申秋實(shí),范成新??,王兆德,張 雷,劉 成,3
(1:中國(guó)科學(xué)院南京地理與湖泊研究所,南京210008)(2:湖泊與環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京210008)(3:中國(guó)科學(xué)院大學(xué),北京100049)
湖泛水體沉積物-水界面Fe2+/ΣS2-遷移特征及其意義?
申秋實(shí)1,2,范成新1,2??,王兆德1,2,張 雷1,2,劉 成1,2,3
(1:中國(guó)科學(xué)院南京地理與湖泊研究所,南京210008)(2:湖泊與環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京210008)(3:中國(guó)科學(xué)院大學(xué),北京100049)
J.Lake Sci.(湖泊科學(xué)),2016,28(6):1175-1184
DOI 10.18307/2016.0603
?2016 by Journal of Lake Sciences
湖泊水底Fe2+和ΣS2-濃度的快速增加是湖泛暴發(fā)最早發(fā)生于沉積物-水界面的主要前提,缺氧環(huán)境下水底擴(kuò)散層附近Fe2+和ΣS2-的遷移是其在沉積物-水界面處穩(wěn)定積累的重要原因.以藍(lán)藻聚積水體沉積物-水界面為研究對(duì)象,應(yīng)用湖泊過(guò)程模擬裝置及間隙水被動(dòng)采樣等技術(shù),重點(diǎn)研究了間隙水和底層上覆水中Fe2+和ΣS2-的垂向分布特征,并定量估算了二者的擴(kuò)散通量及遷移方向.結(jié)果表明:湖泛樣品水體沉積物-水界面處于典型的還原性環(huán)境,表層沉積物間隙水中Fe2+和ΣS2-濃度顯著高于對(duì)照樣品,二者在表層沉積物中積累趨勢(shì)明顯.湖泛水體沉積物-水界面處Fe2+釋放通量較高,表現(xiàn)出較強(qiáng)烈的自沉積物向上覆水方向的釋放能力;而湖泛樣品ΣS2-在沉積物-水界面處釋放通量為負(fù),遷移方向?yàn)樽陨细菜虺练e物擴(kuò)散.Fe2+和ΣS2-在湖泛水體沉積物-水界面處不同的遷移特征證明:缺氧/厭氧條件下,湖泊水體表層沉積物間隙水中高濃度Fe2+向上覆水的擴(kuò)散為湖泛致黑物質(zhì)的形成提供了重要的物質(zhì)基礎(chǔ);底層上覆水及界面水中在表層沉積物中被還原,為終端還原產(chǎn)物ΣS2-為湖泛致黑物質(zhì)的形成提供了另一重要物質(zhì)來(lái)源.
湖泛;沉積物-水界面;沉積物;湖泊;太湖
湖泛是我國(guó)超富營(yíng)養(yǎng)化湖泊當(dāng)前面臨的嚴(yán)重生態(tài)災(zāi)害之一,其黑臭水體給湖泊生態(tài)系統(tǒng)和城市飲用水水源地供水帶來(lái)了巨大的安全隱患[1-3].湖泛水體是典型的缺氧/厭氧水體,處于水體缺氧區(qū)發(fā)展變化過(guò)程的第4個(gè)也是最后1個(gè)階段[4],在微生物作用下產(chǎn)生并釋放出H2S類物質(zhì)被認(rèn)為是該階段水環(huán)境的主要特征[5].在我國(guó),由于太湖等富營(yíng)養(yǎng)化淺水湖泊湖泛現(xiàn)象頻發(fā)與大規(guī)模藍(lán)藻水華處于同一時(shí)期,因此在最初的一段時(shí)間內(nèi),有關(guān)湖泛的研究和認(rèn)識(shí)主要集中在水體富營(yíng)養(yǎng)化層面[1,6-9].然而,湖泛是一種明顯區(qū)別于藍(lán)藻水華的極端環(huán)境現(xiàn)象.一方面,其發(fā)生根源與水體重度富營(yíng)養(yǎng)化有關(guān)[10];另一方面,湖泛?jiǎn)栴}又超出了富營(yíng)養(yǎng)化問(wèn)題的范疇,湖泛水體視覺(jué)上呈現(xiàn)的黑色及其水柱顯著的高Fe2+和ΣS2-(ΣS2-=S2-+HS-+H2S)濃度等特征[4,11],讓其從物理及化學(xué)層面上都明顯區(qū)別于正常湖體.最近研究結(jié)果表明,黑色FeS是湖泛水體重要的致黑物質(zhì)并指示著湖泛的暴發(fā)與持續(xù)[12],厭氧水體中較為豐富的Fe2+和ΣS2-為FeS的生成提供了直接的反應(yīng)物[4],而湖泛表層沉積物理化狀態(tài)及過(guò)程被認(rèn)為與水體缺氧或湖泛的形成具有密切的關(guān)系[13-14].然而,有關(guān)表層沉積物對(duì)湖泛致黑影響因素的貢獻(xiàn)途徑及方式尚未得到充分論證,相關(guān)研究尚存在一定的不足與空白.因此,研究并揭示湖泛水環(huán)境沉積物-水界面處Fe2+和ΣS2-的遷移途徑和方向,對(duì)支撐湖泛形成機(jī)制理論研究及早期預(yù)控與應(yīng)急處置具有重要意義.
