吳 帆,倪偉超,李 彪,于勇杰,倪 穗
(寧波大學(xué) 應(yīng)用海洋生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,浙江 寧波 315211)
?
植物精油的提取方法及其功能特性研究進(jìn)展
吳 帆,倪偉超,李 彪,于勇杰,倪 穗*
(寧波大學(xué) 應(yīng)用海洋生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,浙江 寧波 315211)
結(jié)合近幾年相關(guān)領(lǐng)域的研究成果,回顧總結(jié)了水蒸氣蒸餾法、溶劑提取法、吸附法等植物精油傳統(tǒng)提取方法,及酶解輔助提取、微波輔助提取等多種新興植物精油提取方法;并綜述了植物精油的相關(guān)功能特性,如抗氧化、抑菌、抗癌、驅(qū)蟲殺蟲等功能的研究進(jìn)展。
植物精油;提取方法;功能特性;研究進(jìn)展
精油(Essential Oil)又稱揮發(fā)油(Volatile Oil),是一類具有芳香氣味的揮發(fā)性油狀液體的總稱。揮發(fā)油在植物界分布廣泛,自然界約有60個(gè)科的植物含有揮發(fā)油成分,如蔥科、姜科、菊科、蕓香科、傘形科、唇形科、樟科、木蘭科、龍腦香科等[1-2]。揮發(fā)油是一類植物次生代謝產(chǎn)物,它主要存在于植物的腺毛、油室、油管、分泌細(xì)胞或樹脂道中,在植物的根或根莖、莖、葉、花、果、種子等器官均有分布[3]。
揮發(fā)油的成分復(fù)雜,一般由幾十種甚至上百種化學(xué)成分組成,按化學(xué)結(jié)構(gòu)可將其分為萜類化合物、芳香族化合物、脂肪族化合物和含氮含硫化合物等4類。植物中揮發(fā)油含量在一般1%以下,但少數(shù)可達(dá)10%以上。植物揮發(fā)油成分種類和含量與植物本身親緣關(guān)系、生長(zhǎng)環(huán)境(如氣溫、日照、地理位置等)、采收季節(jié)、貯藏條件等因素等相關(guān)[1,4-5]。
自然界中發(fā)現(xiàn)的植物揮發(fā)油在3 000種以上,約有300種已被應(yīng)用于食品、醫(yī)藥、日用化工、香精香料、化妝品等行業(yè)。由于植物揮發(fā)油具有抗菌消炎、抗氧化、抗癌、驅(qū)蟲殺蟲等生物活性[2,6],關(guān)于植物揮發(fā)油的提取、成分分析及功能特性的研究成為近年來(lái)研究的熱點(diǎn)。
本文對(duì)近幾年來(lái)植物中精油的水蒸氣蒸餾法、溶劑提取法、吸附法等傳統(tǒng)提取方法,及酶解輔助提取、微波輔助提取等多種新興植物精油提取方法研究成果進(jìn)行總結(jié),并綜述了植物精油的相關(guān)功能特性,如抗氧化、抑菌、抗癌、驅(qū)蟲殺蟲等功能的研究進(jìn)展。
揮發(fā)油幾乎不溶于水,能夠隨水蒸氣蒸出,易溶于乙醇、正己烷、乙醚、丙酮等多種有機(jī)溶劑,通常利用這些性質(zhì)從植物原料中提取揮發(fā)油。由于原料來(lái)源、部位不同,植物揮發(fā)油的提取方法也有差異。傳統(tǒng)的植物揮發(fā)油提取方法有水蒸氣蒸餾法、溶劑提取法、壓榨法、吸附法等。傳統(tǒng)揮發(fā)油提取技術(shù)存在提取時(shí)間長(zhǎng)、提取效率低、后處理過(guò)程復(fù)雜、能耗高等缺點(diǎn),隨著現(xiàn)代儀器分析技術(shù)及相關(guān)學(xué)科技術(shù)的迅猛發(fā)展,新型提取技術(shù)如超臨界流體萃取、超聲波輔助提取、微波輔助提取、酶解輔助提取等技術(shù)被應(yīng)用到植物揮發(fā)油提取領(lǐng)域[7-9]。不同植物揮發(fā)油提取方法的原理、應(yīng)用實(shí)例及優(yōu)缺點(diǎn)如表1所示。
表1 植物揮發(fā)油的提取方法
