雷偉偉 張捍衛(wèi) 孫 茜
1 河南理工大學(xué)測繪與國土信息工程學(xué)院,焦作市世紀(jì)大道2001號,454000
?
引潮位展開的不同規(guī)格化形式及其轉(zhuǎn)換
雷偉偉1張捍衛(wèi)1孫 茜1
1 河南理工大學(xué)測繪與國土信息工程學(xué)院,焦作市世紀(jì)大道2001號,454000
在引潮位展開過程中,為使大地系數(shù)的數(shù)值在不同階次中保持相對穩(wěn)定,對其進行規(guī)格化處理。從引潮位的基本理論公式出發(fā),在分析締合勒讓德函數(shù)及其完全規(guī)格化的基礎(chǔ)上,給出了引潮位展開中3類不同規(guī)格化(Doodson規(guī)格化、Cartwright & Tayler規(guī)格化、Hartmann & Wenzel規(guī)格化)公式的具體形式,得到3者之間的轉(zhuǎn)換關(guān)系與轉(zhuǎn)換系數(shù)。同時給出Doodson規(guī)格化中2~6階規(guī)格化因子的具體數(shù)值,指出并改正Doodson、Roosbeek文獻(xiàn)和IERS 2003、2010規(guī)范中的3處錯誤。
完全規(guī)格化締合勒讓德函數(shù);大地系數(shù);潮波分量;規(guī)格化因子;IERS 規(guī)范
引潮位展開是地球物理、空間科學(xué)、天文/測地學(xué)研究的基本理論問題。Doodson[1]首先基于勒讓德函數(shù)和球面天文學(xué)的相關(guān)理論,通過對引潮位理論公式進行演繹推導(dǎo),實施了引潮位的完全解析展開。Cartwright等[2]、Hartmann等[3]、Kudryavtsev[4]對引潮位的理論數(shù)值序列進行頻譜分析,得到潮波分量的頻率和振幅。在展開過程中,學(xué)者們均將引潮位統(tǒng)一表達(dá)為“大地系數(shù)”與“潮波分量”之積的形式,其中“大地系數(shù)”由兩部分組成,分別為測站地心緯度φ和測站地心距r的函數(shù)。各階次中與r相關(guān)的函數(shù)極值均約等于1,而與φ相關(guān)的函數(shù)極值變化甚大。為使“大地系數(shù)”的數(shù)值在不同階次中保持相對穩(wěn)定,在各展開過程中都對“大地系數(shù)”進行了規(guī)格化處理。規(guī)格化方法主要有3類:Doodson規(guī)格化、Cartwright & Tayler規(guī)格化、Hartmann & Wenzel規(guī)格化。
郗欽文[5]研究了前兩類規(guī)格化之間的轉(zhuǎn)換關(guān)系,給出了2~4階的Doodson規(guī)格化因子與轉(zhuǎn)換系數(shù)的具體數(shù)值。IERS規(guī)范[6-7]給出了2~3階的各規(guī)格化之間的轉(zhuǎn)換參數(shù),但個別參數(shù)有誤。這些轉(zhuǎn)換參數(shù)都是通過對“大地系數(shù)”各階次的具體展開式進行比對后得出的,并未從理論層面揭示出轉(zhuǎn)換參數(shù)的內(nèi)在實質(zhì)。本文擬從引潮位展開的理論公式出發(fā),通過對3類規(guī)格化方法本質(zhì)的描述,揭示3類方法間的內(nèi)在關(guān)系,并給出轉(zhuǎn)換參數(shù)的一般化公式形式。
某歷元天體對地面某測站點總的引潮位V為[8]:
(1)
式中,GMJ為萬有引力常數(shù)與天體J的質(zhì)量之積,RJ、r分別表示天體、測站點的地心距,ZJ為天體與測站之間的地心天頂距:
cosZJ=sinφsinδJ+cosφcosδJcosHJ
(2)
(3)
式中,(αJ,δJ)、(λ,φ)分別表示天體、測站點在地心參考系中的地心經(jīng)度、地心緯度,HJ為天體的地方時角。
2.1 Doodson規(guī)格化公式及其展開式
定義Doodson常數(shù)DJ為:
(4)
式中,a為地球參考橢球長半徑,cJ為天體J到地球的平均地心距。
將式(1)改寫為:
(5)
表1 2~6階的
2.2 Hartmann & Wenzel規(guī)格化公式及其展開式
由文獻(xiàn)[9]可知:
Pn(cosZJ)=
(6)
故文獻(xiàn)[3]將式(1)表達(dá)為如下形式:
(7)
2.3 Cartwright & Tayler規(guī)格化公式及其展開式
(8)
并將式(1)改寫為:
(9)
3.1 Doodson規(guī)格化與Hartmann & Wenzel規(guī)格化之間的轉(zhuǎn)換
將式(7)改寫為:
(10)
(11)
因此,Doodson規(guī)格化與Hartmann & Wenzel規(guī)格化之間的轉(zhuǎn)換關(guān)系為:
(12)
式(5)是將式(2)代入Pn(cosZJ)展開式后合并同類項得到的。事實上,根據(jù)式(6),Doodson規(guī)格化公式的本質(zhì)為:
(13)
3.2 Hartmann & Wenzel規(guī)格化與Cartwright & Tayler規(guī)格化之間的轉(zhuǎn)換
將式(8)改寫為:
(14)
將式(9)改寫為:
(15)
對比式(7)與式(15),即可得到Cartwright & Tayler規(guī)格化與Hartmann & Wenzel規(guī)格化之間的轉(zhuǎn)換關(guān)系:
(16)
3.3 Doodson規(guī)格化與Cartwright & Tayler規(guī)格化之間的轉(zhuǎn)換
將式(15)繼續(xù)改寫為:
(17)
對比式(13)與式(17)即可得到Doodson規(guī)格化與Cartwright & Tayler規(guī)格化之間的轉(zhuǎn)換關(guān)系:
(18)
該轉(zhuǎn)換關(guān)系也可以通過式(12)、式(16)間接得到:
(19)
在引潮位展開中存在Doodson規(guī)格化、Cartwright & Tayler規(guī)格化、Hartmann & Wenzel規(guī)格化3類不同的規(guī)格化方法。郗欽文[5]給出了Doodson規(guī)格化與Hartmann & Wenzel規(guī)格化之間的轉(zhuǎn)換關(guān)系,并給出了2~4階的Doodson規(guī)格化因子與轉(zhuǎn)換系數(shù)的具體數(shù)值。本文是對郗欽文[5]工作的擴展,不僅給出了引潮位展開中3類不同規(guī)格化公式的具體形式,還由此得到3類不同規(guī)格化方法之間的轉(zhuǎn)換關(guān)系與轉(zhuǎn)換系數(shù)。同時給出了Doodson規(guī)格化中2~6階規(guī)格化因子與轉(zhuǎn)換系數(shù)的具體數(shù)值,指出并改正文獻(xiàn)[10]和IERS規(guī)范[6-7]中的兩處錯誤。
