(jìn)一步基于向量的Samelson逆計(jì)算Thiele型向量連分式插值,最終通過除以一個(gè)確定的函數(shù)獲得預(yù)給極點(diǎn)的向量有理插值函數(shù),它具有預(yù)給的極點(diǎn)且每個(gè)預(yù)給極點(diǎn)保持原有的重?cái)?shù)。給出的數(shù)值實(shí)例說明了新方法的的有效性。

1 向量值連分式插值

文獻(xiàn)[21]給出了向量值連分式插值算法。給定數(shù)據(jù)(xi,v(i)), i=0,1,…,n,則Thiele型向量值連分式插值函數(shù)為

(1)

其中

φk(x0,x1,…,xk)=

k=1,2,…,n。

(2)

由文獻(xiàn)[21]知,如果n為偶數(shù),則式(1)中向量值插值有理函數(shù)為[n/n]型;如果n為奇數(shù),則式(1)中向量值插值有理函數(shù)為[n/(n-1)]型。

2 預(yù)給極點(diǎn)的向量連分式插值

T(x)=R(x)d(x)

(3)

滿足

T(xi)=R(xi)d(xi)=v(i)d(xi)

(i=0,1,…,n)

(4)

基于向量的Samelson逆, 計(jì)算得滿足插值條件 (4)的Thiele型向量值連分式插值函數(shù)T(x), 從而得到預(yù)給極點(diǎn)的向量值連分式插值

(5)

顯然,當(dāng)T(x)的分子、分母中每個(gè)多項(xiàng)式在各極點(diǎn)處的值均不等于零時(shí),有理插值函數(shù)R(x)具有預(yù)給的極點(diǎn)且每個(gè)預(yù)給極點(diǎn)保持原有的重?cái)?shù)。算法流程圖如下

圖1 算法流程圖

3 數(shù)值例子

取x0=0,x1=1,x2=2三個(gè)插值節(jié)點(diǎn),它們對(duì)應(yīng)的函數(shù)值分別是f(x0)=(0.685,0),f(x1)=(1.879,0.582),f(x2)=(5.916,0.728)。

顯然d(x)=(x+1)(x-3)2。

根據(jù)上文中的算法,求得

T(x0)=(6.165,0),T(x1)=(15.032,4.656),T(x2)=(17.748,2.184),基于Samelson逆,計(jì)算得滿足插值條件的Thiele型向量連分式插值函數(shù)

利用文獻(xiàn)[21]中朱功勤提供的方法,取x0=0,x1=1, x2=2, x3=-1, x4=3, 設(shè)f(x) 在

x3= -1和x4=3處的向量值為無窮大向量,基于Samelson逆,計(jì)算得滿足插值條件的Thiele型向量連分式插值函數(shù)

兩種插值方法在點(diǎn)x=2.6和x=3.6處的相對(duì)誤差對(duì)比如表1所示。

表1 兩種插值方法的相對(duì)誤差對(duì)比

從兩個(gè)插值方法相對(duì)差誤差對(duì)比可以看出本文中給出的方法在二重極點(diǎn)x=3附近相對(duì)誤差較小,且保持其極點(diǎn)的重?cái)?shù),說明上文中的方法的可行性和有效性。

4 結(jié)論

由預(yù)給的極點(diǎn)位置和重?cái)?shù)信息構(gòu)造一個(gè)新的向量值插值函數(shù),將預(yù)給極點(diǎn)的向量值有理插值轉(zhuǎn)化為無預(yù)給極點(diǎn)的向量值有理插值,基于向量的Samelson逆構(gòu)造Thiele型向量值連分式插值,最終通過極點(diǎn)的信息,將其轉(zhuǎn)換為預(yù)給極點(diǎn)的向量值連分式插值,具有預(yù)給的極點(diǎn)且極點(diǎn)保持原有的重?cái)?shù)。在實(shí)際問題中,靠近極點(diǎn)處的函數(shù)精度將會(huì)大大提高,給出的數(shù)值實(shí)例說明了新方法的優(yōu)點(diǎn)。

[1] 朱功勤,檀結(jié)慶,王洪燕. 預(yù)給極點(diǎn)的向量有理插值及性質(zhì)[J].高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào),2000,22(2):97-104.

[2] 檀結(jié)慶.連分式理論及其應(yīng)用[M]. 北京:科學(xué)出版社,2007:32-100.

[3] JIEQING TAN,BAORUI SONG,GONGQIN ZHU.Vector Valued Rational Interpolants Over Triangular Grids[J].Computers and Mathematics with Applicatigns,2002,44(44):1 357-1 367.

[4] QIANJIN ZHAO, JIEQING TAN.Block-based Thiele-like blending rational interpolation [J].Journal of Computational and Applied Mathematics,2006,195 (1):312-325.

[5] TAN J Q. Bivariate blending rational interpolants [J]. Approx Theory & Its Appl, 1999, 15(2): 74-83.

[6] TAN J Q, FANG Y.Newton-Thiele’s rational interpolants [J]. Numerical Algorithms, 2000, 24(1-2):141-157.

[7] P.R.GRAVES-MORRIS.Vector valued rational interpolants I [J]. Numerische Mathemalik,1983,42(3):331-348.