沉積物-水界面是湖泊底質(zhì)與上覆水物質(zhì)交換的最重要場(chǎng)所.在濃度梯度、吸附解析平衡、溶解平衡、化學(xué)平衡、微生物產(chǎn)能代謝、水生植物根際效應(yīng)、物理和底棲動(dòng)物擾動(dòng)等多種物理、化學(xué)、和生物過(guò)程單獨(dú)或協(xié)同作用下,溶解性離子得以通過(guò)沉積物-水界面在間隙水和上覆水間遷移,從而使沉積物在上覆水營(yíng)養(yǎng)鹽和污染物遷移中扮演污染“源”或遷移“匯”的角色.在沉積物-水界面間離子遷移領(lǐng)域,國(guó)內(nèi)外學(xué)者進(jìn)行了大量的研究.該類研究以費(fèi)克第一定律(Fick's first law)或費(fèi)克第二定律(Fick's second law)為理論指導(dǎo)[15],研究手段從早期破壞性采樣的方式逐步走向原位被動(dòng)采樣技術(shù)甚至非損傷微電極探測(cè)等技術(shù).其研究熱點(diǎn)主要集中在沉積物溶解氧耗散[16-18]和富營(yíng)養(yǎng)化相關(guān)沉積物N、P營(yíng)養(yǎng)鹽釋放通量估算方面[19-23],有關(guān)湖泛和缺氧水環(huán)境特征敏感物質(zhì)的報(bào)道較少.近年來(lái)有研究發(fā)現(xiàn):缺氧/厭氧條件下,氧化還原條件敏感的H2S及Fe2+類物質(zhì)在沉積物-水界面處具有大幅度積累的典型特征[24].當(dāng)前已有研究認(rèn)為:湖泛形成過(guò)程中,受水體厭氧及氧化還原條件的影響,表層沉積物間隙水中Fe2+、S2-等離子存在不斷積累及向上釋放的風(fēng)險(xiǎn)[25].然而,有關(guān)湖泛水體沉積物-水界面處Fe2+、S2-等離子的遷移方向尚未有充分的數(shù)據(jù)加以證明,沉積物-水界面間Fe2+和ΣS2-的遷移方向及其對(duì)湖泛的貢獻(xiàn)途徑需要進(jìn)一步的分析.
因此,本研究以湖泛水體沉積物間隙水為研究對(duì)象,利用膜平衡式原位間隙水采樣裝置(Peeper)獲得沉積物原位間隙水,并重點(diǎn)分析其中Fe2+和ΣS2-的分布特征,定量估算二者在沉積物-水界面間的擴(kuò)散通量并分析其主要影響因素,揭示湖泛水體Fe2+/ΣS2-在沉積物-水界面處的釋放規(guī)律及其環(huán)境意義,為湖泛致黑機(jī)理提供一定的理論補(bǔ)充.
1.1 實(shí)驗(yàn)設(shè)計(jì)
自然狀態(tài)下,湖泊湖泛的發(fā)生時(shí)間和地點(diǎn)都具有突發(fā)性和很大程度的不確定性,較難進(jìn)行全過(guò)程跟蹤監(jiān)測(cè).因此,本研究采用室內(nèi)模擬太湖湖泛、在模擬過(guò)程中投放Peeper以獲取原位沉積物間隙水、進(jìn)而分析間隙水理化指標(biāo)并進(jìn)行Fe2+和ΣS2-釋放通量估算的研究方法.湖泛模擬所需沉積物、上覆水和藍(lán)藻均采集自太湖湖泛易發(fā)區(qū)月亮灣(31°24′35.82″N,120°6′04.57″E)水域.用重力式沉積物柱狀采樣器(Rigo.Co.,?11 cm×L 50 cm)采集深度大于30 cm的原位沉積物柱狀樣若干,同時(shí)用25 L聚乙烯水桶采集上覆水,并采集堆積藍(lán)藻.所有樣品于當(dāng)天帶回實(shí)驗(yàn)室,并在24 h內(nèi)開(kāi)始湖泛模擬.湖泛模擬實(shí)驗(yàn)在中國(guó)科學(xué)院南京地理與湖泊研究所湖泊與環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室Y-型沉積物再懸浮發(fā)生裝置[26]中進(jìn)行.實(shí)驗(yàn)設(shè)置對(duì)照組和湖泛模擬組,每組分別設(shè)置3個(gè)平行處理.將事先準(zhǔn)備好的Peeper(準(zhǔn)備方式與過(guò)程參照文獻(xiàn)[10])裝置插入沉積物,然后將帶有Peeper的沉積物裝入Y-型裝置中,無(wú)擾動(dòng)加入采集的湖水并使水深達(dá)到與太湖平均水深
相近的180 cm.向湖泛模擬組各模擬柱中分別投加經(jīng)300目尼龍篩網(wǎng)過(guò)濾后(靠重力過(guò)濾>8 h)的藍(lán)藻(47.5 g/柱)[6],對(duì)照處理不進(jìn)行添加.控制環(huán)境溫度28±1℃,進(jìn)行湖泛模擬實(shí)驗(yàn).實(shí)驗(yàn)裝置及湖泛模擬如圖1所示.
圖1 Y-型沉積物再懸浮模擬裝置示意(a)及湖泛模擬(b)Fig.1 Side view of Y-style apparatus(a)and black bloom simulation(b)
1.2 樣品檢測(cè)與分析
待湖泛發(fā)生后,從模擬裝置中妥善卸下沉積物,取出Peeper并立即進(jìn)行間隙水理化性質(zhì)測(cè)定.用筆式錐形氧化還原電位計(jì)測(cè)定不同深度處間隙水的pH和氧化還原電位(Eh)值,并采集相應(yīng)深度間隙水,用來(lái)分析其中Fe2+和ΣS2-含量.其中,F(xiàn)e2+濃度采用菲咯嗪(Ferrozine)分光光度法測(cè)定[27],ΣS2-濃度采用亞甲基藍(lán)分光光度法測(cè)定[28].對(duì)于沉積物樣品,按照0~1、1~2、2~3、3~4、4~6、6~8和8~10 cm間隔分層,分析其中酸可揮發(fā)性硫化物(acid volatile sulfide,AVS)和鐵形態(tài)分布特征.切樣完成后取各層位沉積物鮮樣利用冷擴(kuò)散法[29-30]分析其中AVS含量,并用烘干法分析沉積物基本物理指標(biāo)含水率和孔隙度[6].另取一部分沉積物進(jìn)行真空冷凍干燥,其后用陶瓷研缽研磨至100目以下粒度,然后用改進(jìn)BCR連續(xù)提取法[31-32]提取并分析其中鐵形態(tài)分布.該方法可獲得沉積物中金屬元素的4種結(jié)合形態(tài),即F1-可交換態(tài)及弱結(jié)合態(tài),F(xiàn)2-鐵錳氧化物結(jié)合態(tài),F(xiàn)3-硫化物和有機(jī)物結(jié)合態(tài),F(xiàn)4-殘?jiān)鼞B(tài).
