国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Characterization of bipartite graph With maximum spectral radius

2016-11-28 10:45NIUAihongWANGGuopingQINZhengxinMUShanzhi
關(guān)鍵詞:圖論鄰接矩陣古生物

NIU Ai-hong,WANG Guo-ping,QIN Zheng-xin, MU Shan-zhi

(1.School of Mathematical Sciences,Xinjiang Normal University, Urumqi 830054,China; 2.College of Mathematics and System Sciences,Xinjiang University, Urumqi 830046,China; 3.Department of Mathematics,Jiangsu University of Technology, Changzhou Jiangsu 213001,China)

Characterization of bipartite graph With maximum spectral radius

NIU Ai-hong1,WANG Guo-ping1,QIN Zheng-xin2, MU Shan-zhi3

(1.School of Mathematical Sciences,Xinjiang Normal University, Urumqi 830054,China; 2.College of Mathematics and System Sciences,Xinjiang University, Urumqi 830046,China; 3.Department of Mathematics,Jiangsu University of Technology, Changzhou Jiangsu 213001,China)

The adjacency matrix A(G)of a graph G is the n×n matrix With its(i,j)-entry equal to 1 if viand vjare adjacent,and 0 otherwise.The spectral radius of G is the largest eigenvalue of A(G).In this paper we determine the graphs With maximum spectral radius among all trees,and all bipartite unicyclic,bicyclic,tricyclic,tetracyclic,pentacyclic and quasi-tree graphs,respectively.

bipartite graph;cycle;spectral radius

0 Introduction

Let G be a connected simple graph With Vertex set V(G)={v1,v2,···,vn}.The adjacency matrix of G,denoted by A(G),is the n×n matrix With its(i,j)-entry equal to 1 if viand vjare adjacent,and 0 otherwise.The spectral radius of G is the largest eigenvalue of A(G). The spectral radius of a connected graph has been studied extensively(see[1-4]).Zhai,Liu and Shu[5]characterized the bipartite graphs With given diameter which attain the maximum and the second largest spectral radius,respectively.Nath and Paul[6]determined the graphs With minimum distance spectral radius among all connected bipartite graphs of order n With a given matching number and Vertex connectivity.Zhang and Zhang[7]obtained the graphs With maximum Laplacian spectral radius among all bipartite graphs With k cut-edges,and among all bipartite bicyclic graphs,respectively.Li,Shiu and Chan[8]gaVe the graphs With maximum Laplacian spectral radius among all bipartite graphs with(edge-)connectivity at most k.

Li,Shiu and Chan[9]determined the graphs with maximum Laplacian spectral radii among all trees,and all bipartite unicyclic,bicyclic,tricyclic and quasi-treegraphs,respectively.In this paper we determine the graphs with maximum spectral radius among all trees,and all bipartite unicyclic,bicyclic,tricyclic,tetracyclic,pentacyclic and quasi-tree graphs,respectively.

1 Extremal bipartite graphs

For each v∈V(G),let NG(v)(or N(v)for short)be the set of Vertices which are adjacent to v in G.

Lemma 1.1[10]Let u and v be two vertices o? a connected graph G,and suppose that v1,v2,···,vs∈N(v)N(u).Let G*be the graph obtained ?rom G by deleting the edges vviand adding the edges uvi(1≤i≤s).Let x be the Perron vector o?G corresponding toρ(G).I? x(u)≥x(v),thenρ(G*)>ρ(G).

Let G be a bipartite graph With bipartition(X,Y).If X=X1∪X2∪···∪Xhand Y=Y1∪Y2∪···∪Yhsatisfy Xiand Yiare not em pty,and the neighborhood of each Vertex in Xiis Y1∪Y2∪···∪Yh+1-i(1≤i≤h),then we call G double nested graph as in[9].If |Xi|=aiand|Yi|=bi(i=1,2,···,h),then G is denoted by D(a1,a2,···,ah;b1,b2,···,bh).

Theorem 1.2 I?G=(X,Y)attains the maximum spectral radius among all bipartite graphs,then G is a double nested graph with all pendant edges attached at a vertex.

P roo f Let X={v1,v2,···,vj}and Y={vj+1,vj+2,···,vn}such that x(v1)≥x(v2)≥···≥x(vj)>0 and x(vj+1)≥x(vj+2)≥···≥x(vn)>0.Then we have the following three claim s.

