国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx

雌激素在地下環(huán)境中的歸宿及其生態(tài)調(diào)控

2016-12-01 02:56:54宋曉明楊悅鎖溫玉娟Adeel王園園楊新瑤沈陽大學(xué)區(qū)域污染環(huán)境生態(tài)修復(fù)教育部重點(diǎn)實(shí)驗(yàn)室遼寧沈陽0044吉林大學(xué)環(huán)境與資源學(xué)院吉林長春3002
中國環(huán)境科學(xué) 2016年9期
關(guān)鍵詞:去除率畜禽土壤

宋曉明,楊悅鎖,2*,溫玉娟, M. Adeel,王園園,楊新瑤(.沈陽大學(xué),區(qū)域污染環(huán)境生態(tài)修復(fù)教育部重點(diǎn)實(shí)驗(yàn)室,遼寧 沈陽 0044;2.吉林大學(xué)環(huán)境與資源學(xué)院,吉林 長春 3002)

雌激素在地下環(huán)境中的歸宿及其生態(tài)調(diào)控

宋曉明1,楊悅鎖1,2*,溫玉娟1, M. Adeel1,王園園1,楊新瑤1(1.沈陽大學(xué),區(qū)域污染環(huán)境生態(tài)修復(fù)教育部重點(diǎn)實(shí)驗(yàn)室,遼寧 沈陽 110044;2.吉林大學(xué)環(huán)境與資源學(xué)院,吉林 長春 130021)

綜述了環(huán)境中典型的結(jié)合態(tài)與游離態(tài)類固醇雌激素的來源、危害以及環(huán)境歸趨,探討了其在地下環(huán)境(土壤和淺層地下水系統(tǒng))中的吸附、微生物降解等遷移轉(zhuǎn)化過程及其影響因素,總結(jié)了常見的環(huán)境雌激素處理方法與危害控制措施.最后,針對(duì)目前環(huán)境中類固醇雌激素在包氣帶與淺層地下水中的穿透過程及其生態(tài)效應(yīng)研究工作的基礎(chǔ)上,對(duì)未來相關(guān)方面的研究進(jìn)行了展望.

類固醇雌激素;地下環(huán)境;吸附;微生物降解;遷移轉(zhuǎn)化

類固醇雌激素(SEs)作為一類典型的內(nèi)分泌干擾物,具有極強(qiáng)的內(nèi)分泌干擾作用,產(chǎn)生的生態(tài)環(huán)境影響也尤為顯著[1],SEs對(duì)土壤與地下水系統(tǒng)的生態(tài)效應(yīng)也成為國內(nèi)外的研究熱點(diǎn).研究表明,環(huán)境中的SEs約90%來源于畜禽糞便[2].集約化畜禽養(yǎng)殖業(yè)中大量使用促生長激素與畜禽自身生理代謝將產(chǎn)生大量SEs[3],而集約化、設(shè)備化農(nóng)牧畜業(yè)生產(chǎn)方式進(jìn)一步促使 SEs進(jìn)入土壤與水環(huán)境.中國作為畜禽養(yǎng)殖業(yè)第一大國,每年將近40億 t的畜禽糞便被施用到土壤進(jìn)而釋放到環(huán)境中[4],造成的土壤與水環(huán)境功能的改變、生態(tài)環(huán)境風(fēng)險(xiǎn)和人體健康風(fēng)險(xiǎn)不言而喻.本文總結(jié)了國內(nèi)外關(guān)于SEs的最新研究進(jìn)展,深入探討SEs的種類、排放特征與危害,并詳細(xì)闡述其在土壤與地下水系統(tǒng)中的環(huán)境行為及控制措施,為進(jìn)一步認(rèn)識(shí)SEs在包氣帶與淺層地下水中的穿透機(jī)制、開發(fā)高效低耗的控制和修復(fù)技術(shù)提供科學(xué)依據(jù).

1 環(huán)境中的類固醇雌激素

1.1 類固醇雌激素的種類

天然環(huán)境中的 SEs根據(jù)其結(jié)構(gòu)可分為游離態(tài)(Free)和結(jié)合態(tài)(Conjugate).其中最具代表性的包括雌酮(E1)、雌二醇(17α-E2、17β-E2)、雌三醇(E3)和乙炔基雌二醇(17α-EE2、17β-EE2).雖然人與動(dòng)物排泄的雌激素主要為雌激素活性較低的結(jié)合態(tài),但環(huán)境中的微生物能夠?qū)⑵渌廪D(zhuǎn)化為游離態(tài)而重現(xiàn)雌激素活性[5],游離態(tài)雌激素也可與硫酸根或葡萄糖苷酸通過酯化作用生成結(jié)合態(tài).常見SEs的化學(xué)性質(zhì)見表1[6-7].

表1 典型類固醇雌激素化學(xué)性質(zhì)Table 1 Chemical properties of the typical SEs

1.2 環(huán)境中類固醇雌激素的來源與歸趨

SEs一般通過人畜排泄物進(jìn)入環(huán)境.對(duì)比人畜排放特征可見(表2),畜禽的排放顯著高于人類,成為環(huán)境中SEs的主要來源[8-9].不同類型畜禽在不同生長階段SEs排放量不同.通常孕期或妊娠階段排放量顯著高于正常生長期;牛和豬排泄雌激素的量一般高于羊、雞等.不同畜禽排放的SEs種類也有明顯差異,牛主要排放 17α-E2,而豬和家禽主要排放17β-E2,據(jù)此可以作為不同SEs來源的指示劑[10].一般人畜糞便中的SEs主要以游離態(tài)存在,而在尿液中主要為結(jié)合態(tài)[2].一些研究表明,人畜排放的SEs多以結(jié)合態(tài)為主,可達(dá)SEs總排放量的95%[11],而游離態(tài)中有相當(dāng)一部分來自結(jié)合態(tài)的水解[12-13].Hoffmann等[14]研究牛的SEs排放形態(tài)發(fā)現(xiàn),其體內(nèi)SEs主要以E1-3S和17β-E2-3G形式存在,在排出的尿液中含量較高.雖然人畜排泄的 SEs以雌激素活性較低的結(jié)合態(tài)為主,但其在環(huán)境中易被微生物水解為游離態(tài)而產(chǎn)生內(nèi)分泌干擾作用,且其溶解度更大,遷移性更強(qiáng)、帶來的長期污染效應(yīng)更嚴(yán)重.

人畜排放的 SEs可以通過多種方式進(jìn)入環(huán)境,并在不同的環(huán)境介質(zhì)間進(jìn)行遷移轉(zhuǎn)化.目前在國內(nèi)外各種水體、畜禽糞漿、污水處理廠、河流沉積物、土壤等環(huán)境介質(zhì)中已頻繁檢出(表3).污水處理廠是人畜排泄物的重要接納場(chǎng)所之一.通常污水處理廠進(jìn)水中 SEs含量一般為幾~幾百ng/L,且與其它環(huán)境樣品相比,EE2的含量較高.對(duì)比污水廠進(jìn)出水可以看出,大部分SEs能在污水處理系統(tǒng)中被去除,但出水中仍然可能含有SEs.

表2 人畜SEs排放特征對(duì)比Table 2 Comparison of SEs releases between human and livestock

畜禽養(yǎng)殖場(chǎng)是SEs的另一個(gè)重要來源,從表3可以看出,由于畜禽種類、養(yǎng)殖規(guī)模、糞便處理方式、以及檢測(cè)方法的不同,養(yǎng)殖場(chǎng)(氧化塘)廢水中的SEs含量差異很大,但均以E1、E2形式存在, E3與EE2很少檢出.相對(duì)于污水處理廠,畜禽養(yǎng)殖廢水的SEs含量更高.地表水體作為污水廠出水的直接受體,也一定程度上受到的 Ses的潛在危害.例如,Kolpin等[19]對(duì)美國30個(gè)州的139處地表水進(jìn)行了詳細(xì)調(diào)查取樣,約40%的水體不同程度的受到SEs污染;Tabata等[20]人對(duì)日本100余條河流中的SEs進(jìn)行調(diào)查,發(fā)現(xiàn)近80%的河水樣品中均檢測(cè)到 SEs.因此,如果利用含有SEs的河水進(jìn)行灌溉,將使SEs進(jìn)入農(nóng)田系統(tǒng)并進(jìn)一步遷移.此外,利用畜禽糞便進(jìn)行施肥的集約化綠色農(nóng)業(yè)也是土壤中 SEs的主要來源,糞便中大部分SEs會(huì)被降雨與灌溉水淋洗,重新隨地表徑流進(jìn)入地表水體[21-22],剩余的SEs一部分透過土壤包氣帶進(jìn)入地下水[23],其他另一部分則殘留在包氣帶中.也有研究在飲用水中檢測(cè)到SEs. Kuch等[24]在德國某些飲用水中檢測(cè)E1和E2的濃度分別為0.2~0.6和0.2~2.1ng/L. Roefer等[25]也在飲用水水源中檢測(cè)到了 E2,其濃度約為2.6ng/L.雖然飲用水中SEs濃度很低,但足以產(chǎn)生內(nèi)分泌干擾作用.可見,SEs可以在各環(huán)境要素之間遷移、并對(duì)生態(tài)造成威脅(圖1),這也為評(píng)價(jià)其環(huán)境風(fēng)險(xiǎn),預(yù)測(cè)其環(huán)境歸趨提出了新的挑戰(zhàn).

