王永亮 王 琦,3 楊治平** 郭軍玲 郭彩霞
?
輕度鹽堿地玉米專用肥緩效氮不同添加比例的研究*
王永亮1,2王 琦1,2,3楊治平1,2**郭軍玲1,2郭彩霞1,2
(1. 山西省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與資源研究所 太原 030031; 2. 土壤環(huán)境與養(yǎng)分資源山西省重點(diǎn)實(shí)驗(yàn)室 太原 030031; 3. 山西大學(xué)生物工程學(xué)院 太原 030006)
針對(duì)山西省晉北區(qū)域鹽堿耕地玉米生產(chǎn)中存在肥料施用針對(duì)性不強(qiáng)的問(wèn)題, 本試驗(yàn)利用已有的山西省晉北區(qū)域鹽堿地玉米緩釋專用肥配方, 探索適合該區(qū)域玉米生產(chǎn)的緩效氮和速效氮適當(dāng)配比, 并在春玉米生產(chǎn)中驗(yàn)證其肥效。試驗(yàn)設(shè)不施氮肥(CK)、100%速效氮、25%緩效氮、33%緩效氮、50%緩效氮、67%緩效氮、75%緩效氮和100%緩效氮8個(gè)處理, 分別測(cè)定各處理玉米產(chǎn)量、各生育時(shí)期干物質(zhì)量、植株吸氮量、氮素轉(zhuǎn)運(yùn)及利用以及收獲后對(duì)土壤硝態(tài)氮積累量的影響。結(jié)果表明, 隨著緩效氮添加比例的增加, 玉米各生育時(shí)期分析指標(biāo)均呈現(xiàn)先增加后減小的波動(dòng)性變化, 其中添加33%緩效氮處理為最大波峰處。添加緩效氮33%較100%速效氮處理能夠有效增加玉米產(chǎn)量、地上部干物質(zhì)積累量和吸氮量, 提高玉米對(duì)氮素的利用, 獲得最高產(chǎn)量(14 897.46 kg?hm-2), 比100%速效氮處理增產(chǎn)42.23%; 同時(shí)添加33%緩效氮處理產(chǎn)量構(gòu)成因素優(yōu)于其他處理, 和100%速效氮處理相比, 穗長(zhǎng)、穗粒數(shù)、穗直徑和百粒重分別提高55.34%、39.30%、53.57%和52.57%, 平均禿尖縮短0.38 cm; 玉米成熟期地上部干物質(zhì)積累量和吸氮量最大, 分別為26 787.53 kg?hm-2和239.72 kg?hm-2; 該處理的氮肥利用率、氮肥偏生產(chǎn)力及氮肥農(nóng)學(xué)效率均最大, 分別為39.79%、66.20 kg?kg-1和47.03 kg?kg-1。添加33%緩效氮處理玉米葉氮轉(zhuǎn)運(yùn)率和莖氮轉(zhuǎn)運(yùn)率分別為76.08%和49.39%, 氮轉(zhuǎn)移率為67.76%、氮收獲指數(shù)為77.40%, 顯著高于100%速效氮處理。添加緩效氮有效改善了各土層土壤硝態(tài)氮的積累量, 其中緩效氮添加比例為33%處理各土層硝態(tài)氮積累量均勻, 深層土壤淋溶最小。可見(jiàn), 在山西晉北區(qū)域鹽堿耕地春玉米生產(chǎn)中, 在已有配方中選擇添加33%緩效氮能達(dá)到玉米增產(chǎn)增效、保護(hù)環(huán)境的效果, 在該地區(qū)玉米生產(chǎn)中應(yīng)用前景廣闊。
春玉米 緩效氮 氮肥配比 氮素利用率 硝態(tài)氮
山西省的鹽堿地面積有30.13萬(wàn)hm2, 為土地總面積的9.7%, 其中有耕地22.73萬(wàn)hm2 [1]。玉米(L.)作為山西省主要糧食作物之一, 為糧食增產(chǎn)作出了突出貢獻(xiàn)。近10年來(lái)山西省統(tǒng)計(jì)年鑒數(shù)據(jù)顯示, 2004年到2013年這10年間, 糧食增產(chǎn)主要依靠玉米總產(chǎn)的增加[2], 這一增加主要依靠玉米播種面積的增加, 而肥料在糧食增產(chǎn)中所發(fā)揮的作用卻很小, 其中鹽堿地作為耕地的的后備資源之一, 起到了至關(guān)重要的作用。鹽堿地作物生產(chǎn)中, 受土壤環(huán)境的影響氮肥利用率低, 進(jìn)而影響植物的生長(zhǎng)[3-4], 是制約鹽堿地糧食生產(chǎn)的問(wèn)題所在[5]。已有的研究表明, 合理施用氮肥能改善鹽堿地作物生長(zhǎng)環(huán)境、提高作物產(chǎn)量[6], 同時(shí), 氮素還能提高植物抗鹽能力, 改善植物細(xì)胞滲透能力[7-10], 是作物提高產(chǎn)量的關(guān)鍵因素。近年來(lái)常規(guī)肥料對(duì)作物產(chǎn)量的貢獻(xiàn)日趨減小, 通過(guò)對(duì)新型緩釋肥料的研究發(fā)現(xiàn), 相比速效氮肥, 緩釋肥的釋放規(guī)律和玉米對(duì)氮素的吸收規(guī)律更加吻合[11], 施用緩釋肥能提高玉米吸氮量和氮素利用率, 并且減小肥料淋溶等對(duì)環(huán)境造成的危害[12-23]。王琦等[24]研究發(fā)現(xiàn), 硫包膜尿素的釋放規(guī)律符合玉米氮素吸收規(guī)律, 在鹽堿土壤中施用能提高玉米產(chǎn)量、增加玉米吸氮量、降低土壤耕層pH。但是, 如果單純施用緩釋肥存在投入成本大, 玉米前期養(yǎng)分供應(yīng)不足等問(wèn)題, 而目前玉米生產(chǎn)中肥料施用存在不同區(qū)域緩釋專用肥速效氮和緩效氮配比不明確、氮肥利用率低、玉米增產(chǎn)不增收等問(wèn)題。
近年來(lái), 山西省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與資源研究所研發(fā)出一種玉米高氮緩釋專用肥作為輕度鹽堿耕地玉米高產(chǎn)高效施肥技術(shù)進(jìn)行示范與推廣, 但該配方存在緩效氮成分添加比例大, 生產(chǎn)成本高, 農(nóng)民經(jīng)濟(jì)負(fù)擔(dān)偏重等問(wèn)題。本研究在該專用肥已確定的氮、磷、鉀配方基礎(chǔ)上, 重點(diǎn)研究其中緩效氮和速效氮的不同配比在輕度鹽堿地玉米生產(chǎn)中的肥效及其對(duì)土壤環(huán)境的影響, 旨在找出山西省晉北區(qū)域鹽堿地玉米生產(chǎn)中緩釋專用肥緩效氮和速效氮的適當(dāng)配比。
1.1 試驗(yàn)地概況