[1] Doodson A T. The Harmonic Development of the Tide-Generating Potential [J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1921, 100(704): 305-329
[2] Cartwright D E, Tayler R J. New Computations of the Tide-Generating Potential [J]. The Geophysical Journal of the Royal Astronomical Society, 1971, 23(1): 45-74
[3] Hartmann T, Wenzel H G. The HW95 Tidal Potential Catalogue [J]. Geophysical Research Letters, 1995, 22(24): 3 553-3 556
[4] Kudryavtsev S M. Improved Harmonic Development of the Earth Tide Generating Potential [J]. Journal of Geodesy, 2004, 77(12): 829-838
[5] 郗欽文. 不同規(guī)格化的引潮位展開及其轉(zhuǎn)換[J]. 地球物理學(xué)報,2007, 50(1): 111-114(Xi Qinwen. Expansion of the Tidal Generating Potential in Different Normalizations and Their Convention [J]. Chinese Journal of Geophysics, 2007, 50(1): 111-114)
[6] McCarthy D D, Petit G. IERS Conventions (2003), IERS Technical Note 32 [R]. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geod?sie, 2003
[7] Petit G, Luzum B. IERS Conventions (2010), IERS Technical Note 36 [R]. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geod?sie, 2010
[8] Melchior P. The Tides of the Planet Earth[M].Oxford:Pergamon Press, 1983
[9] Hofmann W B, Moritz H. Physical Geodesy [M]. NewYork:Springer, 2006
[10]Roosbeek F. RATGP95: A Harmonic Development of the Tide-Generating Potential Using an Analytical Method [J]. Geophysical Journal, 1996, 126(1): 197-204
About the first author:LEI Weiwei, lecturer, PhD candidate, majors in geodesy, E-mail: geodesy@163.com.
The Different Normalization Forms of Tidal Generating Potential Development and Their Transformation
LEIWeiwei1ZHANGHanwei1SUNQian1
1 School of Geodesy and Land Information Engineering, Henan Polytechnic University, 2001 Shiji Road, Jiaozuo 454000, China
In the Tidal Generating Potential (TGP) development process, the geodetic coefficient is normalized in order to maintain the relative stability of its value among different degrees and orders. At present, there are three main normalization methods: Doodson normalization, Cartwright & Tayle normalization, and Hartmann & Wenzel normalization. The specific formulas of these normalization methods in TGP development are derived from the basic theoretical formula of TGP, along with analysis of the associated Legendre’s functions and their full normalization forms. On this basis, the transformation relationships and coefficients among the three methods are obtained. At the same time, the specific values of the 2~6 degree and order normalization factors in Doodson normalization are given, while three errors in the treatise of Doodson and Roosbeek and in the IERS 2003,2010 Conventions are pointed out and corrected.
fully normalized associated Legendre functions; geodetic coefficient; tidal wave component; normalization factor; IERS conventions
National Natural Science Foundation of China, No.41474021; Surveying and Mapping Basic Research Program of NASMG, No.15-01-05.
2016-01-11
項目來源:國家自然科學(xué)基金(41474021);國家測繪地理信息局測繪基礎(chǔ)研究基金(15-01-05)。
雷偉偉,講師,博士生,主要從事大地測量學(xué)研究,E-mail: geodesy@163.com。
10.14075/j.jgg.2016.12.016
1671-5942(2016)012-1105-04
P223
A