表3 不同環(huán)境樣品中SEs濃度分布特征Table 3 The concentrations of SEs in various environmental samples

圖1 環(huán)境中SEs遷移及其生態(tài)效應(yīng)概念模型Fig 1 The conceptual model of transport and ecological effect of SEs in environment

1.3 類固醇雌激素的危害

SEs的危害多以水生生物為主,水體中極低的濃度(1ng/L)就會(huì)影響水生生物體內(nèi)正常內(nèi)分泌代謝[53].SEs最常見的危害效應(yīng)是導(dǎo)致生物個(gè)體雌性化,在許多哺乳類生物中都已經(jīng)發(fā)現(xiàn)了因SEs暴露而導(dǎo)致雄性個(gè)體體內(nèi)出現(xiàn)卵黃蛋白原或雌性化器官的現(xiàn)象[54].Biegel等[55]研究證實(shí),長期暴露于E2可以使雄性虹鱷魚的斑紋轉(zhuǎn)變?yōu)榇菩园呒y,且生殖活動(dòng)也向雌性特點(diǎn)轉(zhuǎn)變. Korsgaard等[56]在研究英國某接受工廠排污河流中石斑魚的生長發(fā)育特征時(shí)發(fā)現(xiàn),約 60%的雄魚出現(xiàn)了雌性化特征,兩性魚與雌性魚比例明顯增高,而這一現(xiàn)象的產(chǎn)生與水體中 EE2的含量增高顯著相關(guān).其次SEs對(duì)生長發(fā)育、生殖健康和生物繁衍的影響亦尤為顯著.Biegel等[55]發(fā)現(xiàn)一定劑量的E2暴露可以造成小鼠卵巢和睪丸的發(fā)育異常,也會(huì)造成鳥類和魚類生殖系統(tǒng)的發(fā)育畸形.除了影響生殖系統(tǒng)發(fā)育之外,雌激素暴露還會(huì)干擾生物體生殖系統(tǒng)的正常功能.Angus等[32]發(fā)現(xiàn)長期暴露于SEs會(huì)造成小鼠卵巢和睪丸的功能障礙導(dǎo)致卵泡減少、精子數(shù)量減少和精子活性降低,降低鳥類繁殖成功率,延遲鳥類產(chǎn)卵時(shí)間,以及干擾魚類產(chǎn)卵.戴璇穎等[57]調(diào)查了我國北京、上海、天津等地上萬名男性生殖健康狀況發(fā)現(xiàn),從 1981~1996年,該地區(qū)男性精液量、精子數(shù)目、精子活動(dòng)率指標(biāo)分別下降了10.0%、18.6%和10.4%,該變化不可能是遺傳因素引起的,毫無疑問與環(huán)境中雌激素增多相關(guān).此外,高濃度的暴露還會(huì)對(duì)生物體產(chǎn)生致癌或致畸變效應(yīng),如提高乳腺癌、睪丸癌、卵巢癌和子宮內(nèi)膜瘤等發(fā)病概率[58];也有研究發(fā)現(xiàn)高濃度雌激素暴露可以導(dǎo)致幼魚的死亡率增加[32].除了對(duì)生長發(fā)育、生殖系統(tǒng)影響較大之外,SEs也在許多其他方面對(duì)生物體產(chǎn)生影響,例如,生物體的免疫系統(tǒng)在SEs長期作用下會(huì)發(fā)生免疫失調(diào)和病理反應(yīng);過量 SEs暴露也能夠?qū)ι矬w的神經(jīng)系統(tǒng)產(chǎn)生侵害,從而影響大腦皮層,下丘腦,腦垂體等對(duì)激素分泌的調(diào)節(jié)作用,導(dǎo)致激素合成、釋放異常[59].值得注意的是,SEs可通過生物富集、空氣吸入和皮膚接觸等多種途徑侵入人體,而且 SEs對(duì)人體健康的影響并不只局限于受暴露的個(gè)體本身,在一定的條件下具有遺傳效應(yīng).

2 類固醇雌激素對(duì)土壤與地下水環(huán)境的脅迫

針對(duì) SEs對(duì)地下環(huán)境(土壤與地下水)的潛在危害研究可追溯到20世紀(jì)90年代末,Ternes等

[60]研究發(fā)現(xiàn)SEs可通過地表水與排污管道泄漏遷移至地下水,進(jìn)而對(duì)土壤與淺層地下水造成潛在危害. Peterson等[23]檢測(cè)到某喀什特地區(qū)地下水中17β-E2含量達(dá)65ng/L,通過污染源分析最終確定主要來源于畜禽糞便污染.Wicks等[61]也發(fā)現(xiàn)在地表水與地下水交互頻繁地區(qū),地下水中17β-E2的濃度為達(dá)80ng/L,且其含量與地表水中17β-E2含量有顯著相關(guān)性.Labadie等[62]最先開展了SEs在河底沉積物中垂直遷移的原位實(shí)驗(yàn),發(fā)現(xiàn)沉積物底部界面上的E為表層沉積物的9倍,從而證實(shí)了SEs可以穿透到地下含水層系統(tǒng),及其遷移過程中的界面效應(yīng).可見,盡管土壤對(duì)SEs具有較好的吸附性,但其仍會(huì)隨著農(nóng)田澆灌、降雨等過程穿透包氣帶進(jìn)入到地下水系統(tǒng),從而對(duì)土壤與地下水生態(tài)系統(tǒng)以及人類健康造成潛在的威脅.

3 類固醇雌激素在土壤-地下水系統(tǒng)中的遷移轉(zhuǎn)化

由于SEs的蒸汽壓很低(表1),在常溫常壓下的揮發(fā)可以忽略;雖然有關(guān)于SEs光解的研究,但基本都是基于紫外光或有TiO2等催化劑存在的催化條件下的光解,SEs在自然條件下的光解十分有限.因此,影響SEs在環(huán)境中遷移轉(zhuǎn)化的主要因素為吸附與微生物降解/轉(zhuǎn)化,下面主要基于這兩方面對(duì)SEs在土壤與地下水中的環(huán)境行為展開綜述.

3.1 土壤對(duì)SEs的吸附

SEs溶解度較低,疏水性較強(qiáng),極易于吸附在固相介質(zhì)中,土壤或沉積物成為其在環(huán)境中主要的“源”和“匯”.

在吸附動(dòng)力學(xué)方面,大部分實(shí)驗(yàn)研究表明,SEs可以快速地被吸附到土壤或土壤有機(jī)質(zhì)(SOM)上,通常幾個(gè)小時(shí)內(nèi)便可達(dá)到或接近表觀吸附平衡[63].不同SEs在土壤中的吸附特征相似,吸附明顯分2個(gè)階段:即前期吸附較快,后期緩慢降低.李建中[64]利用雙室一級(jí)動(dòng)力學(xué)模型研究了不同SEs在多種土壤介質(zhì)中的吸附規(guī)律,發(fā)現(xiàn)實(shí)驗(yàn)初始階段,快吸附居于主要地位,隨后慢吸附貢獻(xiàn)逐漸上升,直至吸附達(dá)到平衡,不同土壤中慢吸附的貢獻(xiàn)率可達(dá) 18%~60%.在此基礎(chǔ)上一些學(xué)者針對(duì)SEs后期的慢吸附過程進(jìn)行了研究,認(rèn)為SEs在土壤礦物以及土壤有機(jī)質(zhì)中的微孔擴(kuò)散機(jī)制是導(dǎo)致慢吸附的主要原因[65-66].