試驗(yàn)在山西省農(nóng)業(yè)科學(xué)院應(yīng)縣試驗(yàn)基地進(jìn)行。該區(qū)屬暖溫帶半干旱大陸性氣候, 2015年平均氣溫9.3 ℃, 年均降水量322.6 mm, 無(wú)霜期144 d, 年均相對(duì)濕度為48%; 供試土壤為輕度硫酸鹽鹽化土, 容重為1.38 g×cm-3, 0~20 cm土層土壤pH為 8.75, 有機(jī)質(zhì)13.24 g×kg-1, 全氮0.788 g×kg-1, 硝態(tài)氮13.42 mg×kg-1, 有效磷8.12 mg×kg-1, 速效鉀146 mg×kg-1。
1.2 試驗(yàn)方法
1.2.1 試驗(yàn)材料
供試作物為春玉米, 品種為‘大豐30’。供試肥料緩效氮源為硫包膜尿素(漢楓緩釋肥料有限公司生產(chǎn))(N 37%), 速效氮源為普通尿素(N 46%), 磷肥為過(guò)磷酸鈣(P2O516%), 鉀肥為硫酸鉀(K2O 50%)。
1.2.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)采用單因子完全隨機(jī)設(shè)計(jì), 小區(qū)面積為60 m2(長(zhǎng)10 m、寬6 m), 12行/區(qū), 行距50 cm。2015年5月9日播種, 播種密度為75 000株×hm-2, 10月9日收獲。
將氮肥施用按緩效氮不同比例添加, 試驗(yàn)共設(shè)8處理, 分別為: 不施氮肥(CK); 速效氮︰緩效氮= 1︰0, 即100%速效, N(T0); 速效氮︰緩效氮=3︰1, 即25%緩效氮(T1); 速效氮︰緩效氮=2︰1, 即33%緩效氮(T2); 速效氮︰緩效氮=1︰1, 即50%緩效氮(T3); 速效氮︰緩效氮=1︰2, 即67%緩效氮(T4); 速效氮︰緩效氮=1︰3, 即75%緩效氮(T5); 速效氮︰緩效氮=1︰0, 即100%緩效氮(T6)。根據(jù)試驗(yàn)區(qū)域現(xiàn)有玉米專用緩釋肥施用量, 各處理磷肥和鉀肥施用量分別為P2O575 kg×hm-2和K2O 45 kg×hm-2, T0~T6處理施氮量為225 kg×hm-2。各處理設(shè)3次重復(fù), 共24個(gè)小區(qū), 完全隨機(jī)區(qū)組排列。所有肥料均一次性底施, 灌水時(shí)期為播前、拔節(jié)期、灌漿期, 灌水量分別為6 m3×60 m-2、7 m3×60 m-2、6 m3×60 m-2。
1.2.3 測(cè)定項(xiàng)目與方法
1.2.3.1 植物樣品
分別于出苗期(V3)、撥節(jié)期(V6)、大喇叭口期(V12)、吐絲期(R1)、乳熟期(R3)、生理成熟期(R6)取植物樣品, 選取每個(gè)小區(qū)長(zhǎng)勢(shì)一致具有代表性的5株取樣, 樣品從植株莖基部整株取樣, 分葉、莖鞘、籽粒、穗軸等部分, 放入烘箱, 于105 ℃下殺青30 min, 然后在75 ℃下烘至恒重, 稱取各部位干重。粉碎混合均勻后用濃H2SO4消煮、凱氏定氮法測(cè)定樣品的全氮含量。
收獲同時(shí)進(jìn)行測(cè)產(chǎn), 每小區(qū)連續(xù)取樣6行, 每行10 m, 測(cè)產(chǎn)樣方面積為30 m2。在測(cè)產(chǎn)樣方中取有代表性的玉米植株5株, 考種統(tǒng)計(jì)穗長(zhǎng)、穗直徑、穗粒數(shù)和百粒重。
文中重要計(jì)算公式為:
氮肥偏生產(chǎn)力(PFPN, nitrogen partial productivity, kg×kg-1)=施氮區(qū)春玉米產(chǎn)量/施氮量[25](1)
氮肥農(nóng)學(xué)效率(AEN, agronomic efficiency of nitrogen fertilizer, kg×kg-1)=(施氮區(qū)春玉米產(chǎn)量-無(wú)氮區(qū)春玉米產(chǎn)量)/施氮量′100[25](2)
氮肥利用率(REN, nitrogen use efficiency, %)= (施氮區(qū)春玉米地上部吸氮量-無(wú)氮區(qū)春玉米地上部吸氮量)/施氮量′100[25](3)
氮素轉(zhuǎn)運(yùn)量(nitrogen transport capacity, kg×hm-2)=吐絲期各器官氮素積累量-成熟期相應(yīng)器官氮素積累量[26](4)
氮素轉(zhuǎn)運(yùn)率(nitrogen transport rate, %)=各器官氮素轉(zhuǎn)運(yùn)量/吐絲期各器官氮素積累量′100[26](5)
轉(zhuǎn)運(yùn)氮貢獻(xiàn)率(transport nitrogen contribution rate, %)=各器官氮素轉(zhuǎn)運(yùn)量/籽粒中氮積累量′100[27](6)
氮收獲指數(shù)(NHI, nitrogen harvest index, %)=籽粒中氮積累量/成熟期總氮積累量′100[27](7)
氮轉(zhuǎn)移量(nitrogen transfer, kg×hm-2)=植株開花期營(yíng)養(yǎng)體氮素積累量-植株成熟期營(yíng)養(yǎng)體氮素積累量[28-30](8)
氮轉(zhuǎn)移率(nitrogen transfer rate, %)=氮轉(zhuǎn)移量/植株開花期營(yíng)養(yǎng)體氮素積累量′100[28-30](9)
氮素對(duì)籽粒貢獻(xiàn)率(contribution rate of nitrogen to grain, %)=氮轉(zhuǎn)移量/籽粒氮素積累量′100[28-30](10)
1.2.3.2 土壤樣品
播前進(jìn)行土壤樣品采集, 自然烘干后過(guò)2 mm及0.149 mm篩, 測(cè)定土壤容重、硝態(tài)氮、全氮、pH值、有效磷和有效鉀。
收獲后每小區(qū)進(jìn)行5點(diǎn)取樣, 取樣深度分別為0~20 cm、20~40 cm、40~60 cm和60~90 cm共4層, 自然烘干后過(guò)2 mm篩, 應(yīng)用全自動(dòng)間斷分析儀測(cè)定土壤硝態(tài)氮含量。并于收獲后采用環(huán)刀分層取土的方法測(cè)定土壤容重, 計(jì)算硝態(tài)氮累積量。計(jì)算公式為:
土壤剖面硝態(tài)氮累積量(kg×hm-2)=土壤硝態(tài)氮含量′土層厚度′土壤容重′10-1[31](11)
1.2.4 數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)采用Microsoft Excel、Sigmaplot 12.5以及Minitab 15.0軟件進(jìn)行統(tǒng)計(jì)分析, 并進(jìn)行多重比較(<0.05)。