1.3 數(shù)據(jù)處理
1.3.1 擴(kuò)散通量計(jì)算 沉積物-水界面間Fe2+和ΣS2-擴(kuò)散通量依據(jù)費(fèi)克第一定律(Fick's first law)估算[33],計(jì)算公式為:
式中,F(xiàn)為沉積物-水界面處離子擴(kuò)散通量(常用單位mg/(m2d));φ0為表層沉積物孔隙度(無(wú)量綱);為沉積物-水界面處離子的濃度梯度,其中c為離子濃度(常用單位mg/L)、x為沉積物深度(常用單位cm);Ds為水溶液中離子的擴(kuò)散系數(shù)(常用單位cm2/s),其大小與理想稀溶液中離子的擴(kuò)散系數(shù)D0(常用單位cm2/s)及孔隙度φ0有關(guān),計(jì)算依經(jīng)驗(yàn)公式(2)和公式(3)所示[34].D0(Fe2+)和D0(ΣS2-)依據(jù)已有文獻(xiàn)分別取7.19×10-6和6.95×10-6cm2/s[35].
1.3.2 統(tǒng)計(jì)分析 不同處理間差異性利用一元方差分析(ANOVA,Turkey檢驗(yàn),雙尾數(shù))進(jìn)行比較,不同參數(shù)間相關(guān)性利用相關(guān)性分析進(jìn)行比較.方差分析和相關(guān)性分析均在SPSS 16.0軟件中進(jìn)行.
2.1 湖泛水體沉積物間隙水Eh、pH分布特征
由于尚不具備量化判定湖泛全面暴發(fā)的標(biāo)準(zhǔn),因此湖泊水體感觀上是否變?yōu)楹谏划?dāng)作現(xiàn)階段判斷湖泛發(fā)生與否的標(biāo)志[36].在實(shí)驗(yàn)培養(yǎng)的第7 d,湖泛模擬處理組水柱水色相繼變黑,發(fā)生了湖泛現(xiàn)象.湖泛發(fā)生后水體水色如圖1所示.待湖泛穩(wěn)定發(fā)生后,將內(nèi)置其中的Peeper采樣器依次取出,分析間隙水中Eh和pH垂向剖面特征,結(jié)果表明(圖2):對(duì)于對(duì)照和湖泛樣品,其Eh剖面變化特征類似,2類樣品均呈現(xiàn)出從上覆水到間隙水逐漸減小的特征,且上層沉積物間隙水Eh在沉積物-水界面之下持續(xù)降低,大約在5 cm深度以后達(dá)到相對(duì)穩(wěn)定狀態(tài).與對(duì)照樣品相比,湖泛樣品在上覆水、界面水及表層2 cm沉積物間隙水中均處于更低Eh的還原性狀態(tài).與Eh剖面變化趨勢(shì)不同,湖泛沉積物間隙水中pH剖面變化趨勢(shì)與對(duì)照樣品存在明顯的差別.對(duì)于湖泛樣品,上覆水、界面水和間隙水中pH值明顯低于對(duì)照樣品,各介質(zhì)均處于弱酸性環(huán)境.而對(duì)照樣品則呈現(xiàn)出上覆水中pH值較高,沉積物-水界面以下間隙水中pH值隨深度增加逐漸降低,到5 cm深度及更深層沉積物中達(dá)到相對(duì)穩(wěn)定狀態(tài)的剖面變化趨勢(shì).該部分結(jié)果表明:發(fā)生湖泛的樣品中表層沉積物及上覆水中Eh和pH值均較低,與對(duì)照樣品相比,湖泛樣品沉積物-水界面體系整體處于還原性環(huán)境或狀態(tài).
圖2 沉積物間隙水Eh、pH剖面特征Fig.2 Profiles of Eh and pH in pore water
2.2 間隙水Fe2+剖面分布規(guī)律及其沉積物-水界面間擴(kuò)散特征
總體而言,湖泛樣品和對(duì)照樣品中Fe2+濃度在沉積物-水界面處及間隙水中剖面變化趨勢(shì)相似,呈現(xiàn)出從上覆水/界面水到沉積物間隙水向下不斷增加的特征,并在5 cm以下沉積物中趨于穩(wěn)定(圖3a).與太湖正常湖體沉積物間隙水中Fe2+濃度的分布[10]相比,本研究獲得的湖泛樣品0~5 cm深度間隙水中Fe2+濃度明顯偏高,而其間隙水中Fe2+濃度整體垂向分布規(guī)律與太湖湖泛區(qū)域沉積物間隙水中分布[10]相似.與對(duì)照樣相比,湖泛樣品上覆水及上層0~5 cm間隙水中Fe2+濃度高出0.9~10.8倍.湖泛水體沉積物-水界面處于還原態(tài)環(huán)境有利于Fe3+向Fe2+轉(zhuǎn)化,這可能是導(dǎo)致湖泛樣品中Fe2+濃度升高的主要原因.
由于間隙水和上覆水中Fe2+濃度存在明顯的濃度梯度,這增加了間隙水中高濃度Fe2+向上覆水釋放的風(fēng)險(xiǎn).對(duì)獲取的沉積物-水界面Fe2+分布信息利用費(fèi)克第一定律進(jìn)一步計(jì)算,得到對(duì)照和湖泛樣品沉積物-水界面處Fe2+的釋放通量,結(jié)果顯示,湖泛和對(duì)照樣品間隙水中Fe2+均具有自沉積物通過(guò)沉積物-水界面向上覆水釋放的潛力(圖3b).與對(duì)照樣品相比,湖泛樣品Fe2+釋放通量更高,表層沉積物間隙水中Fe2+釋放程度更為強(qiáng)烈.但與太湖湖泛水域湖泛消退20 d后沉積物-水界面Fe2+釋放通量(>4 mg/(m2·d))[10]相比,
本研究湖泛樣品0.87 mg/(m2·d)的Fe2+釋放通量明顯較低.這主要是因?yàn)楸狙芯亢核w上覆水中Fe2+濃度依舊較高,間隙水至上覆水中濃度梯度相對(duì)較小造成的.