環(huán)境因素對(duì)土壤中SEs吸附影響顯著.在酸性條件下,SEs羥基去質(zhì)子化能力減弱,腐殖酸中官能團(tuán)的解離能力減弱,利于有機(jī)物的吸附[67]. SEs的吸附為放熱過程[68],較高的溫度會(huì)抑制SEs的吸附.離子濃度會(huì)影響土壤的表面特征和疏水性化合物的溶解度.一般離子強(qiáng)度較高時(shí),SEs與土壤介質(zhì)間的雙電層斥力減小,且離子強(qiáng)度增高使得SEs的溶解度降低,從而促進(jìn)SEs的吸附[69].土壤礦物是吸附SEs的主要載體之一,因此礦物成分對(duì)SEs吸附影響也尤為重要. Francis等[70]研究認(rèn)為,SEs在土壤中的吸附與土壤礦物組成,礦物粒徑、比表面積以及陽離子交換能力等顯著相關(guān),粘土礦物含量越高、粒徑越小、比表面積越大,則吸附能力越強(qiáng).Lai等[71]發(fā)現(xiàn)鐵鋁氧化物的離子交換能力較強(qiáng),因此對(duì)SEs的吸附能力也較高.

起初人們研究 SEs在土壤中的吸附時(shí)發(fā)現(xiàn)吸附親合力與辛醇-水分配系數(shù)高度相關(guān)[63],吸附特征符合線性等溫吸附方程,表明疏水分配作用是其主要吸附機(jī)制.然而,由于SEs具有羥基等極性官能團(tuán),推測(cè)疏水分配作用并非唯一的吸附機(jī)制[72].一些研究發(fā)現(xiàn),SEs的吸附行為主要受羥基影響.Bedard等[73]在研究 SEs與腐殖酸(HAs)之間的吸附時(shí)發(fā)現(xiàn),SEs主要通過芳香環(huán)上的羥基與 HAs結(jié)合,且 HAs濃度很低時(shí)也會(huì)發(fā)生. Diana[74]等研究炔雌醇在經(jīng)過堆肥處理的土壤中吸附規(guī)律時(shí)發(fā)現(xiàn),其吸附等溫線呈非線性,這是因?yàn)槿泊拼急江h(huán)上C-3的酚羥基和C-17上的羥基與土壤中有機(jī)質(zhì)的羧基官能團(tuán)反應(yīng)的結(jié)果. Yamamoto等[75]利用熒光猝滅技術(shù)研究了SEs在DOC中的吸附,發(fā)現(xiàn)吸附能力與SEs的溶解度以及l(fā)gKow相關(guān)性較弱,表明SEs與有機(jī)物的相互作用不僅是疏水分配,還有 π健與 H健.此外,SOM的非均質(zhì)性也是導(dǎo)致土壤吸附非線性的主要原因[76].SOM 通過去質(zhì)子化官能團(tuán)提供吸附點(diǎn)位;或者通過極性官能團(tuán)形成氫鍵;或者與金屬離子形成鍵橋等來影響吸附過程.可見,SEs與有機(jī)質(zhì)之間的吸附機(jī)理復(fù)雜,如何全面揭示不同來源以及不同種類的土壤有機(jī)物對(duì) SEs的吸附機(jī)理尚待研究.

3.2 微生物對(duì)SEs的降解/轉(zhuǎn)化

土壤和水體中豐富的微生物與 SEs的相互作用無需置疑.在不同的環(huán)境條件下,例如濕度、溫度和 pH 值等可以影響微生物的活性,進(jìn)而影響雌激素的降解.土壤中大部分SEs生物降解的半衰期小于1個(gè)月,SEs在環(huán)境中持久性較弱[77].通常土壤中濕度和溫度的增高,以及 pH較低的酸性條件下,能提高SEs的生物利用率,降低其持久性[78].氧化還原條件對(duì)SEs的降解/轉(zhuǎn)化影響顯著.與好氧條件相比,厭氧條件下雌激素的降解速率較低[79].E1可通過外消旋化作用生成E2;E2也可以通過 SO42-、NO3-和 CO32-等電子受體轉(zhuǎn)化為E1,但是SEs的降解總量較小,說明在厭氧條件下,雌激素可以進(jìn)行積累.因此,通常將長期處于厭氧狀態(tài)下的沉積物稱為雌激素物質(zhì)的天然儲(chǔ)庫[80].SEs的生物降解過程通常沒有觀測(cè)到 CO2的顯著產(chǎn)生,說明 SEs的礦化作用較弱[81].Fan等

[82]利用14C標(biāo)注的E2培養(yǎng)實(shí)驗(yàn)發(fā)現(xiàn)在好氧條件下,僅有6%的E2發(fā)生礦化,而在厭氧條件下不發(fā)生礦化.

圖2 SEs之間的相互轉(zhuǎn)化與轉(zhuǎn)化條件Fig.2 Transformation and the corresponding conditions among various SEs

很多研究表明,不同SEs組分之間會(huì)發(fā)生相互轉(zhuǎn)化(圖2).如E2與E1在生物降解過程中的相互轉(zhuǎn)化或單向轉(zhuǎn)化[83],同時(shí),在E1和17α-E2的降解過程中發(fā)現(xiàn)了E3[78].此外,一些 SEs之間的相互轉(zhuǎn)化也可以通過非生物過程實(shí)現(xiàn).Fan等[82]研究證實(shí)E2可以通過非生物過程轉(zhuǎn)化為一種未知的極性物質(zhì),但E2氧化為E1只能在生物作用下進(jìn)行.而Colucci等[84]發(fā)現(xiàn)17β-E2先是被非生物途徑氧化為E1,隨后被微生物降解,說明E2轉(zhuǎn)化為E1也可是非生物過程.Goeppert等[85]研究E2在土壤中的遷移轉(zhuǎn)化發(fā)現(xiàn),當(dāng)有微生物存在時(shí)其降解產(chǎn)物主要為E1與E1-3S,無微生物存在時(shí)降解產(chǎn)物只有E1,首次證實(shí)了E2的遷移轉(zhuǎn)化過程伴隨E1-3S的形成,但對(duì)該過程的機(jī)理尚不明確,有待進(jìn)一步研究.結(jié)合態(tài)SEs之間也會(huì)發(fā)生相互轉(zhuǎn)化,Shrestha等[12]在研究E2-3G在農(nóng)業(yè)土壤中的遷移轉(zhuǎn)化時(shí)監(jiān)測(cè)到E1-3G,說明E2-3G發(fā)生了氧化,但無法確定該過程是否是生物過程.

已經(jīng)有學(xué)者發(fā)現(xiàn),由于土壤及其有機(jī)組分的非均質(zhì)性,吸附作用對(duì)SEs的生物利用度影響顯著,且常常得到矛盾的結(jié)論.Casey等[86]研究不同來源的土壤對(duì)E2的吸附性和生物降解試驗(yàn)發(fā)現(xiàn),吸附于固相的 SEs可以快速解吸到液相并被降解.Das等[87]研究SEs在分別填充了土壤、淡水沉積物和2種砂子的柱試驗(yàn)發(fā)現(xiàn),較強(qiáng)的吸附作用沒有阻礙生物降解.但是,也有學(xué)者發(fā)現(xiàn)吸附作用會(huì)導(dǎo)致SEs的生物可利用性明顯降低,從而影響生物降解率.Fan等[88]精確模擬了E2在土壤中的遷移轉(zhuǎn)化,E2需要以溶解態(tài)或從固相中解吸才能被生物利用.因此,膠體結(jié)合的 E2不能被微生物降解.Lee等[89]研究了E2在不同濃度HAs上的吸附,并利用E-screen Bioassay估算了E2的雌激素活性及其去除,發(fā)現(xiàn)隨著HAs濃度的增加E2的吸附增強(qiáng),但生物降解率及其轉(zhuǎn)化成 E1的效率顯著降低.這表明土壤吸附作用對(duì)SEs的生物降解作用的影響,需要結(jié)合試驗(yàn)土壤的吸附特性與微生物降解特性具體分析.

縱觀SEs的降解/轉(zhuǎn)化過程可以得出,SEs的代謝產(chǎn)物可能仍然具有內(nèi)分泌干擾性;SEs代謝產(chǎn)物可能與母體發(fā)生競(jìng)爭性吸附,從而有可能增加母體的遷移轉(zhuǎn)化.