2.1 不同緩效氮添加比例對(duì)玉米產(chǎn)量及其構(gòu)成因素的影響
從表1可以看出, 8個(gè)處理間產(chǎn)量及其構(gòu)成因素差異顯著, 施肥處理產(chǎn)量顯著高于不施肥處理, 緩效氮肥與速效氮肥配合施用處理玉米產(chǎn)量?jī)?yōu)于單一肥料施用處理, T6優(yōu)于T0。不同處理間玉米產(chǎn)量由高到低分別為: T2>T3>T5>T1>T4>T6>T0>CK。增產(chǎn)效果最佳處理為T2, 比T0增產(chǎn)42.23%, 說(shuō)明緩效氮和速效氮配施有助于玉米對(duì)養(yǎng)分的吸收利用, 對(duì)玉米產(chǎn)量的形成優(yōu)于單一肥料的施用效果。不同處理之間穗長(zhǎng)、禿尖、穗粒數(shù)、直徑和百粒重等產(chǎn)量構(gòu)成因素對(duì)差異較大, 其中, 施氮肥處理玉米產(chǎn)量構(gòu)成因素和不施氮肥處理間在<0.05水平下差異顯著; 配施緩效氮各處理中以添加T2為最佳, 與CK、T0和T6相比, 穗長(zhǎng)分別高55.31%、21.87%和15.23%, 穗粒數(shù)分別高59.55%、39.30%和8.54%, 穗直徑分別高53.54%、0.68%和15.40%, 百粒重分別高52.56%、27.36%和19.65%, 禿尖長(zhǎng)分別短1.56 cm、0.38 cm和0.31 cm。
表1 不同緩效氮添加比例對(duì)玉米產(chǎn)量及其構(gòu)成因素的影響
CK: 不施氮肥; T0: 速效氮︰緩效氮=1︰0; T1: 速效氮︰緩效氮=3︰1; T2: 速效氮︰緩效氮=2︰1; T3: 速效氮︰緩效氮=1︰1; T4: 速效氮︰緩效氮=1︰2; T5: 速效氮︰緩效氮=1︰3; T6: 速效氮︰緩效氮=1︰0。同列不同小寫字母表示5%差異顯著性。下同。CK: no N fertilization. T0, T1, T2, T3, T4, T5and T6are treatments with ratios of available N to slow-release N of 1/0, 3/1, 2/1, 1/1, 1/2, 1/3 and 1/0. Different lowercase letters in the same column mean significant difference at 5%. The same below.
2.2 不同緩效氮添加比例對(duì)玉米干物質(zhì)積累量的影響
米干物質(zhì)積累量是衡量作物生長(zhǎng)狀況、形成產(chǎn)量的前提條件。通過(guò)圖1對(duì)不同處理玉米干物質(zhì)積累量的分析可以看出, 不同處理玉米干物質(zhì)積累量均呈現(xiàn)“S”型變化, 不施氮肥處理玉米各生育時(shí)期地上部干物質(zhì)積累量變化幅度最小, 且均顯著低于施肥處理(<0.05); 在玉米營(yíng)養(yǎng)生長(zhǎng)期間, 單施速效氮處理和配施緩效氮處理干物質(zhì)積累量接近, 在玉米生殖生長(zhǎng)期間, 單施速效氮處理干物質(zhì)積累量與配施緩效氮處理之間差異逐漸增大。玉米生理成熟期, 各處理干物質(zhì)積累量從大到小分別為T2>T3>T5>T1>T6> T4>T0>CK, T2比CK、T0和T6分別增加15 043.23 kg×hm-2、9 605.99 kg×hm-2和3 556.18 kg×hm-2。
V3、V6、V12、R1、R3和R6分別代表苗期、拔節(jié)期、大口期、吐絲期、乳熟期和完成期。下同。V3, V6, V12, R1, R3 and R6 represent seedling stage, jointing stage, huge-bell-bottom stage, silking stage, milking stage and mature stage. The same below.
2.3 不同緩效氮添加比例對(duì)玉米吸氮量的影響
氮素是玉米生長(zhǎng)中需求量最大的營(yíng)養(yǎng)元素, 也是作物生長(zhǎng)發(fā)育中必要的營(yíng)養(yǎng)元素, 同時(shí)氮素也是作物生長(zhǎng)發(fā)育的限制因子之一[32]。通過(guò)圖2對(duì)不同施肥處理玉米植株吸氮量的分析可以看出, 玉米各生育時(shí)期對(duì)氮素的吸收規(guī)律和玉米干物質(zhì)積累量的變化規(guī)律一致, 均呈“S”型變化。不施氮處理玉米的吸氮量變化較為平緩, 單施速效氮處理在玉米進(jìn)入生殖生長(zhǎng)后地上部吸氮量明顯低于配施緩效氮處理, 說(shuō)明單施速效氮肥對(duì)玉米生育后期氮素供應(yīng)不足。配施緩效氮有效增加了玉米生長(zhǎng)后期氮素的供應(yīng), 其中T2供應(yīng)量較為充足,高于其他處理玉米吸氮量。在玉米吐絲期,T2比T0和T6吸氮量分別高5.22%和1.05%。在玉米生理成熟期,各處理吸氮量從大到小分別為T2>T3>T5>T6>T1>T4>T0>CK, 其中33%緩效氮處理玉米吸氮量分別比100%速效氮處理和100%緩效氮處理高46.64%和19.12%。
2.4 不同緩效氮添加比例下玉米對(duì)氮肥利用的影響
玉米對(duì)氮肥的利用通過(guò)氮肥利用率、氮肥偏生產(chǎn)力、氮肥農(nóng)學(xué)效率來(lái)表征。通過(guò)表2對(duì)玉米氮素利用的分析可以看出, 不同施肥處理玉米對(duì)氮素利用情況不同, 添加緩效氮有利于提高玉米對(duì)氮素的利用, 其中T2處理玉米對(duì)氮素的利用最佳。不同施肥處理玉米氮肥利用率從大到小分別為T2>T3>T5> T6>T1>T4>T0, T2處理與T0和T6相比, 氮肥利用率分別高33.89%和17.10%、氮肥偏生產(chǎn)力分別高19.66kg×kg-1和16.15 kg×kg-1、氮肥農(nóng)學(xué)效率分別高19.65 kg×kg-1和16.15 kg×kg-1。
表2 不同緩效氮添加比例對(duì)玉米對(duì)氮肥利用的影響
不同小寫字母表示5%差異顯著性。Different lowercase letters mean significant difference at 5%.