圖3 沉積物間隙水Fe2+剖面特征及釋放規(guī)律(A,B,C代表3個(gè)不同平行樣,下同)Fig.3 Profiles and release characteristics of Fe2+in pore water(A,B,C represent three different parallel samples)
2.3 間隙水ΣS2-剖面分布規(guī)律及其在沉積物-水界面間擴(kuò)散特征
對(duì)照樣品ΣS2-濃度呈現(xiàn)出上覆水中較低,沉積物-水界面至8 cm深度范圍內(nèi)濃度較高,其后隨深度增加而減小的趨勢(shì).與對(duì)照樣品相比,湖泛樣品中ΣS2-濃度在上覆水和沉積物間隙水中呈現(xiàn)出明顯不同的剖面分布特征.湖泛樣品ΣS2-濃度在沉積物-水界面處存在典型的峰值,并以該界面為拐點(diǎn),自沉積物-水界面向上覆水和沉積物即向上和向下2個(gè)方向都呈現(xiàn)出明顯的逐漸降低走向.從濃度上來(lái)看,對(duì)照樣品和湖泛樣品界面水/上覆水和沉積物間隙水中ΣS2-均達(dá)到一定的濃度,但湖泛樣品中濃度總體上高于對(duì)照樣品(圖4a).上層沉積物間隙水和上覆水中ΣS2-濃度明顯增加,是湖泛或缺氧水體重要的化學(xué)特征之一[4],并可能為湖泛致黑物質(zhì)及湖泛的最終形成提供直接的物質(zhì)基礎(chǔ)[14].
利用費(fèi)克第一定律解釋離子或分子在沉積物-水界面間擴(kuò)散規(guī)律時(shí),一般更多地用一次函數(shù)或指數(shù)函數(shù)進(jìn)行描述,但有時(shí)二次函數(shù)更符合實(shí)際情況且具有更高的可靠性和解釋能力[37].在本研究中,一次函數(shù)和指數(shù)函數(shù)均不能很好地描述沉積物-水界面間ΣS2-濃度與其相應(yīng)垂向深度的關(guān)系,而二次函數(shù)解釋能力較好.湖泛和對(duì)照樣品沉積物-水界面ΣS2-擴(kuò)散通量計(jì)算結(jié)果表明,在對(duì)照樣品中,ΣS2-在沉積物-水界面處擴(kuò)散通量為正,表現(xiàn)出較強(qiáng)的自沉積物向上覆水釋放的能力(圖4b).與此相對(duì),湖泛樣品中ΣS2-在沉積物-水界面處擴(kuò)散通量為負(fù)值,表現(xiàn)為自上覆水向沉積物中遷移擴(kuò)散的趨勢(shì)和潛力.
2.4 沉積物AVS及Fe形態(tài)分布特征
沉積物中AVS剖面分布特征(圖5a)表明,對(duì)照樣品沉積物AVS含量表現(xiàn)為從表層向底層逐漸增加的趨勢(shì).湖泛樣品表層2 cm沉積物AVS含量明顯高于對(duì)照樣品.與對(duì)照樣品剖面趨勢(shì)不同的是,湖泛樣品沉
積物AVS含量在0~4 cm深度內(nèi)自表層向下明顯降低;而4 cm以下沉積物AVS含量隨深度增加,與對(duì)照樣品一致.表層沉積物樣品Fe形態(tài)分布結(jié)果表明,對(duì)于湖泛樣品和對(duì)照樣品,表層沉積物中Fe主要以殘?jiān)鼞B(tài)(F4)為主,鐵錳氧化物結(jié)合態(tài)(F2)為第2大結(jié)合形態(tài),以硫化物和有機(jī)物結(jié)合態(tài)(F3)賦存的較少,可交換態(tài)和弱結(jié)合態(tài)Fe(F1)含量最少(圖5b,c).與對(duì)照樣品不同的是,湖泛表層沉積物樣品中F1和F3結(jié)合態(tài)含量有所增加而F2結(jié)合態(tài)含量有一定程度的減少.從該結(jié)果來(lái)看,在湖泛水體缺氧/厭氧的還原態(tài)環(huán)境下,表層沉積物中部分鐵錳氧化物結(jié)合態(tài)Fe即可還原態(tài)Fe被還原而減少,該部分Fe可能轉(zhuǎn)移至可交換態(tài)Fe或者硫化物與有機(jī)物結(jié)合態(tài)即可氧化態(tài)Fe,從而造成后兩者含量的增加.