3.3 SEs在地下環(huán)境中的“穿透”過程

大部分室內(nèi)實(shí)驗(yàn)認(rèn)為,土壤介質(zhì)對(duì)SEs具有較強(qiáng)的吸附作用,且土壤微生物對(duì)SEs的降解迅速,因此,SEs在包氣帶內(nèi)的穿透能力有限,最終能進(jìn)入地下水體的SEs只是少數(shù).Fan等[90]研究E2在25cm土柱中的遷移規(guī)律時(shí)發(fā)現(xiàn),土壤對(duì)E2吸附較強(qiáng),約70%的E2被截留于土柱中,且主要截留在土柱表層5cm.這與批試驗(yàn)中土壤對(duì)E2有較強(qiáng)吸附能力結(jié)果是一致的.土壤有機(jī)質(zhì)對(duì)SEs的截留作用更為顯著,Larsen等[91]利用柱實(shí)驗(yàn)研究了17β-E2在砂土和富含有機(jī)質(zhì)的粉質(zhì)壤土中的遷移轉(zhuǎn)換時(shí)發(fā)現(xiàn),在粉質(zhì)壤土中出水無 17β-E2,其主要被截留在土柱表層5cm內(nèi),而沙土中90%的17β-E2可穿透土柱,說明隨著SOM的增加吸附作用增強(qiáng),SEs移動(dòng)性減小.

但在對(duì)實(shí)際場(chǎng)地的研究中發(fā)現(xiàn),在施肥后的土壤與地下水中SEs含量很高,且長期存在,說明SEs在環(huán)境中具有一定的持久性.針對(duì)這種場(chǎng)地實(shí)驗(yàn)與室內(nèi)實(shí)驗(yàn)研究結(jié)果相矛盾的現(xiàn)象,一些學(xué)者認(rèn)為由于大部分室內(nèi)實(shí)驗(yàn)所用土樣破壞了土壤的天然結(jié)構(gòu),因此,沒有考慮天然土壤結(jié)構(gòu)中優(yōu)先流對(duì)SEs遷移的影響.D'Alessio等[92]對(duì)比SEs在原狀土與非原狀土柱中的遷移轉(zhuǎn)化發(fā)現(xiàn),原狀土中的根孔等大空隙的存在使 SEs與土壤的接觸時(shí)間減少,促進(jìn)了SEs的遷移.此外,土壤膠體的攜帶遷移也是導(dǎo)致包氣帶內(nèi) SEs遷移能力及持久性增強(qiáng)的另一主要原因. 例如,Thompson等[93]發(fā)現(xiàn)農(nóng)業(yè)土壤中E2的移動(dòng)性較強(qiáng)且能在土壤中長期存在,結(jié)果與許多室內(nèi)實(shí)驗(yàn)相矛盾,推測(cè)這可能是土壤膠體促進(jìn)了 E2在土壤中的遷移. Holbrook等[94]監(jiān)測(cè)污水處理系統(tǒng)中SEs存在形態(tài)時(shí)發(fā)現(xiàn),水中可有60%的E2與有機(jī)膠體結(jié)合;Yamamoto等[95]也發(fā)現(xiàn)河水中15%~30%的E2與DOM結(jié)合;龔劍等[96]研究了珠江2 條河流中E1的含量分布、膠體/水相間的分配作用,結(jié)果發(fā)現(xiàn):珠江河水中約24%~26%的E1存在于膠體相.說明膠體對(duì)SEs具有較強(qiáng)的親和力,從而增強(qiáng)其遷移能力.

可見,SEs會(huì)在各環(huán)境因素影響下隨水體不斷遷移,并進(jìn)入底泥進(jìn)一步穿透至地下水環(huán)境,擴(kuò)大了其環(huán)境危害的范圍,加大了其環(huán)境污染的風(fēng)險(xiǎn).只有不斷深入掌握SEs在環(huán)境介質(zhì)中吸附、降解和遷移的特征及影響因素,才能有效控制其危害.

4 環(huán)境中SEs的危害控制措施

目前針對(duì)環(huán)境中 SEs治理主要集中于污水處理系統(tǒng)與水體的處理與去除,而針對(duì)畜禽糞便中 SEs的處理以及利用畜禽糞便施肥進(jìn)入土壤系統(tǒng)后的修復(fù)措施研究很少.

4.1 水體中SEs的去除方法

目前針對(duì)水體中 SEs的去除方法主要有光降解、物理化學(xué)方法與微生物降解等.

4.1.1 光降解 SEs結(jié)構(gòu)非常穩(wěn)定,在自然環(huán)境下光降解的程度有限.關(guān)于SEs光降解的研究多數(shù)是基于紫外光(UV)等外加光源或有催化劑存在條件下的光催化降解.常用的催化劑有TiO2、Ti、Fe(III)等.Coleman等[97]在利用紫外光光照降解E2的實(shí)驗(yàn)中發(fā)現(xiàn),在體系中加入Ti能顯著提高 E2的光降解速率.Layton等[98]發(fā)現(xiàn)在紫外燈照射下,加入1g/L的TiO2能顯著催化E2的光解,經(jīng)過3h E2能完全礦化.馬曉雁等[99]采用3種UV體系,即UV、UV/H2O2和UV/H2O2/TiO2降解水中E1、E2和EE2,結(jié)果表明,降解過程均符合一級(jí)反應(yīng)動(dòng)力學(xué),單獨(dú) UV 系統(tǒng)中,E1降解效果良好,降解率高于80%,E2與EE2的降解率較差,低于40%;H2O2和催化劑TiO2的投加可提高3種SEs的降解率, UV/H2O2/TiO2系統(tǒng)中3種SEs的降解率均高于80%,且E1幾乎完全降解.劉彬等[100]研究了在不同光源、光照強(qiáng)度與時(shí)間、pH、Fe3+等因素對(duì)水體中 EE2光降解的影響,發(fā)現(xiàn)紫外燈光照下的光降解速率比高壓汞燈光照下的大,且在弱酸性條件下與 Fe3+的存在能促進(jìn) EE2光降解.Colucci等[84]研究了水環(huán)境中E1的光降解效率,并證實(shí)了Fe(III)對(duì)E1光降解的促進(jìn)作用;通過對(duì) E1的降解機(jī)理與途徑進(jìn)行研究發(fā)現(xiàn),E1在光降解時(shí)破壞了苯環(huán)結(jié)構(gòu),生成了含有羥基的氧化產(chǎn)物.

4.1.2 物理-化學(xué)方法處理 (1)吸附:大多數(shù)SEs溶解度比較低,辛醇-水分配系數(shù)較高,因此在環(huán)境中易于從水相中分配到土壤/沉積物等固相中通過吸附和沉淀作用去除.水處理中常用的吸附劑有活性炭、活性污泥或失活污泥離子交換樹脂、殼聚糖等有機(jī)物.Synder等[101]發(fā)現(xiàn)活性炭對(duì)E2的吸附能力很強(qiáng),吸附去除率高于50%,且吸附去除率隨 E2初始濃度的減少而降低.紀(jì)樹蘭等[102]研究了好氧活性污泥對(duì)E1、E2、EE2的吸附,40min達(dá)到吸附平衡,吸附率約為60%,且去除率隨溫度升高而降低.Yamamoto等[94]研究了SEs在多種吸附介質(zhì)中的去除效率,發(fā)現(xiàn) E2和EE2在單寧酸上的吸附最高,logKOC值分別為5.28和 5.22;在多糖酸上的吸附最弱,其 logKOC值分別為 2.62 和 2.53;而在腐殖酸上的 logKOC值一定程度上低于單寧酸;此外,進(jìn)一步發(fā)現(xiàn)了SEs與含有苯環(huán)的物質(zhì)具有較高的親和力,這是由于π-電子之間的相互作用所致.

(2)膜分離:利用膜工藝去除水體SEs以被廣泛研究與應(yīng)用.Cartinella[103]用直接接觸膜蒸餾和反滲透膜研究了廢水中SEs去除特征,直接接觸膜的去除效率較高且穩(wěn)定,截留率大于 99.5%;反滲透膜的截留率介于 77%~99%,與實(shí)驗(yàn)持續(xù)時(shí)間和溶液中的化學(xué)成分有關(guān).Yoon等[104]用納濾膜和超濾膜研究了不同飲用水源水中 SEs的去除,對(duì)E1、E2、E3和EE2的平均截留率約為40%左右.Chang 等[105]研究了疏水性中空纖維膜對(duì)E1的去除效率, E1的去除率介于46%~95%.各種膜工藝對(duì)水體中SEs的去除率差別明顯,這既與膜的種類、材質(zhì)、孔徑等特性有關(guān),還與水體的物化性質(zhì)如pH值、離子強(qiáng)度等有關(guān).