植物揮發(fā)油具有抗氧化、抑菌消炎、抗癌、驅(qū)蟲殺蟲、抗熱鎮(zhèn)痛等功效,具有開發(fā)成為天然食品防腐劑、抑菌劑、抗氧化劑、天然保健型化妝品等產(chǎn)品的潛力,因此關(guān)于植物揮發(fā)油的功能特性研究也成為近年來(lái)國(guó)內(nèi)外學(xué)者的研究熱點(diǎn)。
2.1 抗氧化作用研究
自由基是人體代謝過(guò)程中產(chǎn)生的中間產(chǎn)物,人體正常的生命活動(dòng)需要適量的自由基存在和參與[26]。但是機(jī)體內(nèi)過(guò)量的自由基積累能夠引起細(xì)胞DNA鏈斷裂、細(xì)胞蛋白羰基化、脂質(zhì)過(guò)氧化反應(yīng),從而引起機(jī)體衰老、癌癥等疾病的發(fā)生[27]。抗氧化劑發(fā)揮抗氧化作用的原理是阻斷自動(dòng)氧化作用的連鎖反應(yīng)。傳統(tǒng)合成的抗氧化劑雖然抗氧化能力較強(qiáng),但長(zhǎng)期使用對(duì)環(huán)境和人體健康都存在潛在的危險(xiǎn),篩選天然、安全的植物源性抗氧化物質(zhì)具有重要的現(xiàn)實(shí)意義,因此國(guó)外學(xué)者對(duì)多種植物揮發(fā)油的抗氧化性進(jìn)行了系統(tǒng)研究。
Singh等人對(duì)黃蒿揮發(fā)油的抗氧化活性進(jìn)行了研究,發(fā)現(xiàn)黃蒿揮發(fā)油的主要成分為香茅醛(15.2%)和β-香茅醇(11%),黃蒿揮發(fā)油清除DPPH自由基、OH自由基、H2O2的IC50值分別為146.3 μg/mL、145.2 μg/mL、270.1 μg/mL,說(shuō)明黃蒿揮發(fā)油具有較強(qiáng)的抗氧化能力[28]。Rather等人研究了胡桃精油的抗氧化活性,結(jié)果表明胡桃精油具有較強(qiáng)的抗氧化能力,其清除DPPH自由基、OH自由基的IC50值分別為34.5 μg/mL、56.4 μg/mL[28]。Al-Reza等研究發(fā)現(xiàn)姜科植物莪術(shù)葉的揮發(fā)油能夠有效的清除DPPH自由基和超氧陰離子O2-,表明其具有較強(qiáng)抗氧化能力[29]。Teixeira等對(duì)百里香精油、羅勒精油、香芹籽精油、香茅精油、丁香精油、大蒜精油、檸檬精油、迷迭香精油等17種精油的抗氧化活性進(jìn)行了評(píng)價(jià),丁香精油、牛至精油、百里香精油表現(xiàn)出較強(qiáng)的抗氧化活性,其IC50值分別為0.04 mg/mL、0.05 mg/mL、0.25 mg/mL[30]。
2.2 抑菌作用研究
植物揮發(fā)油是植物源天然產(chǎn)物中具有代表性的具有較強(qiáng)殺菌或抑菌活性的物質(zhì),對(duì)于細(xì)菌、真菌等微生物具有顯著的抑制作用,有替代傳統(tǒng)化學(xué)合成殺菌劑的潛力。一般來(lái)說(shuō),揮發(fā)油的組成成分、結(jié)構(gòu)及功能性基團(tuán)決定了它們的抗菌能力大小。研究表明,揮發(fā)油成分中的酚類、萜烯類、醛酮類物質(zhì)是其具有較強(qiáng)抑菌活性的原因。植物揮發(fā)油主要通過(guò)破壞微生物細(xì)胞壁或細(xì)胞膜結(jié)構(gòu)、影響菌絲形態(tài)結(jié)構(gòu)、降低或抑制孢子產(chǎn)生和萌發(fā)等途徑達(dá)到抑菌作用,具有抗菌譜廣、安全可靠的優(yōu)點(diǎn)[31-32]。
Riahi 等研究了薄荷精油對(duì)大腸桿菌、鼠傷寒沙門氏菌、金黃色葡萄球菌、蠟狀芽孢桿菌、白色念珠菌、黑曲霉等病原微生物的抑制作用,結(jié)果表明薄荷精油對(duì)6種受試病原微生物均有較強(qiáng)的抑制作用,其中對(duì)革蘭氏陽(yáng)性細(xì)菌抑制作用最強(qiáng),對(duì)革蘭氏陰性細(xì)菌和真菌的抑制作用較弱[33]。