王興國, 高 盼
(江南大學(xué) 食品學(xué)院, 江蘇 無錫 214122)
脂肪味是第6種基本味覺嗎?
王興國, 高 盼
(江南大學(xué) 食品學(xué)院, 江蘇 無錫 214122)
近年來,眾多研究報道認為脂肪酸具有基本味覺的特性,提出了第6種基本味覺為脂肪味的觀點。綜合現(xiàn)有的研究報道結(jié)合基本味覺的論證條件,從生物體電生理學(xué)特性、心理物理學(xué)特性、味覺的主要感受器官、脂肪味與其他基本味覺比較、脂肪味的意義等方面論述了脂肪味作為第六種基本味的論據(jù)并不充分。
脂肪味; 脂肪酸; 基本味覺
酸、甜、苦、咸、鮮是目前公認的5種基本味覺[1-2]。2009年,美國普渡大學(xué)的Mattes[3]教授論述了脂肪酸具有基本味覺的特性——脂肪味,可能是第六種基本味覺,這引起了國內(nèi)外學(xué)者的廣泛關(guān)注,美國、日本等國進行了大量的細胞、動物實驗和感官及調(diào)研實驗來論證脂肪味存在及其意義,并發(fā)表了大量的學(xué)術(shù)研究和多篇高影響因子的綜述[4]。
1997年在圣地亞哥舉行的鮮味大會上明確提出了基本味覺的條件[5]:1)在食物中普遍存在;2)滿足電生理學(xué)和心理物理學(xué)的要求;3)存在獨特的感覺器官;4)不是其他基本味覺混合而成。除此之外,基本味覺也必須存在其特殊的意義。那么,脂肪味能否被稱為第六種基本味道?本文將綜合公開發(fā)表的文獻資料,結(jié)合基本味需滿足的條件以及其他基本味認證方式,論述脂肪味作為第六種基本味的論據(jù)是否充分。
普遍認為脂肪味的呈味物質(zhì)是游離脂肪酸[6],而不是甘油三酯。這些游離脂肪酸來源于食物[7-12]和/或舌脂酶分解甘油三酯產(chǎn)生[13-15]。在嚙齒動物中,加入舌脂酶抑制劑,抑制甘油三酯水解,小鼠對脂肪的偏好降低[16],這也側(cè)面證明脂肪味的呈味物質(zhì)是游離脂肪酸而不是甘油三酯。Fushiki[17]通過大鼠口服脂肪假飼實驗,發(fā)現(xiàn)油酸、亞油酸和亞麻酸能引起脂肪化學(xué)接收機制的胰腺酶的短暫升高,而辛酸、短碳鏈脂肪酸不能引起該反應(yīng),證明中短碳鏈脂肪酸不是脂肪味的呈味物質(zhì)。
味覺受體反應(yīng)決定了脂肪味的具體呈味物質(zhì)。在外向延遲整流鉀離子通道(delayed rectifying potassium channels,DRKs)通路中只有順式長碳鏈不飽和脂肪酸能引起通道的反應(yīng)[14]。分化簇36(cluster of differentiation 36,CD36)也只與長碳鏈脂肪酸發(fā)生可逆的特異性結(jié)合[18-19],而中碳鏈和短碳鏈脂肪酸不與CD36結(jié)合。中長碳鏈脂肪酸能有效刺激味覺受體,碳鏈長度14-18的飽和脂肪酸(SFA)和碳鏈長16-22的不飽和脂肪酸是G蛋白偶聯(lián)受體120(G protein receptor 120,GPR120)的配體[3, 20],該受體不結(jié)合碳鏈長度小于12的游離脂肪酸[20-21]。
脂肪酸的呈味物質(zhì)研究還是比較完善的,即碳鏈長度14~18個碳的飽和脂肪酸和16~22個碳的順式不飽和脂肪酸是基本呈味物質(zhì)。
電生理學(xué)是以作用于生物體的電作用和生物體所發(fā)生的電現(xiàn)象為主要研究對象的生理學(xué)的一個分支領(lǐng)域[22]。在味覺研究中,常用動作電位來研究神經(jīng)系統(tǒng)的機能。電壓門控離子通道作為味覺細胞興奮性的分子基礎(chǔ),在味覺信息的前期編碼和處理中具有重要意義。味覺信息經(jīng)過輸入神經(jīng),包括面神經(jīng)鼓索支、舌咽神經(jīng)和迷走神經(jīng),進入腦干,經(jīng)丘腦,最后到達大腦皮層進行味覺感知[23]。
5種基本味覺的傳導(dǎo)機制已經(jīng)研究很多???、甜、鮮味是這3種味覺感受味質(zhì)與相應(yīng)的味覺受體(GPCR)結(jié)合產(chǎn)生,甜味、苦味和鮮味的味覺傳導(dǎo)途徑見圖1。由圖1可知,從而激活味覺特異性G蛋白α-味導(dǎo)素(α-gustducin),導(dǎo)致G蛋白β和γ亞基的分離,激活磷酸酶β2(PLC-β2)產(chǎn)生肌醇三磷酸(IP3),IP3與第三類肌醇三磷酸受體(IP3R3)結(jié)合,導(dǎo)致胞內(nèi)細胞器膜上IP3-門控鈣離子通道的開放,胞內(nèi)儲存的鈣離子被釋放出來,引起胞質(zhì)內(nèi)鈣離子濃度上升,進而引起瞬時電位M亞型5(TRM5)通道開放,鈉離子流入細胞內(nèi),最終導(dǎo)致膜去極化和神經(jīng)遞質(zhì)釋放[24-26]。
圖1 甜味、苦味和鮮味的味覺傳導(dǎo)途徑Fig.1 Taste pathway of sweet, bitter, and umami
酸味信號轉(zhuǎn)導(dǎo)可能涉及3種機制:1)通過阿米洛利敏感性鈉離子通道的質(zhì)子滲透來傳導(dǎo)酸味;2)細胞內(nèi)外因素固定式封閉電導(dǎo);3)質(zhì)子門控通道。至今并沒有明確的關(guān)于酸味信號轉(zhuǎn)導(dǎo)通路方面的報道。動物中的咸味反應(yīng)可能涉及很多信號轉(zhuǎn)導(dǎo)機制,而這些信號轉(zhuǎn)導(dǎo)機制可能與阿米洛利敏感性成分或阿米洛利不敏感性成分有關(guān)。至今,并沒有關(guān)于咸味受體分子進化機制方面的報道[27]。
脂肪味的傳導(dǎo)機制類似于苦、甜、鮮,都發(fā)生在Ⅱ型細胞中。從口腔中攝入的脂肪酸先進入細胞內(nèi),細胞外的脂肪酸進入細胞主要方式有2種:1)靠濃度差,脂肪酸先溶于細胞膜,再從外膜翻轉(zhuǎn)到內(nèi)膜,此效率較差。2)細胞膜上蛋白質(zhì)幫助運送,脂肪酸運送蛋白(FATP)與長碳鏈脂肪酸的?;o酶A合成酶聯(lián)結(jié)在一起,防止脂肪酸再跑出細胞膜外,同時減少膜內(nèi)脂肪酸的濃度,形成濃度差而加速運入細胞。因此,雖然脂肪味的呈味物質(zhì)是脂肪酸,但與酸味的呈味物質(zhì)(乙酸等短碳鏈脂肪酸)不重合,且酸味發(fā)生在Ⅲ型細胞中,目前沒有研究表明脂肪味的作用機制與Ⅲ型細胞有關(guān),因此認為脂肪味并不是酸味。