(3)高級(jí)氧化法:高級(jí)氧化法技術(shù)種類繁多,目前研究多集中于氧化處理?xiàng)l件的優(yōu)化、氧化降解動(dòng)力學(xué)以及SEs降解途徑3個(gè)方面的研究.常用的氧化劑有 O3、H2O2、NaClO、K2FeO4等.許多研究發(fā)現(xiàn),將不同氧化劑進(jìn)行優(yōu)化組合后可顯著提高SEs的去除率,例如H2O2/O3、UV/H2O2、UV/Fendon等.Huber等[106]研究了臭氧對(duì)EE2的氧化機(jī)理,發(fā)現(xiàn)臭氧能選擇性的攻擊官能團(tuán),EE2分子苯環(huán)上的1/2鍵與O3反應(yīng)活性最高,反應(yīng)速率快,其次是乙炔基,且降解反應(yīng)的中間產(chǎn)物雌激素活性不及EE2的0.5%.Ternes等[107]研究了O3及O3/H2O2對(duì)地表水中EE2的降解,O3氧化時(shí)二級(jí)降解速率常數(shù)為7×109/(M·s),而O3/H2O2組合氧化時(shí)為 9.8×109/(M·s).Rosenfeldt等[108]研究了UV與UV/H2O2對(duì)E2和EE2的去除特性,發(fā)現(xiàn)在利用UV降解時(shí)加入15mg/L的H2O2后,雌激素去除率由20%增加到90%以上.

4.1.3 微生物降解法 利用微生物降解去除SEs研究相對(duì)較多.Khanal等[2]研究發(fā)現(xiàn)污水處理系統(tǒng)中的活性污泥吸附和生物降解可以降低污水中的雌激素,如對(duì)E2的去除率可達(dá)90%,但對(duì)E1的去除率較低,為25%~80%.Ternes[109]等研究了多種 SEs在污水處理廠的活性污泥好氧處理過程中的生物降解特征,24h后1mg/L的E1、E2降解均高于50%;EE2經(jīng)過24h降解20%,說明EE2 相對(duì)穩(wěn)定.Kjoholt等[110]在研究缺氧條件下活性污泥降解SEs的實(shí)驗(yàn)中發(fā)現(xiàn),E1、E2和EE2的半衰期分別為 1.20h、2.01min和 4.13d,而在E1與E2共存的混合體系中,其半衰期為37.5min,介于兩者單獨(dú)降解時(shí)半衰期之間,其降解快慢順序?yàn)椋篍2>E1>EE2,與好氧降解時(shí)一致.在此基礎(chǔ)上,一些學(xué)者從環(huán)境樣品與活性污泥中分離出了SEs高效降解菌,并對(duì)其代謝途徑和影響因素進(jìn)行了深入研究.Yoshimoto等[111]從污水處理廠分離得到了能夠同時(shí)降解E1、E2、E3與EE2 的紅球?qū)倬辏≧hodococcus zopfii和 Rhodococcus equi).Xiong 等[112]從土壤中分離出了一株雌激素 高 效 降 解 菌 Comamonas testosterone ATCC11996,并通過分子生物學(xué)手段鑒定并分離出了羥化類固醇脫氫酶/碳酰還原酶的抑制子和活化子.楊俊等[113]從廢水中分離出了一株對(duì) E2具有高效降解能力的芽孢桿菌,對(duì)降解條件優(yōu)化后其可在7d 內(nèi)將初始濃度為50mg/L的E2完全降解.Yu等[114]從活性污泥中分離出 8株不同的E2的高效降解菌株,并對(duì)其降解特性進(jìn)行了詳細(xì)的研究.Zheng等[115]發(fā)現(xiàn)了一株以 E2為唯一碳源的降解菌株P(guān)seudomonas aeruginosa TJ1,并在次基礎(chǔ)上研究了吸附作用與生物作用對(duì) E2 降解的影響.

4.2 土壤中SEs的去除方法

畜禽糞便通過堆肥或氧化塘過程可以自然降解 SEs. Zheng[83]等監(jiān)測(cè)奶牛養(yǎng)殖場(chǎng)糞便的降解過程時(shí)發(fā)現(xiàn),新鮮牛糞經(jīng)過 3個(gè)月堆肥處理后,SEs由2100μg/kg降低到160μg/kg,同時(shí)監(jiān)測(cè)氧化塘中SEs降解特征時(shí)發(fā)現(xiàn),在第1氧化塘經(jīng)過26h左右停留后SEs由26μg/L降低到450ng/Ll;經(jīng)過第3氧化塘后低于檢出限.說明堆肥處理與氧化塘能有效去除畜禽糞尿中的SEs.Furuichi等[28]利用厭氧處理和滴流生物濾池好氧處理組合工藝對(duì)養(yǎng)豬廢水中SEs,去除效率可達(dá)90%以上,其中滴流生物濾池起關(guān)鍵作用,且對(duì) 17β-E2 和E1 的去除率優(yōu)于17-αE2 和E3.Shappell等[116]基于濕地處理系統(tǒng)去除養(yǎng)豬糞便廢液中的 E1、E2 和E3,去除率分別為86%、46%和59%,在此基礎(chǔ)上將濕地處理與氧化塘相結(jié)合,SEs總?cè)コ食^ 80%.張真[117]利用污水土地處理系統(tǒng)-土壤凈化槽技術(shù)對(duì)農(nóng)村污水中典型 SEs的去除效果進(jìn)行了研究,E1、E2 和 E3平均去除率均能達(dá)到90%以上,EE2平均去除率為70%.雖然這些新處理技術(shù)能有效的去除畜禽糞便與土壤中的SEs,但仍不能處理完全,且還會(huì)產(chǎn)生二次污染的可能.

5 研究展望

5.1 對(duì)SEs的環(huán)境行為的研究主要集中在游離態(tài),而針對(duì)結(jié)合態(tài)雌激素環(huán)境行為的研究幾乎空白.雖然結(jié)合態(tài)雌激素對(duì)生物的內(nèi)分泌干擾性較低,但它在環(huán)境微生物作用下易轉(zhuǎn)化成游離態(tài)而重獲雌激素活性,其潛在污染風(fēng)險(xiǎn)不可忽略.

5.2 目前針對(duì)污水處理系統(tǒng)中SEs的遷移轉(zhuǎn)化與去除研究日趨成熟,而對(duì)其主要環(huán)境來源——畜禽糞便中的 SEs及其在農(nóng)田土壤與地下水環(huán)境中的遷移轉(zhuǎn)換以及污染修復(fù)等研究相對(duì)薄弱.

5.3 由于對(duì)SEs在土壤中多種吸附過程的研究不夠深入和系統(tǒng),未能深入闡明其吸附機(jī)制;此外,缺乏多 SEs溶質(zhì)體系下環(huán)境行為研究,使得對(duì)SEs在土壤中的吸附與降解研究以實(shí)驗(yàn)現(xiàn)象解釋為主,未能深入揭示其機(jī)理.

5.4 雖然針對(duì)SEs在土壤中的遷移轉(zhuǎn)化研究取得一定進(jìn)展,但缺乏反映場(chǎng)地實(shí)際條件,如不同巖性組成的界面效應(yīng)、降雨與灌溉影響下的干濕交替補(bǔ)給方式、包氣帶與毛細(xì)帶特征等影響下SEs在包氣帶與地下水含水層系統(tǒng)的穿透機(jī)制.

[1] Liu R, Zhou J L, Wilding A. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid phase extraction gas-chromatography-mass spectrometry [J]. J. Chromatogr. A, 2004,1022(1/2):179-189.

[2] Khanal S K, Xie B, Thompson M L, et al. Fate, transport and biodegradation of natural estrogens in the environment and engineered systems [J]. Environmental Science and Technology,2006,40(21):6537-6546.

[3] Wilson V S, Lambright C, Ostby J, et al. In vitro and in vivo effects of 17β- trenbolone: a feedlot effluent contaminant [J]. Toxicol. Sci., 2002,70:202-211.

[4] 劉姝芳,李艷霞,張雪蓮,等.東北三省畜禽養(yǎng)殖類固醇激素排放及其潛在污染風(fēng)險(xiǎn) [J]. 環(huán)境科學(xué), 2013,34(8):3180-3187.

[5] Zuo Y G, Zhang K, Deng Y W. Occurrence and photochemicaldegradation of 17α-ethinylestradiol in Acushernet River estuary[J]. Chemosphere, 2006,63:1583-1590.

[6] 李曉曼,黃 斌,孫雯雯,等.類固醇雌激素環(huán)境行為研究進(jìn)展[J]. 環(huán)境化學(xué), 2014,33(8):1276-1286.