2.5 不同緩效氮添加比例對(duì)玉米氮素轉(zhuǎn)運(yùn)的影響
氮素作為玉米產(chǎn)量形成的關(guān)鍵因素, 在玉米植株體內(nèi)的轉(zhuǎn)移能夠表征玉米對(duì)氮素利用的動(dòng)態(tài)變化。表3給出了不同緩效氮添加比例下玉米植株體內(nèi)各器官氮素轉(zhuǎn)運(yùn)、營(yíng)養(yǎng)體氮素轉(zhuǎn)移和氮收獲指數(shù)的分析結(jié)果, 可以看出, 葉部是玉米氮素轉(zhuǎn)運(yùn)的主要器官, 是籽粒形成的關(guān)鍵氮素轉(zhuǎn)移部位, 莖稈氮素的轉(zhuǎn)運(yùn)少于葉部氮素的轉(zhuǎn)運(yùn)。就葉部和莖稈而言, 添加T2的氮素轉(zhuǎn)運(yùn)最高, 其葉部、莖稈的氮素轉(zhuǎn)運(yùn)率分別為76.08%和49.39%, 與其他處理比較差異顯著(<0.05), 而單施速效氮和單施緩效氮處理的氮素轉(zhuǎn)運(yùn)較低, 由此可見(jiàn), 通過(guò)緩效氮和速效氮配施能有效增強(qiáng)生殖生長(zhǎng)期玉米營(yíng)養(yǎng)體的功能持久性, 提高氮素在玉米體內(nèi)的轉(zhuǎn)運(yùn), 增加對(duì)玉米產(chǎn)量形成的貢獻(xiàn)。氮素在營(yíng)養(yǎng)體中的轉(zhuǎn)移表現(xiàn)為添加緩效氮處理高于單一肥料施用處理, 其中T2為最高, 其氮素轉(zhuǎn)移量、氮轉(zhuǎn)移率和對(duì)籽粒貢獻(xiàn)率分別為97.58 kg×hm-2、67.76%和53.57%。T2氮收獲指數(shù)為77.40%, 為所有處理中最高, 并且顯著高于肥料單施處理(<0.05)。
2.6 收獲后土壤硝態(tài)氮積累量
南海爭(zhēng)端由來(lái)已久,爭(zhēng)端所涉及的各方利益錯(cuò)綜復(fù)雜。幾十年來(lái),南海爭(zhēng)端的起起伏伏表明,南海各方達(dá)成全面和永久性的解決非常困難,非一朝一夕可以完成。然而,南海的和平穩(wěn)定與繁榮發(fā)展事關(guān)沿岸數(shù)億人的生產(chǎn)生活,因此在全面和永久解決爭(zhēng)議之前,各方積極推進(jìn)南海海洋合作,是維護(hù)海洋和平、增進(jìn)地區(qū)共同福祉的有效途徑,也有利于培育各方合作互信的氛圍,為實(shí)現(xiàn)爭(zhēng)端的最終解決做好必要鋪墊。
土壤硝態(tài)氮是石灰性土壤中氮素養(yǎng)分的有效狀態(tài), 是作物吸收氮素養(yǎng)分的主要形式[33-34]。不同土層硝態(tài)氮積累量能夠表征該土層氮素養(yǎng)分的供應(yīng)條件及淋溶狀況。通過(guò)圖3對(duì)收獲后0~20 cm、20~40 cm、40~60 cm及60~90 cm各土層硝態(tài)氮積累量的分析可以看出, 隨著土層深度的增加, 土壤硝態(tài)氮累積量呈現(xiàn)先降低后增加的變化趨勢(shì), T0隨土層的加深, 硝態(tài)氮含量逐漸遞增; 其他處理均表現(xiàn)為40~60 cm最低, 60~90 cm最高。配施緩效氮處理在40~60 cm和60~90 cm土層土壤硝態(tài)氮積累量均小于單施速效氮處理, 其中以T2積累量最小。
從同一土層角度分析, 0~20 cm和20~40 cm土壤硝態(tài)氮積累量表現(xiàn)為T3最高, 其次為T0, T6最低, T2居中; 40~60 cm和60~90 cm土壤硝態(tài)氮積累量則表現(xiàn)為T0最高, T2含量最低。可見(jiàn), T0底層土壤硝態(tài)氮淋失嚴(yán)重, 而配施緩效氮能夠改善土壤硝態(tài)氮含量的分布, 降低深層土壤硝態(tài)氮的積累量, 其中T2各土層硝態(tài)氮的含量比較均勻, 耕層硝態(tài)氮含量既能滿足玉米生長(zhǎng)對(duì)氮素吸收, 同時(shí)因土壤深層硝態(tài)氮淋溶較少, 又可有效降低施肥對(duì)土壤環(huán)境及地下水的污染。
表3 不同緩效氮添加比例對(duì)氮素轉(zhuǎn)運(yùn)、轉(zhuǎn)移及氮素收獲指數(shù)等因素的影響
表中不同小寫字母表示5%差異顯著性。Different lowercase letters mean significant difference at 5%.