目前認為脂肪酸的傳導(dǎo)方式有兩種,一種是外向延遲整流鉀離子通道,另一種是鈣離子通道。舌前味覺細胞中,shaker kv1.5(KCNA5)通道激活打開,胞內(nèi)鉀離子向外流動形成外向電流,多不飽和脂肪酸與CD36結(jié)合,使CD36發(fā)生C型失活,C型失活激活快,失活慢。從而導(dǎo)致kv1.5離子通道關(guān)閉,抑制鉀離子外流,引起膜去極化和神經(jīng)遞質(zhì)的釋放[28-29]。但在甜味和酸味的研究中[30-31],通過兩棲類動物和倉鼠進行實驗發(fā)現(xiàn)也降低了鉀離子電流和引起味覺細胞去極化。因此,外向延遲整流鉀離子通道反應(yīng)可能不是脂肪酸獨特的機制,但可能代表了一種更普遍的參與味覺反應(yīng)的下游機制。同時物種之間的潛在差異,會對實驗結(jié)果造成一定影響。
鈣離子通道是更為普遍的傳導(dǎo)方式。脂肪酸和CD36/GPR120結(jié)合,激活磷酸酶β2產(chǎn)生肌醇三磷酸,肌醇三磷酸與第三類肌醇三磷酸受體結(jié)合,導(dǎo)致胞內(nèi)細胞器膜上肌醇三磷酸- 門控鈣離子通道的開放,胞內(nèi)儲存的鈣離子被釋放出來,引起胞質(zhì)內(nèi)鈣離子濃度上升,進而引起瞬時電位M亞型5通道開放,鈉離子流入細胞內(nèi),最終導(dǎo)致膜去極化和神經(jīng)遞質(zhì)釋放[32]。
Tepper等[33]報道了2種基因可能在人類對脂肪的感知和偏好中發(fā)揮作用,分別是tas2r38和CD36。tas2r38是苦硫脲味覺受體,包括6-n-丙基硫氧嘧啶(PROP)和苯硫脲(PTC),與品嘗苦味硫脲化合物PROP的能力高度相關(guān)。
脂肪味的表達與苦味表達基因有關(guān),那么是否表示脂肪味和苦味有關(guān)聯(lián),甚至脂肪味是苦味和其他味覺的混合味呢?目前還沒有其他的研究對這一觀點進行解釋。若脂肪味的表達與苦味的表達基因相關(guān),那么脂肪味可能就不是一種單一味覺更不是基本味覺。
心理物理學(xué)是指對物理刺激和它引起的感覺進行數(shù)量化研究的心理學(xué)領(lǐng)域[34]。多強的刺激才能引起感覺,即絕對感覺閾限的測量;物理刺激有多大變化才能被覺察到,即差別感覺閾限的測量;感覺怎樣隨物理刺激的大小而變化,即閾上感覺的測量。
Tucker等[35]總結(jié)前人的研究,認為油酸的閾值范圍約0.02~12 mmol/L[36-39];Newman等[40]亞通過感官評價將油酸的察覺閾值精確為0.26 mmol/L,油酸的閾值范圍是0.04~4.7 mmol/L。但Ozdener等[41]進行人體味覺細胞實驗發(fā)現(xiàn),5 μmol/L的亞油酸就能引起細胞電位的變化,因此認為人的察覺閾濃度應(yīng)為5 μmol/L,同時,Stewart等[42]研究表明人類的油酸和亞油酸的閾值變化超過2至4個數(shù)量級,差別閾值也恒定在0.5 mmol/L左右[43-44]。
Kawai等[45]對舌脂酶進行了詳細的描述,舌脂酶由味腺(von Ebner’s gland)分泌,它是哺乳動物消化和吸收脂肪的一種輔助酶,其在口腔中分解脂肪的機制目前并不清楚。Hamosh等[46]和Primeaux等[47]認為,舌脂酶在口腔中分解膳食中的甘油三酯,將其部分分解成甘油單酯和甘油二酯以及游離脂肪酸,并通過味腺將這些親脂性分子運輸?shù)娇谇蝗芤涵h(huán)境中,細胞對長碳鏈脂肪酸形成的脂肪進行識別[48-49]。舌脂酶對嚙齒動物的作用明顯,實驗證明[50-51]嚙齒動物加入脂肪酶抑制劑會影響甘油三酯的偏好,而不影響脂肪酸的偏好,表明舌脂酶在口腔中作用于甘油三酯。但舌脂酶對人的作用卻存在爭議,在嬰幼兒口腔中,舌脂酶存在且具有重要作用[52],但在成人口腔中舌脂酶活力很低[43]。因此,舌脂酶是否能作用于成人,使膳食中的甘油三酯分解成游離脂肪酸還需進行進一步的論證。
若舌脂酶不存在,那么僅從食物中獲取的游離脂肪酸能否達到察覺閾值的濃度呢?以大豆油為例,根據(jù)國標(biāo)GB 1535—2003,一級大豆油酸價為0.2,按油酸比例計算,1克油的油酸含量約為7.15 μmol/L,但精煉更好的大豆油酸價可以降低一個數(shù)量級,在這種情況下,攝食的油酸濃度是否能達到脂肪味閾值的下限還未可知。同時目前所有的動物實驗或感官實驗都用純的脂肪酸作為樣品,在攝食過程中,咀嚼時間、進食頻率和游離脂肪酸的吸收率等都會對口腔中游離脂肪酸的量產(chǎn)生影響,無法確定能否達到脂肪味的感知閾。因此,對于心理物理學(xué)特性的研究也不完善。
味覺的主要感受器官是味蕾[53]。在哺乳動物中,它主要分布在舌[2]、上顎和咽部黏膜處[54]。舌是由橫紋肌束交織而成,其背面分布著四種不同類型的舌乳頭:絲狀乳頭、菌狀乳頭(FF)、葉狀乳頭(FL)和輪廓乳頭(CV),其中菌狀乳頭、葉狀乳頭和輪廓乳頭因含有味蕾而被稱為味乳頭。食物的味覺信號是由味覺細胞定位于化學(xué)感受器官[55],幾種脂味受體細胞[56-60],特別是游離脂肪酸受體存在于人的味蕾[59, 61-62]。
哺乳動物的味蕾頂端在口腔的上皮表面開口為味孔,味孔是味蕾成熟的形態(tài)學(xué)標(biāo)志。味蕾由50~150個味蕾細胞組成,這些細胞根據(jù)細胞形態(tài)可分為四種類型,分別定義為I型細胞(暗細胞)、Ⅱ型細胞(亮細胞)、Ⅲ型細胞(中間細胞)和Ⅳ型細胞(基細胞)。Ⅰ型細胞像神經(jīng)膠質(zhì)細胞一樣在味蕾其他類型細胞的周圍,具有清除遞質(zhì)和隔離其他類型細胞的作用[63];Ⅱ型細胞主要表達味覺GPCR,PLCβ2,IP3R3和TRPM5等甜、苦和鮮味轉(zhuǎn)導(dǎo)所需的功能因子,因此認為該型細胞是味覺感受細胞,也是味覺信號轉(zhuǎn)導(dǎo)的基礎(chǔ)[64];Ⅲ型細胞表達突觸小體相關(guān)蛋白質(zhì)和神經(jīng)細胞黏附分子,其同味覺信號傳遞到神經(jīng)系統(tǒng)的過程有關(guān);Ⅳ型細胞位于味蕾的基底部分,是圓形的增殖干細胞,由該型細胞分化產(chǎn)生其他各種味覺細胞。