[7] Young W F, Whitehouse P, Johnson I, et al. Proposed predicted no effect concentrations (PNECs) for natural and synthetic steroid oestrogens in surface waters [M]. Environment Agency, 2002.

[8] Raman D R, Williams E L, Layton A C, et al. Estrogen Content of Dairy and Swine Wastes [J]. Environmental Science & Technology, 2004,38(13):3567-3573.

[9] Johnson A C, Williams R J, Matthiessen P. The potential steroid hormone contribution of farm animals to freshwaters, the United Kingdom as a case study [J]. Science of the Total Environment,2006,362(1-3):166-178.

[10] Zheng W, Li X, Yates S R, et al. Anaerobic transformation kinetics and mechanism of steroid estrogenic hormones in dairy lagoon water [J]. Environmental Science & Technology, 2012, 46(10):5471-5478.

[11] Liu Z H, Kanjo Y, Mizutani S. Urinary excretion rates of natural estrogens and androgens from humans, and their occurrence and fate in the environment: A review [J]. Sci. Total. Environ., 2009,407(18):4975-4985.

[12] Shrestha S L, Casey F X, Hakk H, et al. Fate and transformation of an estrogen conjugate and its metabolites in agricultural soils[J]. Environmental Science & Technology, 2012,46(20):11047-11053.

[13] Adler P, Steger-Hartmann T, Kalbfus W. Distribution of natural and synthetic estrogenic steroid hormones in water samples from Southern and Middle Germany [J]. Acta Hydrochimica et Hydrobiologica, 2001,29(4):227-241.

[14] Hoffmann B, dePinho T G, Schuler G. Determination of free and conjugated oestrogens in peripheral blood plasma, feces and urine of cattle throughout pregnancy [J]. Experimental and Clinical Endocrinology & Diabetes, 1997,105(5):296-303.

[15] LiuZ H, KanjoY, Mizutani S.Urinary excretion rates of natural estrogens and androgens from humans,and their occurrence and fate in the environment: A review [J]. Sci. Total Environ., 2009,407(18):4975-4985.

[16] Sophie D L, David L J. Biodegradation of estrone and 17b-estradiol in grassland soils amended with animal wastes [J]. Soil Biology & Bioehemistry, 2006,38:2803-2815.

[17] Farrell M, Jones D L. Critical evaluation of municipal solid waste composting and potential compost markets [J]. Bioresource Technology, 2009,100:4301-4310.

[18] Hobe G, Schon R, Goneharov N, et al. Some new aspects of 17a-estradiol metabolism in man [J]. Steroids, 2002,67(11):883-893.

[19] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals,hormones, and other organic wastewater contaminants in US streams, 1999~2000: A national reconnaissance [J]. Environmental Science & Technology, 2002,36(6):1202-1211.

[20] Tabata A, Kashiwada S, Ohnishi Y, et al. Estrogenic influences of estradiol-17b, p-nonylphenol and bis-phenol-A on Japanese Medaka (Oryzias latipes) at detected environmental concentrations [J]. Water Science and Technology, 2001,43(2):109-116.

[21] Shore L S, Shemesh M, Cohen R. The role of oestradiol and oestrone in chicken manure silage in hyperoestrogenism in cattle[J]. Australian Veterinary Journal, 1988,65(2):68-68.

[22] Finlay-Moore O, Hartel P G, Cabrera M L. 17β-estradiol and testosterone in soil and runoff from grasslands amended with broiler litter [J]. Journal of Environmental Quality, 2000,29(5):1604-1611.

[23] Peterson E W, Davis R K , Orndorff H A. 17β- estradiol as an indicator of animal waste contamination in mantled karst aquifers[J]. J. Environ. Qual., 2000,29:826-834.

[24] Kuch H M, Ballschmiter K. Determination of endocrine disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range [J]. Environ. Sci. Technol., 2001,35(15):3201-3206.

[25] Roefer P, Snyder S, Zegers R E, et al. Endocrine-disrupting chemicals in a source water [J]. American Water Works Association Journal, 2000,92(8):52.

[26] Hutchins S R, White M V, Hudson F M, et al. Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates [J]. Environmental Science & Technology, 2007,41(3):738-744.

[27] Kj?r J, Olsen P, Bach K, et al. Leaching of estrogenic hormones from manure-treated structured soils [J]. Environmental Science & Technology, 2007,41(11):3911-3917.

[28] Furuichi T, Kannan K, Suzuki K, et al. Occurrence of estrogenic compounds in and removal by a swine farm waste treatment plant[J]. Environmental Science & Technology, 2006,40(24):7896-7902.

[29] Sarmah A K, Northcott G L, Leusch F D L, et al. A survey of endocrine disrupting chemicals (EDCs) in municipal sewage and animal waste effluents in the Waikato region of New Zealand [J]. Science of the Total Environment, 2006,355(1):135-144.

[30] Clara M, Kreuzinger N, Strenn B, et al. The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants [J]. Water Research, 2005,39(1):97-106.

[31] Andersen H, Siegrist H, Halling-S?rensen B, et al. Fate of estrogens in a municipal sewage treatment plant [J]. Environmental Science & Technology, 2003,37(18):4021-4026.

[32] Angus R A, Stanko J, Jenkins R L, et al. Effects of 17αethynylestradiol on sexual development of male western mosquitofish (Gambusia affinis) [J]. Comparative Biochemistryand Physiology Part C: Toxicology & Pharmacology, 2005,140(3):330-339.

[33] Lee H B, Peart T E, Chan J, et al. Occurrence of endocrinedisrupting chemicals in sewage and sludge samples in Toronto,Canada [J]. Water Quality Research Journal of Canada, 2004,39(1):57-63.

[34] Nakada N, Tanishima T, Shinohara H, et al. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment [J]. Water Research, 2006,40(17):3297-3303.

[35] Johnson A C, Belfroid A, Di Corcia A. Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent [J]. Science of the Total Environment, 2000,256(2):163-173.

[36] Prietoa A, Vallejoa A, Zuloaga O, et al. Selective determination of estrogenic compounds in water by microextraction by packed sorbents and a molecularly imprinted polymer coupled with large volume injection-in-port-derivatization gas chromatographymass spectrometry [J]. Analytica Chimica Acta, 2011,703:41-51.

[37] Vulliet E, Wiest L, Baudot R, et al. Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry [J]. J. Chromatogr. A, 2008,1210(1):84-91.

[38] Cathurn S, Sabik H. Determination of steroids and coprostanol in surface water, effluent and mussel using gas chromatographymass spectrometry [J]. Chromatographia, 2001,53:394-399.

[39] Velicu M, Suri R. Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed-use areas [J]. Environ. Monit. Assess, 2009,154(1/4):349-359.

[40] Isobe T, Shiraishi H, Yasuda M, et al. Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography-tandemmass spectrometry [J]. J. Chromatogr. A, 2003,984(1/2):195-202.

[41] Laganà A, Bacaloni A, Leva I D, et al. Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters [J]. Anal. Chim. Acta, 2004,501(1):79-88.

[42] Grovera D P, Zhou J L, Frickers P E, et al. Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: Impact on receiving river water [J]. J. Hazard. Mat., 2011,185:1005-1011.

[43] Lei B L, Huang S B, Zhou Y Q, et al. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China [J]. Chemosphere, 2009,76(1):36-42.

[44] Wang L, Ying G G, Chen F, et al. Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools [J]. Environ. Pollut., 2012,165:241-249.

[45] Beck J, Totsche K U, K?gel-Knabner I. A rapid and efficient determination of natural estrogens in soils by pressurised liquid extraction and gas chromatography—mass spectrometry [J]. Chemosphere, 2008,71(5):954-960.

[46] 韓 偉.奶牛及肉牛雌激素的排放及其環(huán)境遷移特征 [D]. 北京:北京師范大學(xué), 2010:1-2.

[47] Huang B, Wang B, Ren D, et al. Occurrence, removal and bioaccumulation of steroid estrogens in Dianchi Lake catchment,China [J]. Environ. Int., 2013,59:262-273.

[48] Labadie P, Hill E M. Analysis of estrogens in river sediments by liquid chromatography-electrospray ionisation mass spectrometry comparison of tandem mass spectrometry and time-of-flight mass spectrometry [J]. J. Chromatogr. A, 2007,1141(2):174-181.

[49] Stanford B D, Weinberg H S. Isotope dilution for quantitation of steroid estrogens and nonylphenols by gas chromatography with tandem mass spectrometry in septic, soil, and groundwater matrices [J]. J. Chromatogr. A, 2007,1176(1/2):26-36.