緩效氮和速效氮配合施用既能滿足作物生長(zhǎng)對(duì)養(yǎng)分的需求, 也能夠降低肥料成本, 農(nóng)民易于接受。諸海燾等[35]研究施用緩效肥對(duì)玉米生長(zhǎng)影響的結(jié)果表明, 施用緩釋肥能夠提高玉米產(chǎn)量, 改善玉米籽粒的營(yíng)養(yǎng)品質(zhì)。王文麗[36]通過(guò)一次性底施緩效氮研究發(fā)現(xiàn), 緩效氮的養(yǎng)分釋放規(guī)律和作物對(duì)養(yǎng)分的吸收規(guī)律相吻合, 減少了追肥造成的地膜破壞、勞動(dòng)力浪費(fèi)等生產(chǎn)實(shí)際問(wèn)題, 并能有效提高肥料利用率, 降低生產(chǎn)成本。本研究通過(guò)在山西晉北區(qū)域輕度鹽堿土壤上對(duì)玉米氮肥總量控制不變的前提下, 在速效氮中添加一定比例緩效氮一次性底施后驗(yàn)證其對(duì)玉米生產(chǎn)的影響, 結(jié)果表明, 添加緩效氮肥能夠提高玉米產(chǎn)量, 改善玉米產(chǎn)量性狀, 提高玉米對(duì)氮素的吸收利用率, 促進(jìn)氮素在玉米體內(nèi)的轉(zhuǎn)運(yùn)。作物在鹽堿地上生長(zhǎng)具有氮肥利用率低等特點(diǎn)[3-4], 諸海燾指出施用緩釋肥和常規(guī)施肥處理相比緩釋肥能夠增產(chǎn)5.95%, 氮肥利用率提高10個(gè)百分點(diǎn)[35], 本文研究結(jié)果與之相類似, 說(shuō)明添加緩效氮能有效補(bǔ)給玉米生育后期氮素養(yǎng)分的供給需求, 進(jìn)而促進(jìn)玉米生長(zhǎng)后期對(duì)氮的吸收利用。
王激清等[31]通過(guò)速效肥和緩效肥配合施用發(fā)現(xiàn), 和傳統(tǒng)氮肥施用相比, 配合施用能提高玉米產(chǎn)量, 優(yōu)化玉米的產(chǎn)量性狀, 提高氮肥利用率, 但針對(duì)區(qū)域性配方肥中速效成分與緩效成分配比尚不明確。Grattan等[6]學(xué)者研究發(fā)現(xiàn), 鹽堿地合理施用氮肥, 能夠有效提高作物產(chǎn)量, 本文通過(guò)在輕度鹽堿地上緩效氮和速效氮配施研究發(fā)現(xiàn), 緩效氮添加比例為33%處理玉米產(chǎn)量最高, 玉米成熟期地上部吸氮量最大, 氮肥利用率、氮肥偏生產(chǎn)力及氮肥農(nóng)學(xué)效率均最大; 緩效氮和速效氮配施能在玉米各生育時(shí)期為玉米生長(zhǎng)提供不同的氮素供應(yīng), 33%緩效氮處理既能滿足玉米營(yíng)養(yǎng)生長(zhǎng)期正常生長(zhǎng), 為群體構(gòu)建提供充足的養(yǎng)分, 又能在玉米生殖生長(zhǎng)階段為籽粒的形成、物質(zhì)轉(zhuǎn)移過(guò)程提供養(yǎng)分。各處理玉米不同器官中氮素轉(zhuǎn)運(yùn)表現(xiàn)明顯不同, 均呈現(xiàn)葉片氮素的轉(zhuǎn)運(yùn)高于莖稈氮素的轉(zhuǎn)運(yùn), 與Habash、Moll、Palta等的結(jié)果一致[37-39], 添加緩效氮改善了氮素在玉米各器官的分配狀況, 增加了生殖生長(zhǎng)期間對(duì)玉米營(yíng)養(yǎng)體氮素養(yǎng)分供應(yīng), 起到了莖葉保綠、延緩衰老的作用; 同時(shí)添加緩效氮可提高氮素收獲指數(shù)和對(duì)籽粒的貢獻(xiàn)率等指標(biāo)。本研究隨著緩效氮添加比例的增加, 各指標(biāo)呈先增加后減小波動(dòng)性變化, 其中添加33%緩效氮處理為最大波峰處。
王激清等[31]大量學(xué)者通過(guò)施用緩效肥研究發(fā)現(xiàn), 緩效肥的使用能有效減少養(yǎng)分的損失, 提高養(yǎng)分利用率, 降低養(yǎng)分冗余造成的環(huán)境污染等問(wèn)題[40-43]。本文研究了添加不同比例緩效氮處理對(duì)玉米收獲后各土層土壤硝態(tài)氮積累量變化的影響, 得出相類似的結(jié)果, 即添加緩效氮能有效改善各土層土壤硝態(tài)氮的積累, 其中33%緩效氮處理各土層硝態(tài)氮的積累量比較均勻, 自上而下分別為45.25 kg×hm-2、46.10 kg×hm-2、31.63 kg×hm-2和49.13 kg×hm-2, 說(shuō)明該配比中氮素養(yǎng)分的釋放與玉米根系對(duì)氮素養(yǎng)分的吸收相協(xié)同, 在促進(jìn)玉米對(duì)表層及根層土壤氮素吸收的同時(shí), 避免了土壤表層硝態(tài)氮?dú)埩粼斐傻拇髿馕廴竞蜕顚油馏w硝態(tài)氮淋失造成的地下水污染。
通過(guò)對(duì)不同緩效氮添加比例對(duì)玉米生產(chǎn)及環(huán)境影響的研究發(fā)現(xiàn), 玉米生產(chǎn)中速效氮肥和緩效氮肥配合施用, 采用一次性施肥方式能有效解放勞動(dòng)力, 其中33%緩效氮添加比例處理能增加當(dāng)季玉米產(chǎn)量, 提高氮素養(yǎng)分利用率, 促進(jìn)氮素在植株體內(nèi)的轉(zhuǎn)運(yùn), 并且能夠減少深層土壤中硝態(tài)氮的淋溶, 改善土壤環(huán)境, 同時(shí)還能最大程度地節(jié)約肥料投入成本。因此, 建議在山西晉北區(qū)域輕度鹽堿地春玉米專用肥氮素配方中, 以添加33%緩效氮為最佳。
本文研究環(huán)境為輕度鹽堿土壤, 具有高pH和EC的特點(diǎn), 植物在鹽堿地生長(zhǎng)會(huì)受到鹽脅迫與堿土環(huán)境影響[6]。本文選用硫包膜尿素作為緩效氮源, 包膜材料硫磺對(duì)鹽堿地有一定的改良效果, 吳曦等[44]研究發(fā)現(xiàn), 硫磺能有效降低鹽堿地pH, 降低最高為0.5個(gè)單位。王琦等[24]通過(guò)對(duì)硫包膜尿素在鹽堿土壤中的釋放速率的研究發(fā)現(xiàn), 硫包膜尿素有降低鹽堿土壤pH的功效。本文尚未對(duì)緩效氮不同添加比例處理下進(jìn)行玉米各生育期土壤理化性狀的分析, 今后將對(duì)該方向做進(jìn)一步研究。
References
[1] 崔文明, 張中東, 趙成萍, 等. 新型改良劑對(duì)鹽堿地土壤性質(zhì)和玉米生長(zhǎng)的影響[J]. 山西農(nóng)業(yè)科學(xué): 自然科學(xué)版, 2014, 34(6): 531–534 Cui W M, Zhang Z D, Zhao C P, et al. The effects of a novel soil amendment on the saline alkali soil properties and the growth of maize plants[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2014, 34(6): 531–534
[2] 山西省統(tǒng)計(jì)局編. 山西統(tǒng)計(jì)年鑒[M]. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2004–2013 Compilation of Shanxi Provincial Bureau of Statistics. Shanxi Statistical Yearbook[M]. Beijing: China Statistics Press, 2004–2013
[3] Loveland D G, Ungar I A. The effect of nitrogen fertilization on the production of halophytes in an inland salt marsh[J]. The American Midland Naturalist, 1983, 109(2): 346–354
[4] Drake D R, Ungar I A. Effects of salinity, nitrogen and population density on the survival, growth, and reproduction of(Chenopodiaceae)[J]. American Journal of Botany, 1989, 76(8): 1125–1135
[5] 高亮, 丁春明, 王炳華, 等. 生物有機(jī)肥在鹽堿地上的應(yīng)用效果及其對(duì)玉米的影響[J]. 山西農(nóng)業(yè)科學(xué), 2011, 39(1): 47–50 Gao L, Ding C M, Wang B H, et al. Application effects of biological organic fertilizer in saline-alkali soil and its impacts on maize[J]. Journal of Shanxi Agricultural Sciences, 2011, 39(1): 47–50
[6] Grattan S R, Grieve C M. Mineral nutrient acquisition and response by plants grown in saline environments[M]// Pessarakli M. Handbook of Plant and Crop Stress. New York: Marcel Decker, 1994: 203–226
[7] 寧建鳳, 鄭青松, 劉兆普, 等. 外源氮對(duì)NaCl脅迫下庫(kù)拉索蘆薈生理特性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2008, 14(4): 728–733 Ning J F, Zheng Q S, Liu Z P, et al. Effects of supplemental nitrogen on physiological characteristics ofseedlings under NaCl stress[J]. Plant Nutrition and Fertilizer Science, 2008, 14(4): 728–733