CD36是一種多功能蛋白的B類清道夫受體SR-B1[65],如圖2,主要存在于持續(xù)的脂質(zhì)代謝組織和一些造血干細胞中。CD36參與多種生理和病理過程中血管形成[66]、血栓形成[67]、動脈粥樣硬化、阿爾茨海默癥[68]和瘧疾。CD36另一個重要的功能是作為脂質(zhì)傳感器[69],它是一種脂肪酸轉(zhuǎn)移酶(fatty acid translocase,F(xiàn)AT),研究表明與外部環(huán)境(味覺、腸道或嗅覺上皮細胞)相連的CD36能與膳食脂肪的外源性衍生配體相結(jié)合,在嚙齒動物下丘腦腹內(nèi)側(cè)核神經(jīng)元中,CD36也能感知到脂肪酸[70]。CD36蛋白為多肽單鏈,包括兩個跨膜區(qū)域,其羧基末端(C端)和氨基末端(N端)各有一個連續(xù)的疏水氨基酸區(qū),兩個疏水末端作為與細胞膜結(jié)合的支柱被固定在細胞膜上,使其長鏈大部分延伸在胞外。它的膜外周區(qū)有多個N-連接的糖苷化位點,這些結(jié)合位點主要結(jié)合抗血管生成蛋白凝血酶敏感蛋白-1 (thrombospondin-1,TSP-1)[71],氧化低密度脂蛋白和凋亡細胞[71-72],以及長碳鏈脂肪酸[69],C-末端可能參與受體激酶調(diào)節(jié)的信息傳導(dǎo)作用[73]。
圖2 CD36的結(jié)構(gòu)圖Fig.2 Structure of CD36
CD36的表達參與脂肪酸轉(zhuǎn)運過程,與表達于整個味細胞細胞質(zhì)內(nèi)的α-味導(dǎo)素相比,CD36的表達明顯局限于味蕾細胞的頂端[56],并且位于味孔的內(nèi)側(cè)。這是已知的對長碳鏈脂肪酸有高度親和力的蛋白質(zhì)的位置,特別適合于接受來自飲食中脂類物質(zhì)的刺激。CD36的C-末端與激酶相連,這與細胞內(nèi)信號轉(zhuǎn)導(dǎo)相關(guān)[74]。CD36主要存在于輪廓乳頭[58, 75],少量存在于葉狀乳頭中,幾乎不存在于菌狀乳頭,用于提高其對膳食脂肪察覺的敏感性。
關(guān)于CD36作為脂肪受體的研究很多,Sclafani等[57]對比敲除CD36基因的小鼠和野生型小鼠,發(fā)現(xiàn)敲除CD36基因的小鼠對大豆油和亞油酸的偏好消失;Chen等[76]通過干擾RNA抑制舌上CD36的表達,結(jié)果發(fā)現(xiàn)對亞油酸的偏好也降低。Zhang等[77]證明飲食誘導(dǎo)肥胖的大鼠輪廓乳頭味蕾中CD36的表達低于正常體重控制飲食的大鼠,因為表達水平下降,導(dǎo)致對脂肪的敏感性更低,以至于攝入的脂肪更多。Chevrot等[78]則認為,正常小數(shù)和肥胖小鼠輪廓乳頭中CD36餐后短時表達無差異但飯后1小時正常小鼠CD36表達下降。類似的研究[79]表明小鼠輪廓乳頭的CD36表達與口腔脂肪暴露直接相關(guān),在舌表面直接附著油脂,CD36的表達下降。胰高血糖素樣蛋白1(GLP-1)也是CD36的表達信號[80],GLP-1基因敲除小鼠也不顯示輪廓乳頭的CD36餐后表達下調(diào)。缺乏CD36的人空腹和餐后的游離脂肪酸和甘油三酯水平較高,也更易出現(xiàn)胰島素抵抗,甚至沒有多余的脂肪積累[81]。體重正常與超重/肥胖的人相比較,口腔中游離脂肪酸敏感性測試表達了CD36變化的潛在機制[38, 43, 82],游離脂肪酸閾值測試存在個體差異[83],人類CD36的表達和游離脂肪酸敏感度之間的假設(shè)關(guān)系,還需要進一步研究。
GPCR中文名稱是G蛋白偶聯(lián)受體,其結(jié)構(gòu)如圖3。在各類受體中,GPCR是成員最多的一大類,目前已知的GPCR有1000多種[84]。盡管GPCR所介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路極為復(fù)雜,但在結(jié)構(gòu)上它們均由單一的多肽鏈構(gòu)成,形成7次跨膜結(jié)構(gòu)。G蛋白是GPCR與胞內(nèi)信號通路偶聯(lián)的關(guān)鍵分子,它是由α、β和γ亞基組成的三聚體。其中α亞基是G蛋白主要的功能性亞基,β和γ亞基通常形成功能性的復(fù)合體,它們在GPCR信號轉(zhuǎn)導(dǎo)中都起到重要作用。GPCR的各跨膜區(qū)段之間由親水的細胞內(nèi)外的肽環(huán)相連接,在細胞膜外的N末端有糖基化位點,而胞內(nèi)C末端有絲氨酸和蘇氨酸的磷酸化位點[85-86]。受體的N端或跨膜區(qū)可形成配體結(jié)合域,連接跨膜區(qū)段的胞內(nèi)環(huán)以及C端則形成G蛋白結(jié)合域。GPCR對各種組織中的脂肪酸具有選擇性[87],GPCR與脂類等小分子配體的受體結(jié)合位點主要位于由7個跨膜區(qū)段所構(gòu)成的跨膜螺旋區(qū)段的中心,它使配體分子或多或少的平行于質(zhì)膜表面。
圖3 GPCR的結(jié)構(gòu)圖Fig.3 Structure of GPCR
GPCR通過G蛋白可以間接或直接的途徑對離子通道進行調(diào)節(jié)。間接途徑是指當(dāng)GPCR激活時,G蛋白隨之激活效應(yīng)器,再通過第二信使系統(tǒng)下游通路如蛋白激酶對離子通道進行磷酸化調(diào)節(jié),或者是第二信使直接門控一些離子通道。這是GPCR對離子通道調(diào)節(jié)的最主要方式。另外,第二信使如IP3等可直接激活I(lǐng)P3R3、環(huán)核苷酸門控離子通道HCN和CNC等。除間接的調(diào)節(jié)外,G蛋白還可以直接調(diào)節(jié)離子通道活性。一方面,G蛋白的α亞基或βγ復(fù)合體本身可以門控離子通道,另一方面G蛋白的α亞基或βγ復(fù)合體也可以調(diào)節(jié)離子通道的活性。