Martos 等人研究了柑橘樹植物精油如檸檬、柑橘、西柚、橙子等對(duì)4種食品中常見(jiàn)的腐敗菌的抑制作用,發(fā)現(xiàn)檸檬精油、柑橘精油、西柚精油、橙子精油對(duì)黑曲霉、黃曲霉、黃青霉、疣狀青霉均有抑制作用,其中橙子精油對(duì)黑曲霉抑制作用最強(qiáng),柑橘精油對(duì)黃曲霉抑制作用最強(qiáng),西柚精油對(duì)黃青霉和疣孢青霉的抑制作用最強(qiáng)[34]。Stefanakis 等人研究發(fā)現(xiàn)牛至屬植物精油對(duì)大腸桿菌、鰻利斯頓氏菌、溶藻弧菌等5種細(xì)菌和啤酒酵母均有較強(qiáng)的抑制作用[35]。Ye等人研究了洋蔥精油對(duì)大腸桿菌、金黃色葡萄球菌、枯草芽孢桿菌、黑曲霉、土曲霉等9種食源性致病微生物的抑制作用,結(jié)果表明:洋蔥精油對(duì)9種受試菌的最低抑菌濃度為0.18~1.80 mg/mL,表明洋蔥精油具有較強(qiáng)的抑菌作用[36]。Bouzidi 等研究發(fā)現(xiàn)百里香揮發(fā)油對(duì)金黃色葡萄球菌、枯草芽孢桿菌、蠟狀芽孢桿菌、大腸桿菌、陰溝腸桿菌、沙門氏菌等8種細(xì)菌和白念珠菌等4種真菌均具有抑制作用[37]。Salem等研究發(fā)現(xiàn)水蒸氣蒸餾法得到的串錢柳葉揮發(fā)油主要成分為1, 8-桉樹腦和α-蒎烯,串錢柳揮發(fā)油對(duì)枯草芽孢桿菌、蠟樣芽孢桿菌、騰黃微球菌、金黃色葡萄球菌、大腸桿菌、粘質(zhì)沙雷菌、傷寒桿菌、普通變形菌、綠膿桿菌等細(xì)菌均有較強(qiáng)的抑制作用[38]。
2.3 抗癌作用研究
植物揮發(fā)油揮發(fā)油可通過(guò)調(diào)節(jié)細(xì)胞生長(zhǎng)周期、抑制細(xì)胞生長(zhǎng)速度、誘導(dǎo)癌細(xì)胞凋亡等途徑產(chǎn)生抗癌作用。Sylvestre等研究了巴豆揮發(fā)油對(duì)人體肺癌細(xì)胞(A-549)和人結(jié)腸癌細(xì)胞(DLD-1)的抑制作用,結(jié)果表明巴豆揮發(fā)油對(duì)2種癌細(xì)胞均具有較強(qiáng)的抑制作用,其對(duì)人體肺癌細(xì)胞(A-549)和人結(jié)腸癌細(xì)胞(DLD-1)的IC50值分別為(27±4)μg/mL、(28±3)μg/mL[39]。李美等研究了野胡蘿卜花揮發(fā)油對(duì)人肝癌和肺癌細(xì)胞的抑制作用,結(jié)果表明野胡蘿卜花揮發(fā)油對(duì)人肝癌細(xì)胞(HuH7)和人肺癌細(xì)胞(NCI-H446)具有較強(qiáng)的抑癌活性,且具有濃度和時(shí)間依賴性[40]。Yu等研究了地筍精油對(duì)人體肝癌細(xì)胞的抑制作用,發(fā)現(xiàn)地筍精油能夠促進(jìn)人體肝癌細(xì)胞(Bel-7402)的凋亡,并且能夠降低細(xì)胞內(nèi)的谷胱甘肽水平[41]。張璐敏等對(duì)野艾蒿揮發(fā)油對(duì)人體宮頸癌細(xì)胞(HeLa)形態(tài)和結(jié)構(gòu)的影響進(jìn)行了研究,結(jié)果發(fā)現(xiàn)低濃度(100 μg/mL)的野艾蒿揮發(fā)油能夠使癌細(xì)胞凋亡,高濃度的劑量(400 μg/mL)能夠使癌細(xì)胞膜破裂、胞漿內(nèi)含物外泄,癌細(xì)胞壞死[42]。Rashid 等研究發(fā)現(xiàn)五月艾揮發(fā)油對(duì)人體白血病(THP-1)、肺癌(A-549)、肝癌(HEP-2)、結(jié)腸癌(Caco-2)等癌細(xì)胞具有抑制作用,且揮發(fā)油濃度越大抑制效果越明顯,其IC50值分別為10 μg/mL、25 μg/mL、15.5 μg/mL、19.5 μg/mL[43]。
2.4 驅(qū)蟲殺蟲作用研究