圖4 沉積物間隙水ΣS2-剖面特征及釋放規(guī)律Fig.4 Profiles and release characteristics of ΣS2-in pore water
3.1 水體缺氧對(duì)沉積物-水界面Fe、S循環(huán)的影響
湖泊等大型水體缺氧現(xiàn)象的發(fā)生,給原有生態(tài)系統(tǒng)及結(jié)構(gòu)造成嚴(yán)重的破壞,并引起相應(yīng)水域環(huán)境敏感元素的生物地球化學(xué)循環(huán)途徑和方式發(fā)生改變,進(jìn)而改變了局部區(qū)域的環(huán)境狀況,且有可能推進(jìn)并完成一定程度的環(huán)境演替.沉積物-水界面是湖泊生態(tài)系統(tǒng)進(jìn)行物質(zhì)循環(huán)的重要場(chǎng)所、是沉積物和上覆水之間物質(zhì)傳輸和交換的最主要橋梁,缺氧水體的形成和持續(xù)對(duì)沉積物-水界面處物質(zhì)遷移轉(zhuǎn)換具有顯著的影響[24,38-39].在本研究中,與對(duì)照樣品相比,湖泛樣品沉積物-水界面處Eh較低,處于典型的還原態(tài)環(huán)境,其沉積物間隙水Fe2+和ΣS2-濃度明顯高于對(duì)照樣品.相關(guān)性分析結(jié)果表明,Eh與Fe2+濃度呈顯著負(fù)相關(guān)(r=-0.910,P=0.000<0.01),與ΣS2-濃度之間未呈現(xiàn)顯著的相關(guān)關(guān)系(r=0.158,P=0.272>0.05).pH與Fe2+濃度(r=-0.579,P=0.000<0.01)和ΣS2-濃度(r=-0.316,P=0.025<0.05)均呈顯著負(fù)相關(guān).此外,湖泛樣品表層沉積物AVS含量顯著高于對(duì)照樣品,且沉積物中Fe存在自氧化態(tài)向還原態(tài)及可交換態(tài)轉(zhuǎn)化的趨勢(shì).堆積藍(lán)藻的死亡分解,過(guò)度消耗水體溶解氧,進(jìn)而使得水體逐步轉(zhuǎn)向缺氧/厭氧的還原性狀態(tài),這一過(guò)程被認(rèn)為
是湖泛形成的重要誘發(fā)因素之一[3].水體從有氧/好氧狀態(tài)變?yōu)槿毖酰瘏捬鯛顟B(tài)后,會(huì)引發(fā)表層沉積物一系列氧化還原反應(yīng)終端電子受體的改變[40],最后走向以為主要受體的氧化還原反應(yīng)控制體系[24].受此影響,沉積物-水界面處高價(jià)Fe和S逐次還原,從而造成表層沉積物處Fe2+和ΣS2-的明顯積累,并使得沉積物中以高價(jià)態(tài)方式結(jié)合的S素不斷被還原為終端產(chǎn)物而造成AVS含量的升高[41].
圖5 沉積物AVS剖面特征及表層沉積物Fe形態(tài)分布規(guī)律Fig.5 Profiles of AVS in sediment and Fe fractions in surface sediment
3.2 沉積物-水界面Fe2+和ΣS2-擴(kuò)散對(duì)湖泛形成的影響
上覆水中穩(wěn)定存在較高濃度的Fe2+和ΣS2-被認(rèn)為是湖泛水體的重要化學(xué)特征[4],它們?yōu)楹褐潞谖镔|(zhì)的最終形成提供了重要的直接物質(zhì)供給[3,12].已有研究證明,湖泛最初發(fā)生在與沉積物相鄰近的底部水體[42-43],表層沉積物是藻源性或生物源性湖泛發(fā)生的源場(chǎng)所[14],是湖泛得以形成的重要物源基礎(chǔ).在缺氧厭氧環(huán)境下,沉積物中高濃度的Fe2+和ΣS2-通過(guò)沉積物-水界面向上覆水釋放并生成黑色FeS,曾被認(rèn)為是湖泛最終形成的重要機(jī)制之一[25,44].在本研究中,由Peeper獲得的湖泛原位沉積物間隙水和近界面上覆水中,F(xiàn)e2+濃度呈現(xiàn)出自表層沉積物向上覆水迅速減小的趨勢(shì).這是因?yàn)樵谌毖酰瘏捬醯沫h(huán)境下,湖泛樣品中可還原態(tài)Fe即鐵錳氧化物結(jié)合態(tài)Fe被部分還原并以Fe2+的形式進(jìn)入間隙水,造成間隙水中Fe2+濃度升高,形成向上的濃度梯度.擴(kuò)散通量計(jì)算結(jié)果表明,湖泛樣品中Fe2+通過(guò)沉積物-水界面向上覆水釋放能力較強(qiáng)、潛力較大.這說(shuō)明表層沉積物具備向上覆水提供Fe2+的能力,并為湖泛致黑物質(zhì)的形成供應(yīng)Fe2+源.
然而,與Fe2+剖面特征不同,間隙水和近界面上覆水中ΣS2-濃度在沉積物-水界面處出現(xiàn)峰值,并以界面為中心向上覆水和沉積物中遞減,上覆水中的濃度甚至高于間隙水中的濃度.擴(kuò)散通量計(jì)算結(jié)果表明,湖泛樣品中ΣS2-呈現(xiàn)出自上覆水通過(guò)沉積物-水界面向沉積物中擴(kuò)散的趨勢(shì),這與湖泛水體及致黑物質(zhì)中S素主要來(lái)自于沉積物向上覆水中釋放的已有分析和假設(shè)相矛盾.相反地,該結(jié)果表明在湖泛水體中表層沉積物向上覆水方向的ΣS2-釋放能力有限,沉積物-水界面處ΣS2-的擴(kuò)散方向表現(xiàn)為自上覆水向沉積物的向下輸移.本研究結(jié)果顯示,ΣS2-濃度最高出現(xiàn)在沉積物-水界面處(圖4a),并以該界面為中心向上、下2個(gè)方向迅速減少,這使得最表層沉積物成為ΣS2-積累的一個(gè)熱點(diǎn).大量已有研究認(rèn)為,沉積物中ΣS2-的形成是缺氧/厭氧條件下被還原的結(jié)果[45-47],硫酸鹽還原菌(sulfate reducing bacteria,SRB)增殖過(guò)程的生物化學(xué)反應(yīng)是被還原為終端還原產(chǎn)物ΣS2-的最重要驅(qū)動(dòng)[48-49].當(dāng)藍(lán)藻累積造成缺氧現(xiàn)象發(fā)生并持續(xù)時(shí),表層沉積物中SRB活動(dòng)開(kāi)始變得活躍,而上覆水中大量易利用的為SRB的規(guī)模增殖提供了豐富的能源物質(zhì).已有研究證明,SRB活動(dòng)的復(fù)興及其大規(guī)模增殖是湖泛發(fā)生的重要驅(qū)動(dòng)因素[11].因此,湖泛樣品沉積物-水界面及界面水/上覆水中高濃度ΣS2-的積累,可能是界面處SRB對(duì)界面水/上覆水中還原的結(jié)果[14].