在味覺上皮細胞中,存在兩種引起廣泛研究的GPCR,分別是GPR120和GPR40。這兩種蛋白都在嚙齒動物的味覺細胞中出現(xiàn),但不同于GPR120,GPR40在人的味覺組織中幾乎不存在[62, 88]。GPR120屬于進化保守的視紫紅質(zhì)家族受體[89],目前的研究表明,飽和與不飽和的長碳鏈脂肪酸通過激活GPR120受體參與調(diào)節(jié)一系列的代謝過程。GPR120與5-HT2受體偶聯(lián),激活磷酸酶,長碳鏈脂肪酸與GPR120受體結(jié)合引發(fā)下游一系列的反應(yīng)[20, 90]。
GPR120存在于人類和嚙齒類動物的菌狀乳頭、輪廓乳頭和嚙齒類動物的葉狀乳頭中[62];人類的葉狀乳頭沒有檢測到GPR120基因的存在。GPR120和GPR40都是ω-3脂肪酸受體[20, 62, 91-94]。Godinot等[95]研究證明在嚙齒動物中,GPR40介導(dǎo)的味覺感受不足以產(chǎn)生偏好。Sun等[96]通過計算機模型設(shè)計研究發(fā)現(xiàn)GPR120的羧基端對GPR120和脂肪酸的結(jié)合起重要作用。GPR120基因敲除的小鼠對油酸和亞油酸的偏好降低[59],但是對大豆油乳劑的喜好不變[97]。
脂肪味的傳導(dǎo)機制是大部分專家學(xué)者的主要研究方向,大部分都認同外向延遲整流鉀離子通道和鈣離子通道兩條傳導(dǎo)途徑,這兩條途徑都跟味覺接收受體CD36有關(guān),但相關(guān)的傳導(dǎo)效率和關(guān)聯(lián)性沒有過多的闡述和報道,因此該部分還具有深入探索的必要。實驗證明[78]CD36和GPR120兩種受體的作用并不相同,CD36對脂肪酸的親和力大于GPR120[98]。根據(jù)目前的研究,提出了CD36和GPR120作用的假設(shè)[41]:對長碳鏈脂肪酸親和力高的CD36是脂肪味覺感知的第一受體,在低濃度時只有CD36運載脂肪酸并產(chǎn)生作用,GPR120能擴大脂肪酸的信號,在長碳鏈脂肪酸濃度較高時GPR120能控制CD36作用剩余的脂肪酸擴大離子信號,加強了化學(xué)信號到電信號的轉(zhuǎn)換,增強了感知的閾值強度,但該假設(shè)沒有得到證實。
脂肪味傳導(dǎo)有關(guān)的味覺神經(jīng)主要是雙側(cè)鼓索神經(jīng)和舌咽神經(jīng)[3]。鼓索神經(jīng)并入三叉神經(jīng)的分支舌神經(jīng)中并隨其分布,味覺神經(jīng)纖維主要分布到舌前2/3,舌咽神經(jīng)經(jīng)分布于舌后1/3的味蕾。通過一系列實驗[16, 99-100]證明切斷鼓索神經(jīng)和舌咽神經(jīng),脂肪的攝入量和偏好減少,從而證明這兩種神經(jīng)對脂肪味的重要作用。Stratford等[99]切斷大鼠雙側(cè)鼓索神經(jīng),發(fā)現(xiàn)母鼠對亞油酸感知閾值上升一倍,公鼠閾值上升七成。Gaillard等[16]切斷大鼠舌咽神經(jīng),發(fā)現(xiàn)大鼠在30min和48h的雙瓶實驗中對2%亞油酸的偏好產(chǎn)生影響,同時全部切除這兩種神經(jīng),小鼠對亞油酸的偏好消失。
感覺器官是脂肪味研究中最完善的部分,但仍然存在許多未解之處,比如CD36和GPR120之間的關(guān)系,傳導(dǎo)效率等問題都沒有相關(guān)報道,脂肪味是否涉及其他的感覺器官也未可知。
Mattes[101]研究發(fā)現(xiàn)在受試者夾鼻檢測時,亞油酸使咸味和苦味的閾值強度降低,對氯化鈉、蔗糖閾值無顯著影響,檸檬酸,咖啡因閾值顯著增高。雖然這項研究并沒有排除脂肪酸可能對其他味道化合物靈敏度有調(diào)節(jié)作用,但證明了脂肪酸對基本味覺具有影響,其作用機制有待研究。Gilbertson等[102]給S5B大鼠喂食0.5mmol/L的糖精和5~20μmol/L的亞油酸混合物,與單獨喂食相同濃度的糖精和亞油酸。通過行為學(xué)觀察發(fā)現(xiàn),大鼠對添加亞油酸和糖精的偏好明顯高于分別喂食單一物質(zhì),因此認為在一定濃度內(nèi)亞油酸和糖精具有協(xié)同效應(yīng)。Pittman等[100]進一步研究發(fā)現(xiàn),在蔗糖和葡萄糖中加入88μmol/L的亞油酸、油酸或兩者的混合會增強Osborne-Mendel大鼠在20s內(nèi)的舔舐率。Ninomiya[103]證明脂肪酸對苦味的響應(yīng)會影響小鼠的神經(jīng)反應(yīng)。Tepper[33]也證明對苦味不敏感者,對甜味和脂肪的偏好閾值更高。
在鮮味論證過程中[5],利用多維尺度分析(multidimensional scaling analysis, MDS)證明鮮味與其他基本味覺不混合,目前沒有把多維尺度分析運用到脂肪味研究的文獻報道。脂肪味的感官實驗都是小樣本量的感官分析,導(dǎo)致實驗結(jié)果局限,可靠性存疑。現(xiàn)有的文獻資料只能證明脂肪味的呈味物質(zhì)可能對其他基本味覺產(chǎn)生影響,但不足以論證脂肪味和其他基本味覺不重合,是一種獨立的其他味覺。
哺乳動物顯示出明顯的喜好脂肪豐富的食物[104-105],不良的飲食習(xí)慣是導(dǎo)致肥胖的重要因素[106-108],脂肪味與肥胖具有極大的關(guān)聯(lián)。游離脂肪酸具有細胞毒素,因此推測脂肪味可以根據(jù)其游離脂肪酸含量幫助提醒人類避免潛在的有毒物質(zhì)[109]??谇恢颈┞犊赡茏柚谷藗償z入腐臭的食物同時提高胃腸的脂類加工和消化[56, 110-111]。
Mattes[112]認為口腔暴露全脂食物比無脂食物有較高的餐后血脂,而后又進一步論證這種變化不能通過觸覺和嗅覺進行解釋,因此認為引起這種變化的原因是味覺感知[113]。Tucker等[83]進行觀察48名成年受試者,發(fā)現(xiàn)飽和脂肪攝入量和感知閾值正相關(guān)(攝入量越大,閾值越高),而肥胖者對脂肪酸靈敏度低。Haryono等[114]的研究已經(jīng)表明,口腔中脂肪酸的敏感度,特別是油酸的識別與BMI、膳食脂肪的消耗量和食物中脂肪識別能力有關(guān)。Asano等[115]通過25名成年人的自我報告問卷調(diào)查得出結(jié)論:油酸閾值不僅與BMI有關(guān),與高脂甜食的偏好和飲食習(xí)慣也正相關(guān)。Newman等[116]進行一份553人持續(xù)6周的隨機飲食干預(yù)實驗,證明持續(xù)低脂飲食和部分控制脂肪飲食都能增強超重/肥胖的人群對脂肪的感知強度,其中低脂飲食效果更為明顯,同時短期改變飲食習(xí)慣并不能改變其脂肪偏好。