Khiyari等對(duì)野生和人工栽培的鼠尾草揮發(fā)油對(duì)赤擬谷盜殺蟲活性進(jìn)行了研究,結(jié)果表明:鼠尾草精油能夠殺死赤擬谷盜蟲,且野生鼠尾草揮發(fā)油的殺蟲能力強(qiáng)于人工栽培品種,其LC50值分別為1 μL/cm2和1.25 μL/cm2[44]。盧傳兵等人研究發(fā)現(xiàn)黃荊精油能夠抑制玉米象體內(nèi)乙酰膽堿酯酶、過(guò)氧化氫酶和羧酸酯酶的代謝,從而將玉米象殺死[45]。Liu等研究發(fā)現(xiàn)百合科植物藠頭揮發(fā)油能夠殺死書蚤,其中熏蒸法實(shí)驗(yàn)和接觸法實(shí)驗(yàn)的LC50值分別為441.8 μg/cm2和186.5 μg/L[46]。Bachrouch等分別采用熏蒸法和接觸法研究了白草蒿和苦艾2種植物揮發(fā)油對(duì)赤擬谷盜和鋸谷盜成蟲的影響,結(jié)果表明,白草蒿和苦艾揮發(fā)油均具有殺蟲活性;其中熏蒸法實(shí)驗(yàn)中白草蒿的殺蟲活性較強(qiáng),鋸谷盜對(duì)植物揮發(fā)油較敏感,而接觸法實(shí)驗(yàn)中苦艾揮發(fā)油表現(xiàn)出了較強(qiáng)的殺蟲活性[47]。Cheng等研究發(fā)現(xiàn)肉桂精油能夠殺死白紋伊蚊、致倦庫(kù)蚊、白腹叢蚊的幼蟲,肉桂醛和安息香醛是其具有較強(qiáng)蚊蟲殺滅活性的原因[48]。
2.5 其他作用
由于自然界中很多種植物揮發(fā)油氣味芬芳,且在滋潤(rùn)、保濕、美白等方面對(duì)人體皮膚具有良好的功效,天然植物精油化妝品越來(lái)越受到人們的親睞。此外,植物揮發(fā)油還具有調(diào)節(jié)神經(jīng)、抗熱止痛等功效。因此將植物揮發(fā)油應(yīng)用于化妝品、醫(yī)藥保健等領(lǐng)域具有非常廣闊的市場(chǎng)前景。
傳統(tǒng)的植物精油提取方法發(fā)展時(shí)間較長(zhǎng),已經(jīng)可以大規(guī)模地運(yùn)用于實(shí)際生產(chǎn)過(guò)程。但其本身存在提取時(shí)間長(zhǎng)、提取效率低、后處理過(guò)程復(fù)雜、能耗高等缺點(diǎn);隨著相關(guān)儀器及分析技術(shù)的發(fā)展而新產(chǎn)生的精油提取方法,如超聲波輔助提取、微波輔助提取、酶解輔助提取等成功地克服了以上缺點(diǎn),但也存在操作繁瑣、儀器昂貴、成本較高等不足。隨著科技地進(jìn)一步發(fā)展,植物精油的提取方法會(huì)更傾向于多種方法聯(lián)合提取,向更簡(jiǎn)便、更便宜、更省時(shí)的方向發(fā)展。
我國(guó)地大物博,植物種類繁多,植物精油資源非常豐富。目前,已有多項(xiàng)研究表明植物精油具有多種功能特性,如抗氧化、抑菌、抗癌、驅(qū)蟲殺蟲等。隨著科學(xué)技術(shù)的進(jìn)步,植物精油的更深層次的功能會(huì)源源不斷地被人類發(fā)現(xiàn)。植物精油是一類非常有開發(fā)潛力的生物資源,今后勢(shì)必會(huì)在化工、保健品、生活用品、藥用等方面占據(jù)主導(dǎo)市場(chǎng)。
[1] VIGAN M. Essential oils: renewal of interest and toxicity[J].European Journal of Dermatology,2010,20(6):685-692.
[2] RAUT J S, Karuppayil S M,Raut J S,et al. A status review on the medicinal properties of essential oils[J].Industrial Crops & Products,2014(62):250-264.
[3] BAKKALI F.Biological effects of essential oils—a review[J].Food & Chemical Toxicology,2008,46(2):446-475.
[4] EBRAHIMI S N,HADIAN J,MIRJALILI M H,et al. Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages[J].Planta Medica,2007,110(4):927-931.