這種還原作用占據(jù)了ΣS2-積累的主導(dǎo)地位,并導(dǎo)致在沉積物-水界面處ΣS2-呈現(xiàn)出自上覆水向沉積物方向的濃度梯度,從而使得ΣS2-出現(xiàn)自沉積物-水界面向下的擴(kuò)散通量.該結(jié)果表明,表層沉積物在湖泛水體ΣS2-的來(lái)源問(wèn)題上扮演重要角色,上覆水中被表層沉積物中增殖的SRB還原,從而在界面水及底層上覆水中實(shí)現(xiàn)了ΣS2-的積累并向上覆水體擴(kuò)散,為湖泛致黑物質(zhì)的形成提供了重要的物源基礎(chǔ).
湖泛水體沉積物-水界面處Fe2+、ΣS2-濃度明顯高于正常湖體,呈現(xiàn)出較強(qiáng)的Fe2+和ΣS2-積累態(tài)勢(shì).研究結(jié)果顯示:湖泛體系沉積物間隙水中Fe2+具有較高的釋放通量,通過(guò)沉積物-水界面向上覆水方向的釋放能力強(qiáng)烈;湖泛體系ΣS2-在沉積物-水界面處的遷移方向整體表現(xiàn)為自上覆水向沉積物方向的向下擴(kuò)散,表層沉積物向上釋放能力有限.研究表明:缺氧/厭氧條件下表層沉積物積累的Fe2+通過(guò)沉積物-水界面向上覆水釋放,為湖泛水體致黑物質(zhì)物源基礎(chǔ)之一的Fe2+提供了重要的來(lái)源;而同樣的缺氧/厭氧條件下,界面水及底層上覆水中豐富的在沉積物-水界面處被還原為終端還原產(chǎn)物ΣS2-,為湖泛致黑物質(zhì)的形成提供了另一重要物源基礎(chǔ).缺氧/厭氧環(huán)境下沉積物-水界面處Fe和S原有地球化學(xué)循環(huán)方式的轉(zhuǎn)變,為湖泛的致黑和爆發(fā)提供了重要的物質(zhì)基礎(chǔ),是湖泛得以形成的必要條件之一.
[1] NIGLAS(Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences).On the cause of cyanophyta bloom and pollution in water intake area and emergency measures in Meiliang Bay,Lake Taihu in 2007.J Lake Sci,2007,19(4):357-358(in Chinese).DOI:10.18307/2007.0401.[中國(guó)科學(xué)院南京地理與湖泊研究所.太湖梅梁灣2007年藍(lán)藻水華形成及取水口污水團(tuán)成因分析與應(yīng)急措施建議.湖泊科學(xué),2007,19(4):357-358.]
[2] Yang M,Yu JW,Li ZL et al.Taihu Lake not to blame for Wuxi's woes.Science,2008,319(5860):158.
[3] Fan Chengxin.Progress and prospect in formation of black bloom in Lake Taihu:A review.J Lake Sci,2015,27(4):553-566(in Chinese with English abstract).DOI:10.18307/2015.0401.[范成新.太湖湖泛形成研究進(jìn)展與展望.湖泊科學(xué),2015,27(4):553-566.]
[4] Shen QS,Zhou QL,Shang JG et al.Beyond hypoxia:Occurrence and characteristics of black blooms due to the decomposition of the submerged plant Potamogeton crispus in a shallow lake.Journal of Environmental Sciences,2014,26(2):281-288.
[5] Diaz RJ,Rosenberg R.Spreading dead zones and consequences for marine ecosystems.Science,2008,321(5891):926-929.
[6] Shen Qiushi,Shao Shiguang,Wang Zhaode et al.Simulation of black bloom in Moon Bay of Lake Taihu and physical and chemical responses of water and sediment.Advances in Water Science,2011,22(5):710-719(in Chinese with English abstract).[申秋實(shí),邵世光,王兆德等.太湖月亮灣湖泛發(fā)生過(guò)程模擬及水土物化性質(zhì)的響應(yīng).水科學(xué)進(jìn)展,2011,22(5):710-719.]
[7] Lu Guihua,Man Qian.Analysis on the causes of forming black water cluster in Taihu Lake.Advances in Water Science,2009,20(3):438-442(in Chinese with English abstract).[陸桂華,馬倩.太湖水域“湖泛”及其成因研究.水科學(xué)進(jìn)展,2009,20(3):438-442.]
[8] Chen Hesheng.Black water aggregation in Yixing inshore water area of Taihu Lake.Advances in Science and Technology of Water Resources,2011,31(4):33-37(in Chinese with English abstract).[陳荷生.太湖宜興近岸水域“湖泛”現(xiàn)象初析.水利水電科技進(jìn)展,2011,31(4):33-37.]
[9] Lu Guihua,Ma Qian.Monitoring and analysis on“Black Water Aggregation”in Lake Taihu,2009.J Lake Sci,2010,22(4):481-487(in Chinese with English abstract).DOI:10.18307/2010.0402.[陸桂華,馬倩.2009年太湖水域“湖泛”監(jiān)測(cè)與分析.湖泊科學(xué),2010,22(4):481-487.]
[10] Shen Qiushi,Zhou Qilin,Shao Shiguang et al.Estimation of in-situ sediment nutrients release at the submerged plant induced black bloom area in Lake Taihu.J Lake Sci,2014,26(2):177-184(in Chinese with English abstract).DOI:10. 18307/2014.0202.[申秋實(shí),周麒麟,邵世光等.太湖草源性“湖泛”水域沉積物營(yíng)養(yǎng)鹽釋放估算.湖泊科學(xué),2014,26(2):177-184.]
[11] Feng ZY,F(xiàn)an CX,Huang WY et al.Microorganisms and typical organic matter responsible for lacustrine"black bloom". Science of the Total Environment,2014,470/471:1-8.