[50] Hohenblum P, Gans O, Moche W, et al. Monitoring of selected estrogenic hormones and industrial chemicals in groundwaters and surface waters in Austria [J]. Science of the Total Environment, 2004,333(1):185-193.

[51] Swartz C H, Reddy S, Benotti M J, et al. Steroid estrogens,nonylphenol ethoxylate metabolites, and other wastewater contaminants in groundwater affected by a residential septic system on Cape Cod, MA [J]. Environ. Sci. Technol., 2006,40(16):4894-4902.

[52] Mansilha C, Melo A, Ferreira I M P L, et al. Groundwater from Infiltration Galleries Used for Small Public Water Supply Systems: Contamination with Pesticides and Endocrine Disruptors [J]. B Environ. Contam. Tox., 2011,87(3):312-318.

[53] Purdom C E, Hardiman P A, Bye V V J, et al. Estrogenic effects of effluents from sewage treatment works [J]. Chemistry and Ecology, 1994,8(4):275-285.

[54] Nimrod A C, Benson W H. Reproduction and development of Japanese medaka following an early life stage exposure to xenoestrogens [J]. Aquatic Toxicology, 1998,44(1):141-156.

[55] Biegel L B, Flaws J A, Hirshfield A N, et al. 90-day feeding and one-generation reproduction study in Crl: CD BR rats with 17β-estradiol [J]. Toxicological Sciences, 1998,44(2):116-142.

[56] Korsgaard B, Andreassen T K, Rasmussen T H. Effects of an environmental estrogen, 17α-EE2, on the maternal-fetal trophic relationship in the eelpout Zoarces viviparous [J]. Marine Environmental Research, 2002,54(3):735-739.

[57] 戴璇穎,徐世清.環(huán)境激素對(duì)生物的影響及其預(yù)防措施 [J]. 四川環(huán)境, 2003,22(6):13-16.

[58] Cargouet M, Perdiz D, Mouatassim-Souali A, et al. Assessment of river contamination by estrogenic compounds in Paris area(France) [J]. Science of the Total Environment, 2004,324(1):55-66.

[59] Brown R J, Conradi M, Depledge M H. Long-term exposure to 4-nonylphenol affects sexual differentiation and growth of the amphipod Corophium volutator (Pallas, 1766) [J]. Sci. Total Environ., 1999,223(1-3):77-88.

[60] Ternes T A, Stumpf M, Mueller J, et al. Behavior and occurrence of estrogensin municipal sewage treatment plants:I. Investigations in Germany, Canada and Brazil [J]. The Science of the Total Environment, 1999,225(1/2):81-90.

[61] Wicks C, Kelley C, Peterson E. Estrogen in a karstic aquifer [J]. Ground Water, 2004,42(3):384-389.

[62] Labadie P, Cundy A B, Stone K, et al. Evidence for the migration of steroidal estrogens through river bed sediments [J]. Environmental Science & Technology, 2007,41(12):4299-4304.

[63] Lee L S, Strock T J, Sarmah A K, et al. Sorption and dissipation of testosterone, estrogens, and their primary transformation products in soils and sediment [J]. Environmental Science & Technology, 2003,37(18):4098-4105.

[64] 李建中.典型內(nèi)分泌干擾物在土壤中遷移轉(zhuǎn)化規(guī)律研究 [D].北京:清華大學(xué), 2013.

[65] Van Emmerik T, Angove M J, Johnson B B, et al. Sorption of 17β-estradiol onto selected soil minerals [J]. Journal of Colloid and Interface Science, 2003,266(1):33-39.

[66] Shareef A, Angove M J, Wells J D, et al. Sorption of bisphenol A,17α-ethynylestradiol and estrone to mineral surfaces [J]. Journal of Colloid and Interface Science, 2006,297(1):62-69.

[67] 馬偉芳,陳 斌,曾凡剛,等.17β-雌二醇和炔雌醇在土壤中的吸附特性研究 [J]. 環(huán)境工程, 2014,32(9):109-114.

[68] Ren Y X, Nakano K ,Nomura M ,et al. A thermodynamic analysis on adsorption of estrogens in activated sludge process [J]. Water Research, 2007,41(11):2341-2348.

[69] 岳 波,靳 青,黃澤春,等.雌酮(E1)在土壤中的吸附特性 [J].環(huán)境科學(xué)研究, 2013,26(2):208-213.

[70] Francis X M, CaseY, Gerald L L, et al. Fate and transport of 17βestradiol in soil- water systems [J]. Environ. Sci. Technol, 2003,37:2400-2409.

[71] Lai K M, Johnson K L, Scrimshaw M D, et al. Binding of waterborne steroid estrogens to solid phases in river and estuarine systems [J]. Environmental Science & Technology, 2000,34(18):3890-3894.

[72] Takigami H, Taniguchi N, Shimizu Y. Sorption and desorption of 17beta-estradiol to natural sediment [J]. Water. Sci. Technol.,2011,64(7):1473-1478.

[73] Bedard M, Giffear K A, Ponton L, et al. Characterization of binding between 17β-estradiol and estriol with humic acid via NMR and biochemical Analysis [J]. Biophysical Chemistry, 2014,189:1-7.

[74] Diana L D L, Rudolf J S, Valdemar I E. Sorption behavior of EE2 on soils subjected to different long-termorganic amendments [J]. Science of the Total Environment, 2012,23:120-124.

[75] Yamamoto H, Liljestrand H M, Shimizu Y, et al. Effects of physical-chemical characteristics on the sorption of selected endocrine disruptors by dissolved organic matter surrogates [J]. Environmental Science & Technology, 2003,37(12):2646-2657.

[76] 姜 魯,王繼華,李建忠,等.炔雌醇和壬基酚在土壤中的吸附-吸特征 [J]. 環(huán)境科學(xué), 2012,33(11):3885-3892.

[77] Combalbert S, Hernandez-Raquet G. Occurrence, fate, and biodegradation of estrogens in sewage and manure [J]. Appl. Microbiol. Biotechnol, 2010,86:1671-1692.

[78] Xuan R, Blassengale A A, Wang Q. Degradation of estrogenic hormones in a silt loam soil [J]. Journal of Agricultural and Food Chemistry, 2008,56(19):9152-9158.

[79] Ying G G, Kookana R S, Dillon P. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material[J]. Water Research, 2003,37:3785-3791.

[80] Peck M, Gibson R W, Kortenkamp A, et al. Sediments are major sinks of steroidal estrogens in two United Kingdom rivers [J]. Environmental Toxicology & Chemistry, 2004,23:945-952.

[81] Colucci M S, Topp E. Persistence of estrogenic hormones in agricultural soils: II. 17alpha-ethynylestradiol [J]. J. Environ. Qual., 2001,30(6):2077-2080.

[82] Fan Z, Casey F X M, Hakk H, et al. Persistence and fate of 17β-estradiol and testosterone in agricultural soils [J]. Chemosphere, 2007,67(5):886-895.

[83] Zheng W, Yates S R, Bradford S A. Analysis of steroid hormones in a typical airy waste disposal system [J]. Environ. Sci. Technol.,2008,42(2):530-535.

[84] Colucci M S. Topp E. Persistence of estrogenic hormones in agricultural soils: I. 17β- estradiol and estrone [J]. J. Environ. Qual., 2001,30:2070-2076.

[85] Goeppert N, Dror I, Berkowitz B. Detection, fate and transport of estrogen family hormones in soil [J]. Chemosphere, 2014,95:336-345.

[86] Casey F X M, Larsen G L, Hakk H, et al. Fate and Transport of 17β-Estradiol in Soil-Water Systems [J]. Environ. Sci. Technol.,2003,37(11):2400-2409.

[87] Das B S, Lee L S, Rao P, et al. Sorption and degradation of steroid hormones in soils during transport: Column studies and model evaluation [J]. Environ. Sci. Technol., 2004,38(5):1460-1470.

[88] Fan Z, Casey F X M, Hakk H, et al. Discerning and modeling the fate and transport of testosterone in undisturbed soil [J]. Journal of Environmental Quality, 2007,36(3):864-873.

[89] Lee J H, Zhou J L, Kim S D. Effects of biodegradation and sorption by humic acid on the estrogenicity of 17β-estradiol [J]. Chemosphere, 2011,85(8):1383-1389.

[90] Fan Z S, Casey F, Hakk H, et al. Modeling coupled degradation,sorption, and transport of 17beta-estradiol in undisturbed soil A-2135-2010 [J]. Water Resour. Res., 2008,44(W084248).