[5] SIVROPOULOU A, NIKOLAOU C,PAPANIKOLAOU E,et al. Antimicrobial, cytotoxic, and antiviral activities of Salvia fructicosa essential oil[J].Journal of Agricultural & Food Chemistry,1997,45(8):3197-3201.
[6] LAHLOU M.Essential oils and fragrance compounds: bioactivity and mechanisms of action[J].Flavour & Fragrance Journal,2004,19(2):159-165.
[7] PéRINO-ISSARTIER S.A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation[J].Journal of Chromatography A,2013,1305(1):41-47.
[8] AZMIR J,ZAIDUL I S M,RAHMAN M M,et al.Techniques for extraction of bioactive compounds from plant materials: A review[J].Journal of Food Engineering,2013,117(4):426-436.
[9] ASBAHANI A E,MILADI K,BADRI W,et al. Essential oils: From extraction to encapsulation[J].International Journal of Pharmaceutics,2015,483(1-2):220-243.
[10] FERHAT M A,MEKLATI B Y,CHEMAT F.Comparison of different isolation methods of essential oil from Citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’ distillation[J].Flavour & Fragrance Journal,2007,22(6):494-504.
[11] GAVAHIAN M,F(xiàn)ARAHNAKY A,JAVIDNIA K,et al. Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L[J].Innovative Food Science & Emerging Technologies,2012,14(2):85-91.
[12] 金利泰. 天然藥物提取分離工藝學(xué)[M]. 杭州:浙江大學(xué)出版社,2011.
[13] 徐懷德. 天然產(chǎn)物提取工藝學(xué)[M]. 北京:中國(guó)輕工業(yè)出版社,2011.
[14] REVERCHON E,MARCO I D.Supercritical fluid extraction and fractionation of natural matter[J].Journal of Supercritical Fluids,2006,38(2):146-166.
[15] POURMORTAZAVI S M,HAJIMIRSADEGHI S S.Supercritical fluid extraction in plant essential and volatile oil analysis[J].Journal of Chromatography A,2007,1163:2-24.
[16] CHEMAT F.Applications of ultrasound in food technology: Processing, preservation and extraction[J].Ultrasonics Sonochemistry,2010,18(4):813-835.