[8] 原俊鳳, 田長(zhǎng)彥, 馮固, 等. 硝態(tài)氮對(duì)鹽脅迫下囊果堿蓬幼苗根系生長(zhǎng)和耐鹽性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2009, 15(4): 953–959 Yuan J F, Tian C Y, Feng G, et al. Effects of nitrate on the root growth and salt tolerance ofseedlings under NaCl stress[J]. Plant Nutrition and Fertilizer Science, 2009, 15(4): 953–959
[9] Naidoo G, Naidoo Y. Effects of salinity and nitrogen on growth, ion relations and proline accumulation in[J]. Wetlands Ecology and Management, 2001, 9(6): 491–497
[10] 段德玉, 劉小京, 李存楨, 等. N素營(yíng)養(yǎng)對(duì)NaCl脅迫下鹽地堿蓬幼苗生長(zhǎng)及滲透調(diào)節(jié)物質(zhì)變化的影響[J]. 草業(yè)學(xué)報(bào), 2005, 14(1): 63–68 Duan D Y, Liu X J, Li C Z, et al. The effects of nitrogen on the growth and solutes of halophyteseedlings under the stress of NaCl[J]. Acta Prataculturae Sinica, 2005, 14(1): 63–68
[11] 于立芝, 李東坡, 俞守能, 等. 緩/控釋肥料研究進(jìn)展[J]. 生物學(xué)雜志, 2006, 25(12): 1559–1563 Yu Lizhi, Li Dongpo, Yu Shouneng, et al. Research advances in slow/controlled release fertilizers[J]. Chinese Journal of Ecology, 2006, 25(12): 1559–1563
[12] 樊小林, 廖宗文. 控釋肥料與平衡施肥和提高肥料利用率[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 1998, 4(3): 219–223 Fan X L, Liao Z W. Increasing fertilizer use efficiency by means of controlled release fertilizer (CRF) production according to theory and techniques of balanced fertilization[J]. Plant Nutrition and Fertilizer Science, 1998, 4(3): 219–223
[13] 閆湘, 金繼運(yùn), 何萍, 等. 提高肥料利用率技術(shù)研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2008, 41(2): 450–459 Yan X, Jin J Y, He P, et al. Recent advances and prospects on the technology to increase fertilizer use efficiency[J]. Scientia Agricultura Sinica, 2008, 41(2): 450–459
[14] Martin E T. Controlled-release and stabilized fertilizers in agriculture[R]. Paris: International Fertilizer Industry Association, 1997: 15–17
[15] 許秀成, 李菂萍, 王好斌. 包裹型緩釋/控制釋放肥料專題報(bào)告: 第三報(bào)包膜(包裹)型控制釋放肥料各國(guó)研究進(jìn)展(續(xù))4.中國(guó)[J]. 磷肥與復(fù)肥, 2001, 16(4): 4–8 Xu X C, Li D P, Wang H B. A special report on coated slow/controlled release fertilizer. Part 3: A review on coated controlled release fertilizer (cont’d)(4) China[J]. Phosphate & Compound Fertilizer, 2001, 16(4): 4–8
[16] Shaviv A. Plant response and environmental aspects as affected by rate and pattern of nitrogen release from controlled N fertilizers[M]//Van Cleemput O, Hofman G, Vermoesen A. Progress in Nitrogen Cycling Studies. The Netherlands: Springer, 1996: 285–291
[17] Guertal E A. Preplant applications of soluble slow-release nitrogen fertilizers produce similar bell pepper yields as split fertilizer[J]. Agronomy Journal, 2000, 92(2): 388–393
[18] 張夫道, 王玉軍. 緩/控釋BB肥是我國(guó)緩/控釋肥料的發(fā)展方向[J]. 磷肥與復(fù)肥, 2009, 24(2): 8–10 Zhang F D, Wang Y J. Slow/controlled release BB fertilizer —The developing direction of China’s compound fertilizer[J]. Phosphate & Compound Fertilizer, 2009, 24(2): 8-10
[19] Dong Y, Wang Z Y. Release characteristics of different N forms in an uncoated slow/controlled release compound fertilizer[J]. Agricultural Sciences in China, 2007, 6(3): 330–337
[20] Wu L, Liu M Z. Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water- retention[J]. Carbohydrate Polymers, 2008, 72(2): 240–247
[21] 張海軍, 武志杰, 梁文舉, 等. 包膜肥料養(yǎng)分控釋機(jī)理研究進(jìn)展[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2003, 14(12): 2337–2341 Zhang H J, Wu Z J, Liang W J, et al. Research advances on controlled-release mechanisms of nutrients in coated fertilizers[J]. Chinese Journal of Applied Ecology, 2003, 14(12): 2337–2341
[22] 彭少兵, 黃見(jiàn)良, 鐘旭華, 等. 提高中國(guó)稻田氮肥利用率的研究策略[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2002, 35(9): 1095–1103 Peng S B, Huang J L, Zhong X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9): 1095–1103
[23] Li J Y, Hua Q X, Tan J F, et al. Mineral coated fertilizer effect on nitrogen-use efficiency and yield of wheat[J]. Pedosphere, 2005, 15(4): 526–531
[24] 王琦, 王永亮, 郭軍玲, 等. 硫包膜尿素在輕度鹽堿土壤中釋放特點(diǎn)及肥效研究[J]. 華北農(nóng)學(xué)報(bào), 2016, 31(2): 182–187 Wang Q, Wang Y L, Guo J L, et al. Release of sulfur coated urea in mild saline-alkali soil and study of its fertilizer efficiency[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(2): 182–187
[25] 張福鎖, 王激清, 張衛(wèi)峰, 等. 中國(guó)主要糧食作物肥料利用率現(xiàn)狀與提高途徑[J]. 土壤學(xué)報(bào), 2008, 45(5): 915–924 Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915–924
[26] 胡福亮, 郭德林, 高杰, 等. 種植密度對(duì)春玉米干物質(zhì)、氮素積累與轉(zhuǎn)運(yùn)及產(chǎn)量的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào), 2013, 22(6): 60–66 Hu F L, Guo D L, Gao J, et al. Effects of planting densities on dry matter and nitrogen accumulation and grain yield in spring maize[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(6): 60–66