貴州魂:這是對貴州獨有的古生物化石的贊謂,雖已超出色彩的范圍,卻是貴州觀賞石資源中的特色品種,是貴州具有獨特性和唯一性的觀賞石資源,具有古生物生命演化的神韻,是許多博物館爭相收購的鎮(zhèn)館之寶。貴州省古生物化石資源豐富,但急需加強保護和有效進行開發(fā)利用。

Claim 1 A ll cut-edges in G are pendant edges and are attached at a common Vertex.

If it is not so,then,by Lemma 1.1,we can obtain the other bipartite graph H such that ρ(H)>ρ(G),which contradicts maximality of G.

C laim 2 N(v1)?N(v2)?···?N(vj)and N(vj+1)?N(vj+2)?···?N(vn). MoreoVer,for some l,N(vl)=N(vl+1)if and only if x(vl)=x(vl+1).

The Claim 2 is clearly true from Lemma 1.1.

Claim 3 G is a double nested graph.

Without loss of generality we assume that x(v1)≥x(vj+1).Suppose that a1>a2>···>ahare all distinct real numbers among{x(v1),x(v2),···,x(vj)}.Let Xk={vi∈X|x(vi)=ak} (1≤k≤h).Then X=X1∪X2∪···∪Xh.The Claim 2 shows that Y=Y1∪Y2∪···∪Yh.

Up to now the proof is completed.

2 Extremal bipartite graphs With at most five cycles

If a graph on n Vertices is of n+k-1 size then it is called k cycles graph.In this section we assume that G=(X,Y)is an k cycles bipartite graph on n Vertices With the maximum spectral radius.Next we exactly characterize G when k∈{0,1,2,3,4,5}.

Theorem 2.1[11]W hen k=0,GSn,where Snis a star with order n.

It is clear that n≥k+3 when k≥1.

P roo f From Theorem 1.2 we can see that there is a partition,say X,such that for each v∈X,d(v)≥2,which im p lies that|X|=2.This shows that the result is true.

Lemma 2.3[12],whereΔ(H)is the maximum degree o?H.

Now we giVe the characterization of G when k=2,3,4,5.

We only Verify Theorem 2.6 and other theorem s can be similarly proVed.

P roof of Theorem 2.6 From Theorem 1.2 we can see that there is a partition,say X,such that for each v∈X,d(v)≥2,which im p lies that|X|=2,3,4 or 5.In this case, we can easily know that G is isomorphic to some one of D(2;5),D(1,2;3,1)and D(2,1;2,2)if n=7,and that G is isomorphic to some one of D(1,1;5,n-7),D(1,2;3,n-6),D(1,1,1;2,2,n-7),D(1,1,2;2,1,n-7)and D(1,4;2,n-7)if n≥8.By calculation we obtain thatThus,when n=7,GD(2;5).Next we assume n≥8.

Let H0=D(1,1;5,n-7),H1=D(1,2;3,n-6),H2=D(1,1,1;2,2,n-7),H3= D(1,1,2;2,1,n-7)and H4=D(1,4;2,n-7)be shown in Fig.1.

Fig.1 H i(i=0,1,2,3,4)

Set x to be the Perron Vector of H0.By symmetry,we can set x(v3)=···=x(v7)=x3and x(v8)=···=x(vn)=x4.Let x(v1)=x1and x(v2)=x2.Then

3 Extremal bipartite quasi-tree graphs

If there exists u0∈V(G)such that G-u0is a tree,then we call G quasi-tree graph as in[9].LetΨ(n,d0)={G|G is a bipartite graph of order n With G-u0is a tree and d(u0)=d0}. Clearly,Ψ(n,1)is the set of trees of order n,and Theorem 2.1 shows that Snattains the maximum spectral radius am ong all trees.

Theorem 3.1.Let 2≤d0≤n-2 and suppose that H∈Ψ(n,d0)attains the maximum spectral radius.Then HD(1,1;d0,n-d0-2).

P roof Let H=(X,Y).From Theorem 1.2 we can see that there is a partition,say X, such that for each v∈X,d(v)≥2.Thus,|X|=2 if u0∈X,and|X|=d0if u0∈Y.In this case,we can easily know that HD(1,1;d0,n-d0-2)or HD(1,d0-1;2,n-d0-2).

W hen d0=2,HD(1,1;2,n-4),and when d0=n-2,HD(2;n-2).

Next we assume that 3≤d0≤n-3.

Let H*=D(1,1;d0,n-d0-2)and e H=D(1,d0-1;2,n-d0-2)be shown in Fig.2.