[17] ASSAMI K, PINGRET D, CHEMAT S, et al. Ultrasound induced intensification and selective extraction of essential oil from Carum carvi L. seeds[J]. Chemical Engineering and Processing: Process Intensification, 2012, 62: 99-105.
[18] SERESHTI H,ROHANIFAR A,BAKHTIARI S,et al. Bifunctional ultrasound assisted extraction and determination of Elettaria cardamomum Maton essential oil[J].Journal of Chromatography A,2012,1238(10):46-53.
[19] LI X J,WEI W,MENG L,et al. Solvent-free microwave extraction of essential oil from Dryopteris fragrans and evaluation of antioxidant activity[J].Food Chemistry,2012,133(2):437-444.
[20] BAYRAMOGLU B,SAHIN S,SUMNU G.Solvent-free microwave extraction of essential oil from oregano[J].Journal of Food Engineering,2008,88(4):535-540.
[21] ZHANG H F,YANG X H,WANG Y.Microwave assisted extraction of secondary metabolites from plants: Current status and future directions[J].Trends in Food Science & Technology,2011,22(12):672-688.
[22] 鄒小兵,陶進(jìn)轉(zhuǎn),夏之寧,等.微波輔助提取揮發(fā)油的研究進(jìn)展[J].中成藥,2010,32(6):1014-1020.
[23] 張志軍,劉西亮,李會(huì)珍,等.植物揮發(fā)油提取方法及應(yīng)用研究進(jìn)展[J].中國(guó)糧油學(xué)報(bào),2011,26(4):118-122.
[24] PURI M, SHARMA D,BARROW C J.Enzyme-assisted extraction of bioactives from plants[J].Trends in Biotechnology,2012,30(1):37-44.
[25] HOSNI K,HASSEN I,CHABANE H,et al. Enzyme-assisted extraction of essential oils from thyme (Thymus capitatus L.) and rosemary (Rosmarinus officinalis L.): Impact on yield, chemical composition and antimicrobial activity[J].Industrial Crops & Products,2013,47(3):291-299.
[26] 賈曼,陳華,趙榮華,等.基于果糖自氧化體系的抗氧化劑篩選方法[J].高等學(xué)?;瘜W(xué)學(xué)報(bào),2013,34(7):1629-1634.
[27] KIRKWOOD T B L, KOWALD A.The free-radical theory of ageing - older, wiser and still alive[J].Bioessays,2012,34(8):692-700.
[28] SINGH H P,MITTAL S, KAUR S,et al. Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia[J].Food Chemistry,2009,114(2):642-645
[29] AL-REZA S M,RAHMAN A,SATTAR M A,et al.Essential oil composition and antioxidant activities of Curcuma aromatica Salisb[J].Food & Chemical Toxicology,2010,48(6):1757-1760.
[30] TEIXEIRA B,MARQUES A,RAMOS C,et al.Chemical composition and antibacterial and antioxidant properties of commercial essential oils[J].Industrial Crops & Products,2013,43(5):587-595.
[31] SZCZEPANSKI S,LIPSKI A.Essential oils show specific inhibiting effects on bacterial biofilm formation[J].Food Control,2014,36(1):224-229.
[32] SIVAKUMAR D,BAUTISTA-BAOS S.A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage[J].Crop Protection,2014,64(3):27-37.
[33] RIAHI L,ELFERCHICHI M,GHAZGHAZI H,et al. Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia[J].Industrial Crops & Products,2013,49(4):883-889.
[34] VIUDA-MARTOS M,RUIZ-NAVAJAS Y,F(xiàn)ERNáNDEZ-LóPEZ J,et al. Antifungal activity of lemon ( Citrus lemon L.), mandarin ( Citrus reticulata L.), grapefruit ( Citrus paradisi L.) and orange ( Citrus sinensis L.) essential oils[J].Food Control,2008,19(12):1130-1138.
[35] MAKRIDIS P,STEFANAKIS M K,ANASTASOPOULOS E,et al. Antibacterial activity of essential oils from plants of the genus Origanum[J].Food Control,2013,34(2):539-546
[36] YE C L,DAI D H, HU W L.Antimicrobial and antioxidant activities of the essential oil from onion (Allium cepa L.)[J].Food Control,2013,30(1):48-53.