[27] 霍中洋, 葛鑫, 張洪程, 等. 施氮方式對(duì)不同專業(yè)小麥氮素吸收及氮肥利用率的影響[J]. 作物學(xué)報(bào), 2004, 30(5): 449–454 Huo Z Y, Ge X, Zhang H C, et al. Effect of different nitrogen application types on N-absorption and N-utilization rate of specific use cultivars of wheat[J]. Acta Agronomica Sinica, 2004, 30(5): 449–454
[28] 王曉慧, 曹玉軍, 魏雯雯, 等. 我國(guó)北方37個(gè)高產(chǎn)春玉米品種干物質(zhì)生產(chǎn)及氮素利用特性[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2012, 18(1): 60–68 Wang X H, Cao Y J, Wei W W, et al. Characteristics of dry matter production and nitrogen use efficiency of 37 spring maize hybrids with high-yielding potential in north of China[J]. Plant Nutrition and Fertilizer Science, 2012, 18(1): 60–68
[29] 江立庚, 曹衛(wèi)星, 甘秀芹, 等. 不同施氮水平對(duì)南方早稻氮素吸收利用及其產(chǎn)量和品質(zhì)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2004, 37(4): 490–496 Jiang L G, Cao W X, Gan X Q, et al. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice[J]. Scientia Agricultura Sinica, 2004, 37(4): 490–496
[30] 王敬鋒, 劉鵬, 趙秉強(qiáng), 等. 不同基因型玉米根系特性與氮素吸收利用的差異[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(4): 699–707 Wang J F, Liu P, Zhao B Q, et al. Comparison of root characteristics and nitrogen uptake and use efficiency in different corn genotypes[J]. Scientia Agricultura Sinica, 2011, 44(4): 699–707
[31] 王激清, 閆彩云, 韓寶文. 春玉米緩釋專用BB肥的研制及肥效試驗(yàn)[J]. 河北農(nóng)業(yè)科學(xué), 2011, 15(2): 58–61 Wang J Q, Yan C Y, Han B W. Development of slow release bulk blending fertilizer for spring maize and fertilizer efficiency experiment[J]. Journal of Hebei Agricultural Sciences, 2011, 15(2): 58–61
[32] 陸景陵. 植物營(yíng)養(yǎng)學(xué)(上)[M]. 北京: 中國(guó)農(nóng)業(yè)大學(xué)出版社, 2010: 23–27 Lu J L. Plant Nutrition(Ⅰ)[M]. Beijing: China Agricultural University Press, 2010: 23–27
[33] 呂嬌, 李淑敏, 潘明陽(yáng), 等. 不同包膜控釋氮肥對(duì)玉米氮素吸收和產(chǎn)量的影響[J]. 天津農(nóng)業(yè)科學(xué), 2012, 18(1): 46–50 Lü J, Li S M, Pan M Y, et al. Effect of different controlled- release N fertilizers on nitrogen absorption and yield of maize[J]. Tianjin Agricultural Sciences, 2012, 18(1): 46–50
[34] 于淑芳, 楊力, 張民, 等. 控釋尿素對(duì)小麥-玉米產(chǎn)量及土壤氮素的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2010, 29(9): 1744–1749 Yu S F, Yang L, Zhang M, et al. Effects of controlled-release urea on wheat-corn’s yield and soil nitrogen[J]. Journal of Agro-Environment Science, 2010, 29(9): 1744–1749
[35] 諸海燾, 余廷園, 田吉林. 玉米專用緩釋復(fù)合肥對(duì)糯玉米產(chǎn)量和品質(zhì)的影響[J]. 上海農(nóng)業(yè)學(xué)報(bào), 2009, 25(2): 45–48 Zhu H T, Yu T Y, Tian J L. Effects of different slow-release fertilizers on yield and quality of waxy corn[J]. Acta Agriculturae Shanghai, 2009, 25(2): 45–48
[36] 王文麗. 玉米緩釋專用肥配方研究[J]. 西北農(nóng)業(yè)學(xué)報(bào), 2002, 11(1): 112–114 Wang W L. Study on formula of slow-released special fertilizer for maize[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2002, 11(1): 112–114
[37] Habash D Z, Bernard S, Schondelmaier J, et al. The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield[J]. Theoretical and Applied Genetics, 2007, 114(3): 403–419
[38] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy Journal, 1982, 74(3): 562–564
[39] Palta J A, Fillery I R P. N application increases pre-anthesis contribution of dry matter to grain yield in wheat grown on a duplex soil[J]. Australian Journal of Agricultural Research, 1995, 46(3): 507–518
[40] 粟曉萬(wàn), 杜建軍, 賈振宇, 等. 緩/控釋肥的研究應(yīng)用現(xiàn)狀[J].中國(guó)農(nóng)學(xué)通報(bào), 2007, 23(12): 234–238 Su X W, Du J J, Jia Z Y, et al. Progress in the application of slow/controlled release fertilizers[J]. Chinese Agricultural Science Bulletin, 2007, 23(12): 234–238
[41] 王宜倫, 李潮海, 王瑾, 等. 緩/控釋肥在玉米生產(chǎn)中的應(yīng)用與展望[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2009, 25(24): 254–257 Wang Y L, Li C H, Wang J, et al. Application and prospect of slow/controlled release fertilizers in maize production[J]. Chinese Agricultural Science Bulletin, 2009, 25(24): 254–257
[42] 丁洪, 王躍思, 秦勝金, 等. 控釋肥對(duì)土壤氮素反硝化損失和N2O排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2010, 29(5): 1015–1019 Ding H, Wang Y S, Qin S J, et al. Effects of controlled release fertilizers on nitrogen loss by denitrification and N2O emission[J]. Journal of Agro-Environment Science, 2010, 29(5): 1015–1019
[43] 張德奇, 季書勤, 王漢芳, 等. 緩/控釋肥的研究應(yīng)用現(xiàn)狀及展望[J]. 耕作與栽培, 2010(3): 46–48 Zhang D Q, Ji S Q, Wang H F, et al. Application and progress in the application of slow/controlled release fertilizers[J]. Tillage and Cultivation, 2010(3): 46–48