Fig.2 H*and

[1]BERMAN A, ZHANG X D. On the spectral radius of graph with cut vertices [J]. J Combin Theory Ser B, 2001,83: 233-240.

[2]BRUALDI R, SOLHEID E. On the spectral radius of connected graphs [J]. publ Inst Math (Beograd), 1986, 39(53): 45-53.

[3]HOU Y p, LI J S. Bounds on the largest eigenvalues of trees with a given size of matching [J]. Linear Algebra Appl, 2002, 342: 203-217.[4] LIU H Q,LU M,TIAN W F.On the spectral radius of graphs with cut edges[J].Linear Algebra Appl,2004, 389:139-145.

[5] ZHAI M Q,LIU R F,SHU J L.On the spectral radius of bipartite graphs with given diameter[J].Linear Algebra Appl,2009,430:1165-1170.

[6] NATH M,PAUL S.On the distance spectral radius of bipartite graphs[J].Linear Algebra Appl,2012,436: 1285-1296.

[7] ZHANG X L,ZHANG H P.The Laplacian spectral radius of some bipartite graphs[J].Linear Algebra Appl, 2008,428:1610-1619.

[8] LI J X,SHIU W C,CHAN W H.The Laplacian spectral radii of some graphs[J].Linear Algebra Appl,2009, 431:99-103.

[9] LI J X,SHIU W C,CHAN W H.On the Laplacian spectral radii of bipartite graphs[J].Linear Algebra Appl, 2011,435:2183-2192.

[10] WU B F,XIAO E L,HONG Y.The spectral radius of trees on k pendent vertices[J].Linear Algebra Appl, 2005,395:343-349.

[11] NEUMAIER A.The second largest eigenvalue of a tree[J].Linear Algebra Appl,1982,46:9-25.

[12] CVETKOVIC D M,DOOB M,SACHS H.Spectra of graphs:Theory and application[J].Math Hungar,1995, 6(2):191-195.

(責任編輯 李 藝)

具有最大譜半徑的二部圖的刻畫

牛愛紅1,王國平1,秦正新2,牟善志3
(1.新疆師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,烏魯木齊830054; 2.新疆大學(xué)數(shù)學(xué)與系統(tǒng)科學(xué)學(xué)院,烏魯木齊830046; 3.江蘇理工學(xué)院數(shù)學(xué)系,江蘇常州213001)

一個圖G的鄰接矩陣A(G)是n×n矩陣,如果vi和vj相鄰,那么它的(i,j)位置為1,否則為0.圖G的譜半徑是鄰接矩陣A(G)的最大特征值.本文確定了在所有的樹和所有的二部單圈圖、二部雙圈圖、二部三圈圖、二部四圈圖、二部五圈圖以及二部擬樹圖中所對應(yīng)的具有最大譜半徑的圖.

二部圖;圈;譜半徑

2015-01

國家自然科學(xué)基金(11461071)

牛愛紅,女,碩士研究生,研究方向為圖論.E-mail:949751277@qq.com.

王國平,男,教授,研究方向為圖論.E-mail:x j.wgp@163.com.

O 157.5 Document code:A

10.3969/j.issn.1000-5641.2016.01.012

1000-5641(2016)01-0096-06

猜你喜歡
圖論鄰接矩陣古生物
輪圖的平衡性
古生物地理學(xué)和宏演化研究中的大數(shù)據(jù)應(yīng)用
基于FSM和圖論的繼電電路仿真算法研究
古生物發(fā)現(xiàn)之旅——關(guān)嶺化石群國家地質(zhì)公園
構(gòu)造圖論模型解競賽題
代數(shù)圖論與矩陣幾何的問題分析
高郵凹陷深凹帶戴南組古生物特征及環(huán)境意義
原角龍
點亮兵書——《籌海圖編》《海防圖論》
基于鄰接矩陣變型的K分網(wǎng)絡(luò)社團算法
义马市| 平原县| 沙雅县| 班玛县| 江永县| 义马市| 漳州市| 浮山县| 潮安县| 抚宁县| 阿拉善右旗| 红河县| 鄂尔多斯市| 胶州市| 堆龙德庆县| 二连浩特市| 石门县| 黄平县| 甘肃省| 宁蒗| 新疆| 叶城县| 乌审旗| 贵德县| 海口市| 延寿县| 平山县| 肥乡县| 登封市| 桃园县| 衡东县| 连南| 桂阳县| 华蓥市| 闻喜县| 浦北县| 定襄县| 临海市| 霍林郭勒市| 霍邱县| 太仆寺旗|