[37] BOUZIDI L E,JAMALI C A,BEKKOUCHE K,et al. Chemical composition, antioxidant and antimicrobial activities of essential oils obtained from wild and cultivated Moroccan Thymus species[J].Industrial Crops & Products,2013,43(5):450-456.
[38] SALEM M Z, ALI H M,EL-SHANHOREY N A,et al. Evaluation of extracts and essential oil from Callistemon viminalis leaves:Antibacterial and antioxidant activities,total phenolic and flavonoid contents[J].Asian Pacific Journal of Tropical Medicine,2013,6(10):785-791.
[39] SYLVESTRE M,PICHETTE A,LONGTIN A, et al. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe[J].Journal of Ethnopharmacology,2006,103(1):99-102.
[40] 李美,邵鄰相,徐玲玲,等. 野胡蘿卜花揮發(fā)油成分分析及生物活性研究[J].中國(guó)糧油學(xué)報(bào),2012,27(9):112-115.
[41] YU J Q,LEI J C,ZHANG X Q,et al. Anticancer, antioxidant and antimicrobial activities of the essential oil of Lycopus lucidus Turcz. var. hirtus Regel[J].Food Chemistry,2011,126(4):1593-1598.
[42] 張璐敏, 呂學(xué)維, 邵鄰相, 等. 野艾蒿揮發(fā)油對(duì)HeLa癌細(xì)胞形態(tài)與結(jié)構(gòu)的影響[J]. 廣西植物, 2014, 34(3): 393-397.
[43] RASHID S.Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd[J].Food Chemistry,2013,138(1):693-700.
[44] KHIYARI M E A,KASRATI A,JAMALI C A,et al. Chemical composition, antioxidant and insecticidal properties of essential oils from wild and cultivated Salvia aucheri subsp. blancoana (Webb. & Helder)), an endemic, threatened medicinal plant in Morocco[J].Industrial Crops & Products,2014:106-109.
[45] 盧傳兵,薛明,劉雨晴,等.黃荊精油對(duì)玉米象的殺蟲活性成分、毒力及作用機(jī)制[J].昆蟲學(xué)報(bào),2009,52(2):159-167.
[46] LIU X C, LU X N,LIU Q Z,et al. Evaluation of insecticidal activity of the essential oil of Allium chinense G. Don and its major constituents against Liposcelis bostrychophila Badonnel[J].Journal of Asia-Pacific Entomology,2014, 17(4): 853-856.
[47] BACHROUCH O,F(xiàn)ERJANI N,HAOUEL A,et al. Major compounds and insecticidal activities of two Tunisian Artemisia essential oils toward two major coleopteran pests[J].Industrial Crops & Products,2015,65:127-133.
[48] CHENG S S,LIU J Y,HUANG C G,et al. Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species[J].Bioresource Technology,2009,100(1):457-464.
Research Progress on Extraction Method and Functional Property of Plant Volatile Oils
Wu Fan, Ni Weichao, Li Biao, Yu Yongjie, Ni Sui*
(Key Laboratory of Applied Marine Biotechnology of Ministry of Education,Ningbo University, Ningbo 315211, China)
This research combined with the research achievements of related fields, focused on the traditional essential oil extracting method, including steam distillation, solvent-extraction and absorption operation. Modern technologies such as enzyme assisted extraction and microwave assisted extraction are also reviewed. The functional properties of plant essential oil including anti-oxidation, bacteriostat and desinsection were summarized in this paper.
plant essential oil; extraction method; functional property; research progress
10.3969/j.issn.1006-9690.2016.05.012
2016-04-11
寧波市農(nóng)業(yè)重大專項(xiàng)(2014C1106);寧波市農(nóng)業(yè)重大(重點(diǎn))擇優(yōu)委托科技攻關(guān)項(xiàng)目(2012C10015)。
吳帆(1991—),男,碩士生,研究方向:生化與分子生物學(xué)。E-mail:eiknarf@126.com
*通訊作者: 倪穗,教授,研究方向:植物天然成分開發(fā)利用。E-mail:nbnisui@126.com
TQ654+.2
A
1006-9690(2016)05-0047-05