[44] 吳曦, 陳明昌, 楊治平. 堿性土壤施硫磺對(duì)油菜生長(zhǎng)、土壤pH和有效磷含量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2007, 13(4): 671–677 Wu X, Chen M C, Yang Z P. Effects of sulfur application on the growth of cole, soil pH and available P in alkaline soil[J]. Plant Nutrition and Fertilizer Science, 2007, 13(4): 671–677
Analysis of slow-release nitrogen fraction in maize specialized fertilizer for mild-saline alkaline soils*
WANG Yongliang1,2, WANG Qi1,2,3, YANG Zhiping1,2**, GUO Junling1,2, GUO Caixia1,2
(1. Institute of Agricultural Environment & Resources, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; 2. Key Laboratory of Soil Environment and Nutrient Resources in Shanxi Province, Taiyuan 030031, China; 3. College of Biological Engineering, Shanxi University, Taiyuan 030006, China)
Currently, the fertilization of maize is not pertinent to actual local situations in northern Shanxi. To solve this problem, a maize specialized fertilizer formula for mild-saline-alkaline soils in northern Shanxi was studied to explore the proper ratio of slow-release nitrogen (SRN) and rapid-release nitrogen (RRN) in maize production in this region and the effectiveness of the formula validated for spring maize. The treatments were 100% RRN and 25%, 33%, 50%, 67%, 75% and 100% SRN, and no nitrogen application was the control. The grain production and dry matter weight at different growth stages, nitrogen uptake, transport and utilization of maize plant, as well as post-harvest nitrate nitrogen accumulation in soil were analyzed. The results showed that with increasing SRN ratio in the maize specialized fertilizer, physiological parameters of maize increased and then decreased at different growth stages. The peaked values of different indicators all occurred under the treatment with 33% SRN. The addition of 33% SRN effectively increased grain production, dry matter weight, nitrogen uptake and nitrogen use efficiency of maize, and with the highest yield of maize of 14 897.46 kg?hm-2. The yield of maize increased by 42.23% compared with 100% RRN treatment. Meanwhile compared with 100% RRN, yield components such as ear length, ear grain number, diameter, 100-seed weight in 33% SRN treatment were higher by 55.34%, 39.30%, 53.57% and 52.57%, respectively. Moreover, in the same treatment, the length of bald tip was shorten by 0.38 cm, while nitrogen use efficiency, nitrogen partial productivity and agronomic efficiency of nitrogen fertilizer were 39.79%, 66.20 kg?kg-1and 47.03 kg?kg-1, respectively; all of which were the highest in the treatments. The transport rate of nitrogen in different organs of maize was higher in 33% SRN treatment compared with 100% RRN treatment. Specifically, the rates of nitrogen transport in leaf and stem were respectively 76.08% and 49.39%, and the rate of nitrogen transfer and nitrogen harvest index were 67.76% and 77.40%, respectively; all of which were significantly higher than those in 100% RRN treatment. The 33% SRN treatment effectively improved nitrate nitrogen accumulation in the soil, which was different at different soil depths with the least in deep soil layers. It was therefore concluded that for spring maize cultivated in mild-saline-alkali soils in northern Shanxi, the addition of 33% of SRN to the existing maize specialized fertilizer increased maize production and fertilizer use efficiency, and protected the environment. This method was promising in enhancing the conditions (yield and environment) of maize production of the region.
Spring maize; Slow-release nitrogen; Nitrogen fraction; Nitrogen use efficiency; Nitrate nitrogen
10.13930/j.cnki.cjea.160489
S14-33; S143.1+5
A
1671-3990(2016)12-1614-09
2016-05-30 接受日期: 2016-09-24
*國(guó)家國(guó)際科技合作專項(xiàng)項(xiàng)目(2015DFA90990)、山西省科技攻關(guān)項(xiàng)目(20140311002-3)、山西省農(nóng)業(yè)科學(xué)院博士基金項(xiàng)目(YBSJJ1309)和山西省國(guó)際科技合作項(xiàng)目(2014081036)資助
**通訊作者:楊治平, 主要從事作物高產(chǎn)養(yǎng)分資源高效研究。E-mail: yzpsx0208@163.com 王永亮, 主要從事緩釋肥研制研究。E-mail: yongliang_wang@126.com
* The study was supported by the International Science and Technology Cooperation Program of China (2015DFA90990), the Science and Technology Project of Shanxi Province (20140311002-3), the Doctoral Fund of Shanxi Academy of Agricultural Sciences (YBSJJ1309), and the International Science and Technology Cooperation Project of Shanxi Province (2014081036).
** Corresponding author, E-mail: yzpsx0208@163.com
Received May 30, 2016; accepted Sep. 24, 2016