正是因為脂肪味的存在可能與肥胖相關(guān),才引起食品、營養(yǎng)學(xué)及醫(yī)學(xué)方面學(xué)者的廣泛關(guān)注,他們認為如果論證了脂肪味的存在,對于研發(fā)脂肪替代物具有極其重要的指導(dǎo)意義。
綜上所述,脂肪味的呈味物質(zhì)和感覺器官理論研究較為完善,但實驗論證過程集中在亞油酸和油酸,對其他脂肪酸幾乎沒有涉及;雖然論證了CD36和GPR120的作用,但其關(guān)聯(lián)性沒有實驗論證;同時并沒有直接的論據(jù)表明脂肪味不與其他基本味覺混合;其電生理學(xué)和心理物理學(xué)研究也并不完善,現(xiàn)有的資料和報告論證并不充分,現(xiàn)在下結(jié)論脂肪味是基本味覺為時尚早。
自2009年Mattes教授提出脂肪味的觀點以來,在論證脂肪味存在及其是基本味覺的過程中,人們不斷地通過基本味覺的4大條件來進行論證,但理論依據(jù)尚有不足,存在很多值得深入研究和反復(fù)推敲的地方,所以脂肪味是第六種基本味覺這一觀點尚不能下定論。鮮味的基本味覺論證從提出到被廣泛認同經(jīng)歷了近80年的時間,甚至到現(xiàn)在都有部分國家和地區(qū)不認為鮮味是基本味覺,因此可以推測脂肪味的研究和論證還將經(jīng)過漫長的道路。
[1] NINOMIYA K. What is umami?[J]. Food Reviews International, 1998, 14(2):123-138.
[2] BRESLIN P A, SPECTOR A C. Mammalian taste perception[J]. Current Biology, 2008, 18(4):148-155.
[3] MATTES R D. Is there a fatty acid taste?[J]. Annual Review of Nutrition, 2009, 29(1):305-327.
[4] 侯威. 脂肪味會成為第六種滋味么?[J]. 中國食品學(xué)報, 2015,15(7):239-240.
[5] KURIHARA K. Umami the fifth basic taste:history of studies on receptor mechanisms and role as a food flavor[J]. Biomed Research International, 2015: 189-202.
[6] TUCKER R M, MATTES R D, RUNNING C A. Mechanisms and effects of “fat taste” in humans.[J]. Biofactors, 2014, 40(3):313-326.
[7] MATTES R D. Fat taste in humans: is it a primary?[M]∥MONTMAYEUR J P, LE COUTRE J. Fat detection: taste, texture, and post ingestive effects. Boca Raton: CRC Press, 2010.
[8] SMITH J C. Orosensory factors in fat detection[M]∥MONTMAYEUR J P, LE COUTRE J. Fat detection: taste, texture, and post ingestive effects. Boca Raton: CRC Press, 2010.
[9] STRATFORD J M,CONTRERAS R J. Peripheral gustatory processing of free fatty acids[M]∥MONTMAYEUR J P, LE COUTRE J. Fat detection: taste, texture, and post ingestive effects. Boca Raton: CRC Press, 2010: 833.
[10] GILBERTSON T A, YU T, SHAH B P. Gustatory mechanisms for fat detection[M]∥MONTMAYEUR J P, LE COUTRE J. Fat detection: taste, texture, and post ingestive effects. Boca Raton: CRC Press, 2010.
[11] ACKROFF K, SCLAFANI A. Oral and postoral determinants of dietary fat appetite[M]∥MONTMAYEUR J P, LE COUTRE J. Fat detection: taste, texture, and post ingestive effects. Boca Raton: CRC Press, 2010.
[12] PITTMANW D. Role of the gustatory system in fatty acid detection in rats[M]∥MONTMAYEUR J P, LE COUTRE J. Fat detection: taste, texture, and post ingestive effects. Boca Raton: CRC Press, 2010.
[13] GILBERTSON T A,LIU L,KIM I,et al. Fatty acid responses in taste cells from obesity-prone and -resistant rats[J]. Physiology and Behavior, 2005, 86(5): 681-690.