[8] P. R. GRAVES-MORRIS , C. D. JENKINS.Vector-Valued, Rational Interpolants III [J]. Constructive Approxiration,1986,2(1):263-289.

[9] M.GASCA,J.J.MARTINEZ.Computation of rational interpolants with prescribed poles [J]. Journal of Computational and Applied Mathematics,1989,26(3):297-309.

[10] ERIK MEIJERING.A Chronology of Interpolation [J].Proc IEEE-2002,90(3):319-342.

[11] AVRAM SIDI.Algebraic properties of some new vector-valued rational interpolants [J]. Journal of Approximation Theory,2006,141(2):142-161.

[12] AVRAM SIDI. A new approach to vector-valued rational interpolation [J].Journal of Approximation Theory,2004,130(2):179-189.

[13] LISA LORENTZEN.A convergence theorem for random continued fractions [J].Journal of Approximation Theory, 2015,197:1-8.

[14] WOJCIECH SIEMASZKO.Thiele-type branched continued fractions for two-variable functions [J]. Journal of Computational and Applied Mathematics,1983,9(2): 137-153.

[15] DAWEI LU, ZEXI SONG.Some new continued fraction estimates of the Somos' quadratic recurrence constant [J]. Journal of Number Theory,2015,155:36-45.

[16] GU CHUANQING.Multivariate generalized inverse vector-valued rational interpolants [J].Journal of Computational and Applied Mathematics,1997,84(2):137-146.

[17] ANGEL RIBALTA.State space realizations of rational interpolants with prescribed poles [J]. Systems & Control Letters,2001,43(43):379-386.

[18] BERRUT J.-P.. The barycentric weights of rational interpolation with prescribed poles [J]. Journal of Computational and Applied Mathematics,1997,86(1):45-52.

[19] BERRUT J P, MITTELMANN H D.Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval [J]. Computers and Mathematics with Applications,1997,33(6):77-86.

[20] BERRUT J.-P.,MITTELMANN H.Rational interpolation through the optimal attachment of poles to the interpolation polynomial [J]. Numerical Algorithms,2000, 23(4):315-328.

[21] 王仁宏,朱功勤.有理函數(shù)逼近及其應(yīng)用[M]. 北京:科學(xué)出版社,2004:139-142.

(責(zé)任編輯:李 麗,吳曉紅,編輯:丁 寒)

Vector valued continued fraction interpolation with prescribed poles

ZHAO Qian-jin, WANG Ben-qiang

(School of Science, Anhui University of Science and Technology, Huainan Anhui 232001, China)

In order to guarantee the number of functions in the prescribed poles, this paper presents an algorithm developed to calculate the vector valued continued fraction interpolant with prescribed poles. In the vector valued interpolant, a factorization of the denominator polynomial is constructed based on the information about the prescribed poles. By means of multiplying each interpolated vector value by a certain number, vector valued interpolation with prescribed poles is transformed into the one without prescribed poles. The vector valued continued fraction interpolant is constructed based on the Samelson inverse. Finally, by dividing a defined function, the vector valued continued fraction interpolant with prescribed poles is obtained and has prescribed poles with intrinsic multiplicity. Finally, an example is given in the text, by comparing different methods in interpolation error pole nearby, and shows the effectiveness of the new method.

prescribed poles; multiplicity; vector valued rational interpolation; algorithm

2016-01-13

國(guó)家自然科學(xué)基金(60973050); 安徽省教育廳自然科學(xué)基金項(xiàng)目(KJ2009A50)

趙前進(jìn)(1967-),男,安徽鳳陽人,教授,博士,碩士生導(dǎo)師,研究方向:有理插值與逼近, 數(shù)字圖像處理。

O241

A

1672-1098(2016)05-0001-04

猜你喜歡
重?cái)?shù)有理量值
多元向量值區(qū)域和加權(quán)風(fēng)險(xiǎn)值
C3型李代數(shù)的張量積分解
微分在代數(shù)證明中的兩個(gè)應(yīng)用
有理 有趣 有深意
A3型李代數(shù)的張量積分解
基于QAR數(shù)據(jù)的碳當(dāng)量值適航符合性驗(yàn)證方法
《有理數(shù)》鞏固練習(xí)
以較低截?cái)嘀財(cái)?shù)分擔(dān)超平面的亞純映射的唯一性問題
帶有中心值的量值的公差表示
山東冶金(2018年5期)2018-11-22 05:12:28
圓周上的有理點(diǎn)
黑龙江省| 观塘区| 凤山县| 四会市| 滦平县| 莲花县| 仁怀市| 大同市| 长岭县| 文昌市| 两当县| 南投市| 顺义区| 弋阳县| 石渠县| 万宁市| 盐源县| 和田县| 湾仔区| 阿拉尔市| 新晃| 建德市| 屯留县| 盐津县| 乌拉特中旗| 北辰区| 沁阳市| 西和县| 青川县| 额济纳旗| 宝兴县| 河东区| 安义县| 鲜城| 廉江市| 右玉县| 徐州市| 黄浦区| 淳安县| 普兰店市| 晋中市|