[91] LARSEN G, CASEY F, MAGELKY B, et al. Second International Conference on Pharmaceuticals and Endocrine Disrupting Chemicals in Water [R]. October 9-11, Minneapolis,MN, 2001.

[92] D'Alessio M, Vasudevan D, Lichwa J, et al. Fate and transport of selected estrogen compounds in Hawaii soils: Effect of soil type and macropores [J]. Journal of Contaminant Hydrology, 2014,166 1-10.

[93] Thompson M L, Casey F X M, Khan E, et al. Occurrence and pathways of manure-borne 17β-estradiol in vadose zone water[J]. Chemosphere, 2009,76(4):472-479.

[94] Holbrook R D, Love N G, Novak J T. Sorption of 17β-estradiol and 17α-ethinylestradiol by colloidal organic carbon derived from biological wastewater treatment systems [J]. Environmental Science & Technology, 2004,38(12):3322-3329.

[95] Yamamoto H, Liljestrand H. The fate of estrogenic compounds in the aquatic environment: sorption onto organic colloids [J]. Water Science & Technology, 2003,47(9):77-84.

[96] 龔 劍,黃 文,楊 娟,等.珠江河流膠體中的典型內(nèi)分泌干擾物 [J]. 中國環(huán)境科學(xué), 2011,31(11):1904-1909.

[97] Coleman M, Eggins R, Byrne J, et al. Photocatalytic Degradation of 17β-estradiol onimmobilized Ti O2[J]. Applied Catalysis B:Environmental, 2000,24(2):L1-L5.

[98] Layton A. C, Gregory B. W, Seward J. R, et al. Mineralization of steroidal hormones by biosolids in waste water treatment systems in Tennessee USA [J]. Environmental Science & Technology,2000,34(18):3925-3931.

[99] 馬曉雁,倪夢(mèng)婷,倪永炯,等.UV體系中3種微量類固醇雌激素的競(jìng)爭降解及同趨轉(zhuǎn)化 [J]. 中國環(huán)境科學(xué), 2014,34(4):904-911.

[100] 劉 彬,劉先利,吳 峰,等.水溶液中 17α-乙炔基雌二醇的光降解 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2003,23(4):508-511.

[101] Snyder S A, Westerhoff P, Yoon Y, et al. Pharmaceuticals,personal care products, and endocrine disruptors in water:implications for the water industry [J]. Environmental Engineering Science, 2003,20(5):449-469.

[102] 紀(jì)樹蘭,楊媛媛,秦振平,等.好氧顆粒污泥等溫吸附甾體雌激素[J]. 北京工業(yè)大學(xué)學(xué)報(bào), 2009,(11):1537-1542.

[103] Cartinella J L, Cath T Y, Flynn M T, et al. Removal of natural steroid hormones from wastewater using membrane contactor processes [J]. Environmental Science & Technology, 2006,40(23):7381-7386.

[104] Yoon Y, Westerhoff P, Snyder S A, et al. Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes [J]. Desalination, 2007,202(1):16-23.

[105] Chang S, Waite T D, Sch?fer A I, et al. Adsorption of the endocrine-active compound estrone on microfiltration hollow fiber membranes [J]. Environmental Science & Technology, 2003,37(14):3158-3163.

[106] Huber M M, Ternes T A, Von Gunten U. Removal of estrogenic activity and formation of oxidation products during ozonation of 17α-ethinylestradiol [J]. Environmental Science & Technology,2004,38(19):5177-5186.

[107] Ternes T A, Stüber J, Herrmann N, et al. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater [J]. Water Research, 2003,37(8):1976-1982.

[108] Rosenfeldt E J, Linden K G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes [J]. Environmental Science & Technology, 2004,38(20):5476-5483.

[109] Ternes T A, Kreckel P, Mueller J. Behaviour and occurrence of estrogens in municipal sewage treatment plants—II. Aerobic batch experiments with activated sludge [J]. Science of the Total Environment, 1999,225(1):91-99.

[110] Kj?lholt J. Degradation of estrogens in sewage treatment processes [M]. Danish Environmental Protection Agency, 2004.

[111] Yoshimoto T, Nagai F, Fujimoto J, et al. Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants [J]. Appl. Environ. Microbiol., 2004,68(4):2057-2060.

[112] Xiong G M, Draus E, Luo Y, et al. 3α-hydroxysteroid dehydorgenase/carbonyl reductase as a tool for isolation and characterization of a new marine steroid degrading bacterial strain[J]. Chemico-Biological Interactions, 2009,178:206-210.

[113] 楊 俊,姜理英,陳建孟.1株17β-雌二醇高效降解菌的分離鑒定及降解特性 [J]. 環(huán)境科學(xué), 2010,31(5):1313-1319.

[114] Yu C P, Roh H, Chu K H. 17β-Estradiol-degrading bacteria isolated from activated sludge [J]. Environ. Sci. Technol.,2007,41(2):486-492.

[115] Zeng Q, Li Y, Gu G, et al. Sorption and biodegradation of 17β-estradiol by acclimated aerobic activated sludge and isolation of the bacterial strain [J]. Environmental Engineering Science, 2009,26(4):783-790.

[116] Shappell N W, Billey L O, Forbes D, et al. Estrogenic activity and steroid hormones in swine wastewater through a lagoon constructedwetland system [J]. Environ. Sci. Technol., 2007,41:444-450.

[117] 張 真.14C-BPA 及雌激素在污水土地處理系統(tǒng)中吸附降解研究 [D]. 上海:上海交通大學(xué), 2013.

Fate and ecological regulation of steroidal estrogens in subsurface environment.

SONG Xiao-ming1, YANG Yue-suo1,2*, WEN Yu-juan1, M. Adeel1, WANG Yuan-yuan1, YANG Xin-yao1(1.Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, China;2.College of Environment and recourses, Changchun 130012, China). China Environmental Scinence, 2016,36(9):2828~2840

This paper reviewed the sources, hazard and environmental fate of typical steroidal estrogens, both conjugate and free phases, in environment. The migration and transformation processes of steroidal estrogens through soil and shallow groundwater system, such as sorption and biodegradation, were thoroughly reviewed. The most popular treatment technologies and risk management practices were also critically summarized. Finally, based on current studies on the penetration and ecological impact of steroidal estrogens in vadose zone and shallow groundwater system, the perspectives of future research was proposed.

steroidal estrogens;subsurface environment;sorption;microbial degradation;fate and transport

X171.5

A

1000-6923(2016)09-2828-13

2016-01-05

國家自然科學(xué)基金項(xiàng)目(41272255,41472237);遼寧省創(chuàng)新團(tuán)隊(duì)項(xiàng)目(LT201502);沈陽市科技計(jì)劃項(xiàng)目(F14-133-9-00, F15-113-9-00)

* 責(zé)任作者, 教授, YangYuesuo@jlu.edu.cn

宋曉明(1985-),男,吉林柳河人,沈陽大學(xué)環(huán)境學(xué)院博士研究生,主要從事有機(jī)污染物在環(huán)境中的遷移轉(zhuǎn)化及污染場(chǎng)地生態(tài)修復(fù)等研究.

猜你喜歡
去除率畜禽土壤
畜禽夏季喂野菜 防病快長真不賴
菌株出馬讓畜禽污染物變廢為寶
夏季養(yǎng)畜禽 驅(qū)蚊有妙招
土壤
不同溫度下彈性填料對(duì)ABR處理生活污水的影響
靈感的土壤
基于遺傳BP神經(jīng)網(wǎng)絡(luò)的內(nèi)圓磨削ZTA陶瓷材料去除率預(yù)測(cè)
識(shí)破那些優(yōu)美“擺拍”——鏟除“四風(fēng)”的土壤
靈感的土壤
多胚蛋白酶 高效養(yǎng)畜禽
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
404 Not Found

404 Not Found


nginx
太康县| 阳西县| 西峡县| 江永县| 库伦旗| 景德镇市| 武鸣县| 宣城市| 桂林市| 青河县| 黑水县| 松滋市| 江孜县| 瑞丽市| 元朗区| 贵南县| 牟定县| 得荣县| 宁乡县| 开封市| 读书| 古交市| 屯留县| 信宜市| 巨鹿县| 岚皋县| 江都市| 登封市| 平昌县| 东城区| 松阳县| 江孜县| 灵石县| 珲春市| 什邡市| 嘉义县| 游戏| 陇川县| 兖州市| 和龙市| 正安县|