[14] GILBERTSON T A,FONTENOT D T,LIU L,et al. Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat[J]. The American Journal of Physiology, 1997, 272(4):1203-1210.
[15] SMITH L M,CLIFFORD A J,HAMBLIN C L,et al. Changes in physical and chemical properties of shortenings used for commercial deep-fat frying[J]. Journal of the American Oil Chemists’ Society, 1986, 63(8): 1017-1023.
[16] GAILLARD D,LAUGERETTE F,DARCEL N,et al. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2008, 22(5): 1458-1468.
[17] FUSHIKI T. Why fat is so preferable: from oral fat detection to inducing reward in the brain[J]. Bioscience Biotechnology and Biochemistry, 2014, 78(3): 363-369.
[18] BAILLIE A G S,COBURN CT,ABUMRAD N A. Reversible binding of long-chain fatty acids to purified FAT:the adipose CD36 homolog[J]. Journal of Membrane Biology, 1996, 153(1): 75-81.
[19] IBRAHIMI A,SFEIR Z,MAGHARAIE H,et al. Expression of the CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(7): 2646-2651.
[20] HIRASAWA A,TSUMAYA K,AWAJI T,et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120[J]. Nature Medicine, 2005, 11(1): 90-94.
[21] DAMAK S, LE-COUTRE J, BEZENCON C, et al. Fat taste receptors and their methods of use: EP2006/064043[P].2007-08-02.
[22] 金文泉.可興奮細胞的生物電現(xiàn)象[J]. 中國醫(yī)師進修雜志, 1982(8):19-22.
[23] 陳培華. 味覺細胞模型及仿生味覺細胞網(wǎng)絡(luò)傳感器的研究[D].杭州:浙江大學(xué),2010.
[24] MARGOLSKEE R F. Molecular mechanisms of bitter and sweet taste transduction[J]. The Journal of Biological Chemistry, 2002, 277(1): 1-4.
[25] KINNAMON S C. Umami taste transduction mechanisms[J]. The American Journal of Clinical Nutrition, 2009, 90(3): 753S-755S.
[26] 陳大志,葉春,李萍. 味覺受體分子機制[J].生命的化學(xué), 2010, 5(30): 810-814.
[27] MIYAMOTO T, FUJIYAMA R,OKADA Y,et al. Acid and salt responses in mouse taste cells[J]. Progress in Neurobiology, 2000, 62(2): 135-157.
[28] GUTMAN G A. Compendium of voltage-gated ion channels:potassium channels[J]. Pharmacological Reviews, 2004, 55(4): 583-586.
[29] LIU L,HANSEN D R,KIM I,et al. Expression and characterization of delayed rectifying K+channels in anterior rat taste buds[J]. American Journal of Physiology-Cell Physiology, 2005, 289(4): C868-C880.
[30] KINNAMON S C,BEAM K G. Apical localization of K+channels in taste cells provides the basis for sour taste transduction[J]. Proceedings of the National Academy of Sciences, 1988, 85(18): 7023-7027.
[31] CUMMINGS T A,KINNAMON S C. Sweet taste transduction in hamster:sweeteners and cyclic nucleotides depolarize taste cells by reducing a K+current[J]. Journal of Neurophysiology, 1996, 75(75): 1256-1263.
[32] CLAPP T R,MEDLER K F,DAMAK S,et al. Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25[J]. BMC Biology, 2006, 4(1): 7.
[33] TEPPER B J. The taste for fat: new discoveries on the role of fat in sensory perception, metabolism, sensory pleasure, and beyond[J]. Journal of Food Science, 2012, 77(3):6-7.
[34] 楊治良.心理物理學(xué)[M].蘭州: 甘肅人民出版社,1988.
[35] TUCKER R M, MATTES R D. Are free fatty acids effective taste stimuli in humans ?[J]. Journal of Food Science, 2012, 77(3):148-151.
[36] CHALéRUSH A R,BURGESS J R, MATTES R D. Multiple routes of chemosensitivity to free fatty acids in humans[J]. American Journal of Physiology GastrointestinalandLiver Physiology, 2007, 292(5): 1206-1212.
[37] STEWART J E,KEAST R S. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects[J]. International Journal of Obesity, 2012, 36(6): 834-842.
[38] STEWART J E,SEIMON R V,OTTO B,et al. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men[J]. The American Journal of Clinical Nutrition, 2011, 93(4): 703-711.
[39] CHALéRUSH A R,MATTES R D. Evidence for human orosensory(taste?)sensitivity to free fatty acids[J]. Chemical Senses, 2007, 32(5): 423-431.
[40] NEWMAN L P,KEAST R J. The test-retest reliability of fatty acid taste thresholds[J]. Chemosensory Perception, 2013, 6(2): 70-77.
[41] OZDENER M H,SUBRAMANIAM S,SUNDARESAN S,et al. CD36- and GPR120-mediated Ca2+signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice[J]. Gastroenterology, 2014, 146(4): 995-1005.
[42] STEWART J E,FEINLE-BISSET C,GOLDING M,et al. Oral sensitivity to fatty acids, food consumption and BMI in human subjects[J]. The British Journal of Nutrition, 2010, 104(1): 145-152.
[43] MATTES D R. Brief oral stimulation, but especially oral fat exposure,elevates serum triglycerides in humans[J]. AJP Gastrointestinal and Liver Physiology, 2009, 296(2): 365.
[44] HOPPERT K,ZAHN S,PUSCHMANN A,et al. Quantification of sensory difference thresholds for fat and sweetness in dairy-based emulsions[J]. Food Quality and Preference, 2012, 26(1): 52-57.
[45] KAWAI T,FUSHIKI T. Importance of lipolysis in oral cavity for orosensory detection of fat[J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2003, 285(2): 447-454.
[46] HAMOSH M,SCOW R O. Lingual lipase and its role in the digestion of dietary lipid[J]. The Journal of Clinical Investigation, 1973, 52(1): 88-95.
[47] PRIMEAUX S D, BRAYMER H D,BRAY G A. CD36 mRNA in the gastrointestinal tract is differentially regulated by dietary fat intake in obesity-prone and obesity-resistant rats[J]. Digestive Diseases and Sciences, 2013, 58(2): 363-370.
[48] PEPINO M Y,LOVE-GREGORY L,KLEIN S,et al. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects[J]. Journal of Lipid Research, 2012, 53(3): 561-566.
[49] KULKARNI B V,MATTES R D. Lingual lipase activity in the orosensory detection of fat by humans[J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2014, 306(12): 879-885.
[50] GILBERTSON T A,LIU L,YORK D A,et al. Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity[J]. Annals of the New York Academy of Sciences, 1998, 855(855): 165-168.