[12] Shen Qiushi,F(xiàn)an Chengxin.Identification of black suspended particles in the algae-induced black bloom water column.J Lake Sci,2015,27(4):591-598(in Chinese with English abstract).DOI:10.18307/2015.0405.[申秋實(shí),范成新.藻源性湖泛水體顯黑顆粒的元素形態(tài)分析與鑒定.湖泊科學(xué),2015,27(4):591-598.]
[13] Alvisi F,Giani M,Ravaioli M et al.Role of sedimentary environment in the development of hypoxia and anoxia in the NW Adriatic shelf(Italy).Estuarine Coastal and Shelf Science,2013,128:9-21.
[14] Shen QS,Liu C,Zhou QL et al.Effects of physical and chemical characteristics of surface sediments in the formation of shallow lake algae-induced black bloom.Journal of Environmental Sciences,2013,25(12):2353-2360.
[15] Berg P,Risgaard-Petersen N,Rysgaard S.Interpretation of measured concentration profiles in sediment pore water.Limnology and Oceanography,1998,43(7):1500-1510.
[16] Higashino M,Gantzer CJ,Stefan HG.Unsteady diffusional mass transfer at the sediment/water interface:Theory and significance for SOD measurement.Water Research,2004,38(1):1-12.
[17] Bryant LD,McGinnis DF,Lorrai C et al.Evaluating oxygen fluxes using microprofiles from both sides of the sediment-water interface.Limnology and Oceanography-Methods,2010,8:610-627.
[18] Beutel MW.Hypolimnetic anoxia and sediment oxygen demand in California drinking water reservoirs.Lake and Reservoir Management,2003,19(3):208-221.
[19] Zhang L,Shen QS,Hu HY et al.Impacts of Corbicula fluminea on oxygen uptake and nutrient fluxes across the sedimentwater interface.Water Air and Soil Pollution,2011,220(1-4):399-411.
[20] Zhang L,Wang SR,Wu ZH.Coupling effect of pH and dissolved oxygen in water column on nitrogen release at water-sediment interface of Erhai Lake,China.Estuarine Coastal and Shelf Science,2014,149:178-186.
[21] Xiang SL,Nie FH,Wu DS et al.Nitrogen distribution and diffusive fluxes in sediment interstitial water of Poyang Lake. Environmental Earth Sciences,2015,74(3):2609-2615.
[22] Thornton DCO,Dong LF,Underwood GJC et al.Sediment-water inorganic nutrient exchange and nitrogen budgets in the Colne Estuary,UK.Marine Ecology Progress Series,2007,337:63-77.
[23] Xue LQ,Hao ZC.Nutrient exchange and release experiment and its simulation study in lake water-sediment interface. Journal of Environmental Sciences-China,2006,18(3):591-595.
[24] Nielsen LP,Risgaard-Petersen N,F(xiàn)ossing H et al.Electric currents couple spatially separated biogeochemical processes in marine sediment.Nature,2010,463(7284):1071-1074.
[25] Liu Guofeng,He Jun,F(xiàn)an Chengxin et al.Environment effects of algae-caused black spots:Impacts on Fe-Mn-S cycles in water-sediment interface.Environmental Science,2010,31(11):2652-2660(in Chinese with English abstract).[劉國(guó)鋒,何俊,范成新等.藻源性黑水團(tuán)環(huán)境效應(yīng):對(duì)水-沉積物界面處Fe、Mn、S循環(huán)影響.環(huán)境科學(xué),2010,31(11):2652-2660.]
[26] Fan Chengxin.A kind of method and apparatus used to simulate underwater sediments resuspension in laboraty:China,CN 1563928 A.2005(in Chinese).[范成新.一種室內(nèi)模擬水下沉積物再懸浮狀態(tài)的方法及裝置.CN 1563928 A[P].2005.]
[27] Stookey LL.Ferrozine—a new spectrophotometric reagent for iron.Analytical Chemistry,1970,42(7):779-781.
[28] Cline JD.Spectrophotometric determination of hydrogen sulfide in natural waters.Limnology and Oceanography,1969,14(3):454-458.
[29] Hsieh YP,Shieh YN.Analysis of reduced inorganic sulfur by diffusion methods:Improved apparatus and evaluation for sulfur isotopic studies.Chemical Geology,1997,137(3/4):255-261.
[30] Ulrich GA,Krumholz LR,Suflita JM.A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides.Applied and Environmental Microbiology,1997,63(4):1627-1630.
[31] Ure AM,Quevauviller P,Muntau H et al.Speciation of heavy-metals in soils and sediment-an account of the improvement and harmonization of extraction techniques undertake under the auspices of the BCR of the commission of the European communities.International Journal of Environmental Analytical Chemistry,1993,51(1/2/3/4):135-151.
[32] Mossop KF,Davidson CM.Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper,iron,lead,manganese and zinc in soils and sediments.Analytica Chimica Acta,2003,478(1):111-118.
[33] Ullman WJ,Aller RC.Diffusion coefficients in nearshore marine sediments.Limnology and Oceanography,1982,27(3):552-556.
[34] Ullman WJ,Sandstrom MW.Dissolved nutrient fluxes from the nearshore sediments of Bowling Green Bay,central Great Barrier Reef Lagoon(Australia).Estuarine Coastal and Shelf Science,1987,24(3):289-303.
[35] Song Jinming ed.Chemistry in Chinese offshore sediments.Beijing:China Ocean Press,1997:6-8(in Chinese).[宋金明.中國(guó)近海沉積物化學(xué).北京:海洋出版社,1997:6-8.]
[36] Shen Qiushi,Shao Shiguang,Wang Zhaode et al.Fade and recovery process of algae-induced black bloom in Lake Taihu under different wind conditions.Chinese Science Bulletin,2012,57(12):1060-1066(in Chinese with English abstract).[申秋實(shí),邵世光,王兆德等.風(fēng)浪條件下太湖藻源性“湖泛”的消退及其水體恢復(fù)進(jìn)程.科學(xué)通報(bào),2012,57(12):1060-1066.]