[51] DRANSFIELD E. The taste of fat[J]. Meat Science, 2008, 80(1): 37-42.
[52] ALFONSO V B,JULIO S C, SUSANA N K. Structured lipids in nutrition:a technology for the development of novelty products[J]. Revista Chilena De Nutrición, 2002, 29(2): 106-115.
[53] 黃贛輝. 味覺傳感器陣列構(gòu)建及其初步應(yīng)用[D].南昌:南昌大學(xué), 2006.
[54] TRAVERS S P,NICKLAS K. Taste bud distribution in the rat pharynx and larynx[J]. The Anatomical Record, 1990, 227(3): 373-379.
[55] ROPER S D. Taste buds as peripheral chemosensory processors[J]. Seminars in Cell and Developmental Biology, 2013, 24(1): 71-79.
[56] LAUGERETTE F,PASSILLY-DEGRACE P,PATRIS B,et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions[J]. The Journal of Clinical Investigation, 2005, 115(11): 3177-3184.
[57] SCLAFANI A , ACKROFFK, ABUMRAD N A. CD36 gene deletion reduces fat preference and intake but not post-oral fat conditioning in mice[J]. AJP Regulatory Integrative and Comparative Physiology, 2007, 293(4): 61386.
[58] FUKUWATARI T,KAWADA T,TSURUTA M,et al. Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats[J]. FEBS Letters, 1997, 414(2): 461-464.
[59] CARTONI C,YASUMATSU K,OHKURI T,et al. Taste preference for fatty acids is mediated by GPR40 and GPR120[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2010, 30(25): 8376-8382.
[60] LIU P,SHAH B P,CROASDELL S,et al. Transient receptor potential channel type M5 is essential for fat taste[J]. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 2011, 31(23): 8634-8642.
[61] SIMONS P J,KUMMER J A,LUIKEN J J,et al. Apical CD36 immunolocalization in human and porcine taste buds from circumvallate and foliate papillae[J]. Acta Histochemica, 2011, 113(8): 839-843.
[62] GALINDO M M,VOIGT N,STEIN J,et al. G protein-coupled receptors in human fat taste perception[J]. Chemical Senses, 2012, 37(2): 123-139.
[63] BIGIANI A. Mouse taste cells with glialike membrane properties[J]. Journal of Neurophysiology, 2001, 85(4): 1552-1560.
[64] CLAPP T R,YANG R,STOICK C L,et al. Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway[J]. The Journal of Comparative Neurology, 2004, 468(3): 311-321.
[65] BOTHAM K M, JONES W. Postprandial lipoproteins and the molecular regulation of vascular homeostasis[J]. Progress in Lipid Research, 2013, 52(4): 446-464.
[66] ASCH A S,BARNWELL J,SILVERSTEIN R L,et al. Isolation of the thrombospondin membrane receptor[J]. The Journal of Clinical Investigation, 1987, 79(4): 1054-1061.
[67] GHOSH A,LI W,FEBBRAIO M,et al. Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice[J]. The Journal of Clinical Investigation, 2008, 118(5): 1934-1943.
[68] CORACI I S,HUSEMANN J,BERMAN J W,et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils[J]. The American Journal of Pathology, 2002, 160(1): 101-112.
[69] MARTIN C,CHEVROT M,POIRIER H,et al. CD36 as a lipid sensor[J]. Physiology and Behavior, 2011, 105(1): 36-42.
[70] LE FOLL C,IRANI B G,MAGNAN C,et al. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing[J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2009, 297(3): 655-664.
[71] SIMANTOV R,SILVERSTEIN R L. CD36: a critical anti-angiogenic receptor[J]. Frontiers in Bioscience: A Journal and Virtual Library, 2003, 8(1/3): 874-882.
[72] COLLOT-TEIXEIRA CS. CD36 and macrophages in atherosclerosis[J]. Cardiovascular Research, 2007, 75(3): 468-477.
[73] MEDLER K F,KINNAMON S C. Electrophysiological characterization of voltage-gated currents in defined taste cell types of mice[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2003, 23(7): 2608-2617.
[74] 葛漫麗,劉婷婷,王繼紅,等. B類清道夫受體CD36在脂代謝中的作用[J].中國免疫學(xué)雜志, 2013,9(11): 1219-1222.
[75] ZHANG X,FITZSIMMONS R L,CLELAND L G,et al. CD36/fatty acid translocase in rats: distribution, isolation from hepatocytes, and comparison with the scavenger receptor SR-B1[J]. Laboratory Investigation, 2003, 83(3): 317-332.
[76] CHEN C S,BENCH E M,ALLERTON T D,et al. Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue[J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2013, 305(11): 1346-1355.
[77] ZHANG X J,ZHOU L H,BAN X,et al. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats[J]. Acta Histochemica, 2011, 113(6): 663-667.
[78] CHEVROT M,BERNARD A,ANCEL D,et al. Obesity alters the gustatory perception of lipids in the mouse: plausible involvement of lingual CD36[J]. Journal of Lipid Research, 2013, 54(9): 2485-2494.
[79] MARTIN C,PASSILLY-DEGRACE P,GAILLARD D, et al. The lipid-sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds: impact on spontaneous fat preference[J]. Plos One, 2011, 6(8): 24014.
[80] MARTIN C,PASSILLY-DEGRACE P,CHEVROT M, et al. Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity[J]. Journal of Lipid Research, 2012, 53(11): 2256-2265.
[81] MASUDA D,HIRANO K I,OKU H,et al. Chylomicron remnants are increased in the postprandial state in CD36 deficiency[J]. Journal of Lipid Research, 2009, 50(5): 999-1011.
[82] STEWART J E,KEAST R J. Oral sensitivity to oleic acid is associated with fat intake and body mass index[J]. Clinical Nutrition, 2011, 30(6): 838-844.
[83] TUCKER R M,EDLINGER C,CRAIG B A,et al. Associations between BMI and fat taste sensitivity in humans[J]. Chemical Senses, 2014, 39(4): 349-357.
[84] 壽天德.神經(jīng)生物學(xué)[M]. 北京: 高等教育出版社,2003.
[85] HOLLIDAY N D,BROWN A H. Drug discovery opportunities and challenges at G protein coupled receptors for long chain free fatty acids[J]. Frontiers in Endocrinology, 2011(2): 112.
[86] SUM C S,TIKHONOVA I G,NEUMANN S,et al. Identification of residues important for agonist recognition and activation in GPR40[J]. Journal of Biological Chemistry, 2007, 282(40): 29248-29255.
[87] DAVENPORT A P,HARMAR A J. Evolving pharmacology of orphan GPCRs: IUPHAR Commentary[J]. British Journal of Pharmacology, 2013, 170(4): 693-695.
[88] YONEZAWA T,KURATA R,YOSHIDA K,et al. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics[J]. Current Medicinal Chemistry, 2013, 20(31): 3855-3871.
[89] 盧伊娜,胡慧,朱維良,等.GPR120的研究進展[J].生命科學(xué),2008,20(2):275-278. LU Y N,HU H,ZHU W L,et al.Progress in GPR120 research[J].Chinese Bulletin of Life Sciences,2008,20(2):275-278.
[90] WETTSCHURECK N,OFFERMANNS S. Mammalian G proteins and their cell type specific functions[J]. Physiological Reviews, 2005, 85(4): 1159-1204.
[91] DRANSE H J,HUDSON B D. Drugs or diet?Developing novel therapeutic strategies targeting the free fatty acid family of GPCRs[J]. British Journal of Pharmacology, 2013, 170(4): 696-711.
[92] BRISCOE C P,TADAYYON M,ANDREWS J L,et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids[J]. Journal of Biological Chemistry, 2003, 278(13): 11303-11311.
[93] ITOH Y,KAWAMATA Y,HARADA M,et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40[J]. Nature, 2003, 422(6928): 173-176.
[94] KOTARSKY K,NILSSON N E,FLODGREN E,et al. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs[J]. Biochemical and Biophysical Research Communications, 2003, 301(2): 406-410.
[95] GODINOT N,YASUMATSU K,BARCOS M E,et al. Activation of tongue-expressed GPR40 and GPR120 by non caloric agonists is not sufficient to drive preference in mice[J]. Neuroscience, 2013, 250(8): 20-30.
[96] SUN Q,HIRASAWA A,HARA T,et al. Structure-activity relationships of GPR120 agonists based on a docking simulation[J]. Molecular Pharmacology, 2010, 78(5): 804-810.
[97] SCLAFANI A Z,ACKROFF K. GPR40 and GPR120 fatty acid sensors are critical for postoral but not oral mediation of fat preferences in the mouse[J]. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 2013, 305(12): 1490-1497.
[98] ABUMRAD N A. CD36 may determine our desire for dietary fats[J]. Journal of Clinical Investigation, 2005, 115(11): 2965-2967.
[99] STRATFORD J M,CONTRERAS R J. Chorda tympani nerve transection alters linoleic acid taste discrimination by male and female rats[J]. Physiology and Behavior, 2006, 89(3): 311-319.
[100] PITTMAN D,CRAWLEY M E,CORBIN C H,et al. Chorda tympani nerve transection impairs the gustatory detection of free fatty acids in male and female rats[J]. Brain Research, 2007, 1151(3): 74-83.
[101] MATTES R D. Effects of linoleic acid on sweet, sour, salty, and bitter taste thresholds and intensity ratings of adults[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2007, 292(5): 1243-1248.
[102] GILBERTSONT A. Fatty acid responses in taste cells from obesity-prone and resistant rats[J]. Physiology and Behavior, 2006,86(5): 681-690.
[103] NINOMIYA Y. Regulation of food intake through modification of taste responsiveness:leptin,salivary proteins,fatty acids[R]. Japan: ILSI,1999.
[104] GREENBERG D,SMITH G P. The controls of fat intake[J]. Psychosomatic Medicine, 1996, 58(6): 559-569.
[105] DIPATRIZION V. Is fat taste ready for primetime?[J]. Physiology and Behavior, 2014,136: 145-154.
[106] DREWNOWSKI A,KURTH C,HOLDEN-WILTSE J, et al. Food preferences in human obesity: carbohydrates versus fats[J]. Appetite, 1992, 18(3): 207-221.
[107] DREWNOWSKI A. Why do we like fat? [J]. Journal of the American Dietetic Association, 1997, 97(7): 58-62.
[108] MCCRORY M A,FUSS P J,MCCALLUM J E,et al. Dietary variety within food groups: association with energy intake and body fatness in men and women[J]. The American Journal of Clinical Nutrition, 1999, 69(3): 440-447.
[109] BIRD R P,ALEXANDER J C. Cytotoxicity of thermally oxidized fats[J]. Vitro, 1981, 17(5): 397-404.
[110] HAMMOND E G,KLEYN D H. Off flavors of milk:nomenclature,standards,and bibliography1[J]. Journal of Dairy Science, 1978, 61(7): 855-869.
[111] MATTES R D. Oral fat exposure alters postprandial lipid metabolism in humans[J]. The American Journal of Clinical Nutrition, 1996, 63(6): 911-917.
[112] MATTES R D. The taste of fat elevates postprandial triacylglycerol[J]. Physiology and Behavior, 2001, 74(3): 343-348.
[113] MATTES R D. Fat taste and lipid metabolism in humans[J]. Physiology and Behavior, 2005, 86(5): 691-697.
[114] HARYONO R Y,KEAST R S. Measuring oral fatty acid thresholds,fat perception,fatty food liking,and papillae density in humans[J]. Journal of Visualized Experiments, 2014(88): 51236.
[115] ASANO M,HONG G,MATSUYAMA Y,et al. Association of oral fat sensitivity with body mass index, taste preference, and eating habits in healthy Japanese young adults[J]. The Tohoku Journal of Experimental Medicine, 2016, 238(2): 93-103.
[116] NEWMAN L P,BOLHUIS D P,TORRES S J,et al. Dietary fat restriction increases fat taste sensitivity in people with obesity[J]. Obesity, 2016, 24(2): 328-334.
Is Fat Taste the Sixth Basic Taste?
WANG Xingguo, GAO Pan
(SchoolofFoodScienceandTechnology,JiangnanUniversity,Wuxi214122,China)
In recent years, fatty acids with the characteristics of the basic taste has been reported, and the point that fatty acids are the sixth basic taste has been proposed. Based on several aspects, such as electrophysiological characteristics of organisms, psychophysics characteristics, the main taste receptors, compared with other basic taste, the significance of fat taste, this paper reports that the evidence about the fat taste as the sixth basic taste is insufficient based on the existing literatures and the argument conditions of the basic taste.
fatty taste; fatty acid; basic taste
李 寧)
10.3969/j.issn.2095-6002.2016.05.001
2095-6002(2016)05-0001-11
王興國,高盼. 脂肪味是第6種基本味覺嗎?[J]. 食品科學(xué)技術(shù)學(xué)報,2016,34(5):1-11. WANG Xingguo, GAO Pan. Is fat taste the sixth basic taste?[J]. Journal of Food Science and Technology, 2016,34(5):1-11.
2016-09-01
王興國,男,教授,博士生導(dǎo)師,博士,主要從事油脂科學(xué)與技術(shù)方面的研究。
TS201.1
A