[37] Xu KM,Zhang LP,Zou WB.Microelectrode study of oxygen uptake and organic matter decomposition in the sediments of Xiamen Western Bay.Estuaries and Coasts,2009,32(3):425-435.
[38] Luo Shasha,Wan Guojiang.New procress in the study of Fe,Mn and S system at the sediment-water interface of lakes on Yunnan-Guizhou Plateau.Geology-Geochemistry,1999,27(3):47-52(in Chinese with English abstract).[羅莎莎,萬(wàn)國(guó)江.云貴高原湖泊沉積物-水界面鐵、錳、硫體系的研究進(jìn)展.地質(zhì)地球化學(xué),1999,27(3):47-52.]
[39] Wu Fengchang,Wan Guojiang,Huang Ronggui et al.Environmental impact of sulfate concentration increasing of lakes. Acta Scientiae Circumstantiat,1998,18(1):28-33(in Chinese with English abstract).[吳豐昌,萬(wàn)國(guó)江,黃榮貴等.湖泊水體中硫酸鹽增高的環(huán)境效應(yīng)研究.環(huán)境科學(xué)學(xué)報(bào),1998,18(1):28-33.]
[40] Middelburg JJ,Levin LA.Coastal hypoxia and sediment biogeochemistry.Biogeosciences,2009,6(7):1273-1293.
[41] Rickard D,Morse JW.Acid volatile sulfide(AVS).Marine Chemistry,2005,97(3/4):141-197.
[42] He W,Shang JG,Lu X et al.Effects of sludge dredging on the prevention and control of algae-caused black bloom in Taihu Lake,China.Journal of Environmental Sciences,2013,25(3):430-440.
[43] Chen Chao,Zhong Jicheng,F(xiàn)an Chengxin et al.Effects of sludge dredging on black bloom:A case study of Bafang port and Lvjiang port of Taihu.China Environment Science,2014,34(8):2071-2077(in Chinese with English abstract).[陳超,鐘繼承,范成新等.疏浚對(duì)湖泛的影響:以太湖八方港和閭江口水域?yàn)槔?中國(guó)環(huán)境科學(xué),2014,34(8):2071-2077.]
[44] Liu Guofeng,Zhong Jicheng,He Jun et al.Effects of black spot of dead-cyanobacterial mats on Fe-S-P cycling in sediments of Zhushan Bay,Lake Taihu.Environmental Science,2009,30(9):2520-2526(in Chinese with English abstract).[劉國(guó)鋒,鐘繼承,何俊等.太湖竺山灣藻華黑水團(tuán)沉積物中Fe-S-P的含量及其形態(tài)變化.環(huán)境科學(xué),2009,30(9):2520-2526.]
[45] Jorgensen BB.Sulfur cycle of a coastal marine sediment(Limfjorden,Denmark).Limnology and Oceanography,1977,22(5):814-832.
[46] Holmer M,Storkholm P.Sulphate reduction and sulphur cycling in lake sediments:A review.Freshwater Biology,2001,46(4):431-451.
[47] Leonov AV,Chicherina OV.Sulfate reduction in natural water bodies.1.The effect of environmental factors and the measured rates of the process.Water Resources,2008,35(4):417-434.
[48] Liamleam W,Annachhatre AP.Electron donors for biological sulfate reduction.Biotechnology Advances,2007,25(5):452-463.
[49] Savvichev AS,Rusanov II,Yusupov SK et al.The process of microbial sulfate reduction in sediments of the coastal zone and littoral of the kandalaksha Bay of the White Sea.Microbiology,2003,72(4):478-489.
Effects of Fe2+and ΣS2-transportation at sediment?water interface to the black bloom for?mation
SHEN Qiushi1,2,F(xiàn)AN Chengxin1,2??,WANG Zhaode1,2,ZHANG Lei1,2&LIU Cheng1,2,3
(1:Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing 210008,P.R.China)(2:State Key Laboratory of Lake Science and Environment,Nanjing 210008,P.R.China)(3:University of Chinese Academy of Sciences,Beijing 100049,P.R.China)
The rapid increase of Fe2+and ΣS2-in bottom water layers is a fundamental premise to the outbreak of black blooms at sediment-water interface.Transportation in hypoxic/anoxic benthic diffusion boundary layer is the main cause for the bulk accumulation of Fe2+and ΣS2-.In the present research,the sediment-water interface in the black bloom water system was studied,in which the vertical distribution characteristics of Fe2+and ΣS2-in pore waters were mainly focused.The diffusion fluxes of Fe2+and ΣS2-at the sediment-water interface were also calculated either.Results showed that the sediment-water interface was under typically reduced environment in the black bloom water system.The concentrations of Fe2+and ΣS2-in surface pore waters of the black bloom samples were significantly higher than that of check samples without black blooms.Typical accumulation of Fe2+and ΣS2-in the surface sediment of black bloom system was observed.The Fe2+release flux at the sediment-water interface in black bloom samples was high,which implied strong Fe2+release ability from sediments to the overlying water.However,unlike the Fe2+and distinguished from the check samples,the ΣS2-release flux at the sediment-water interface in black bloom samples was in minus value,which indicated the ΣS2-in the overlying water might be transported into the sediment.The transport characteristics of Fe2+and ΣS2-at the sediment-water interface demonstrated that the release of high concentration Fe2+from surface pore waters provided important material source to the formation of the black bloom formation,whereas ΣS2-—another important material source for the
Black bloom;sediment-water interface;sediment;lake;Lake Taihu
?國(guó)家自然科學(xué)基金項(xiàng)目(51409241)、國(guó)家高新技術(shù)研究發(fā)展計(jì)劃“863”計(jì)劃(2014AA06A509)和江蘇省自然科學(xué)基金項(xiàng)目(BK20131464)聯(lián)合資助.2015-12-30收稿;2016-03-22收修改稿.申秋實(shí)(1982~),男,博士,助理研究員;E-mail:qsshen@niglas.ac.cn.
??通信作者;E-mail:cxfan@niglas.ac.cn.
black bloom formation,was the production of reductionfrom overlying water at the sediment-water interface.