朱守彪,袁杰
1 中國地震局地殼應(yīng)力研究所,北京 1000852 中國科學(xué)院計(jì)算地球動(dòng)力學(xué)重點(diǎn)實(shí)驗(yàn)室,北京 1000493 中國地震局地球物理研究所,北京 100081
?
2008年汶川大地震單側(cè)破裂過程的動(dòng)力學(xué)機(jī)制研究
朱守彪1,2,袁杰1,3
1 中國地震局地殼應(yīng)力研究所,北京 1000852 中國科學(xué)院計(jì)算地球動(dòng)力學(xué)重點(diǎn)實(shí)驗(yàn)室,北京 1000493 中國地震局地球物理研究所,北京 100081
2008年汶川大地震的破裂過程極其發(fā)雜,向東北方向的破裂距離長達(dá)300 km,而向西南方向的破裂長度很小,呈現(xiàn)出單側(cè)破裂的主要特征.盡管汶川地震破裂呈單側(cè)傳播的現(xiàn)象引起許多地震學(xué)家的關(guān)注,但其物理機(jī)制至今還不是十分清楚.本文利用有限單元計(jì)算方法,模擬了汶川地震的破裂過程.模型中根據(jù)龍門山斷裂帶兩側(cè)(東南側(cè)為四川盆地,西北側(cè)為川西高原)實(shí)際的地震波速度來確定模型的介質(zhì)物性參數(shù),利用目前觀測(cè)的應(yīng)力環(huán)境來選定初始應(yīng)力條件.模擬結(jié)果表明:破裂在汶川地震的震中處成核后,先向斷層兩側(cè)自發(fā)傳播,但向東北方向的傳播距離明顯大于向西南方向;斷層面上的正應(yīng)力在東北方向(破裂的正方向)隨著傳播距離的增大而不斷減小,位錯(cuò)速率隨著破裂的傳播距離而越來越大,其脈沖變得越來越尖銳,即產(chǎn)生了Weertman脈沖.研究結(jié)果顯示:由于這種脈沖的出現(xiàn),破裂在正方向上(東北方向)能夠自己放大、自己愈合、自行維持,摩擦熱極小,所以破裂能夠沿著東北方向一直傳播,直到應(yīng)力場(chǎng)方位發(fā)生變化,不利于破裂時(shí)才最后終止.但在西南方向,破裂過程中斷層面上的正應(yīng)力增大,阻礙破裂繼續(xù)擴(kuò)展.最后就出現(xiàn)了汶川地震中破裂朝東北方向單側(cè)優(yōu)勢(shì)傳播的基本格局.模擬結(jié)果還表明:若斷層面兩側(cè)介質(zhì)均勻,則破裂向兩側(cè)是對(duì)稱傳播,且破裂距離很短,因此這種情況無法產(chǎn)生像汶川大地震那樣的特大地震.因此,文中的模擬結(jié)果表明龍門山斷裂帶兩側(cè)的物性差異是造成汶川大地震單側(cè)傳播的決定性因素.斷層兩側(cè)物性差異(bimaterial contrast)影響斷層破裂過程的研究對(duì)于深入認(rèn)識(shí)地震動(dòng)力學(xué)過程、地震災(zāi)害預(yù)測(cè)及評(píng)估等有重要的科學(xué)意義.
破裂動(dòng)力學(xué)過程;斷層兩側(cè)物性差異;Weetman脈沖;單側(cè)破裂;汶川地震;有限單元
2008年發(fā)生的汶川大地震,斷層破裂過程非常發(fā)雜,地表所能觀測(cè)到的破裂長度達(dá)300余千米.地震發(fā)生后,國內(nèi)外很多學(xué)者陸續(xù)利用多種方法和不同資料(如:地震波形、地表破裂、強(qiáng)地面運(yùn)動(dòng)、GPS和InSAR資料等)對(duì)汶川地震的破裂過程的運(yùn)動(dòng)學(xué)模型進(jìn)行了研究(Ji and Hayes,2008;王衛(wèi)民等,2008;張勇等,2008;杜海林等,2009;Shen et al.,2009;Xu et al.,2009;趙翠萍等,2009;Nakamura et al.,2010;Zhang and Ge,2010;Wang et al.,2011;Fielding et al.,2013;Pang et al.,2014;Zhang et al.,2014;Zhang and Wang,2015),取得了多種反演結(jié)果.盡管不同作者給出的結(jié)果不盡相同,但描述的汶川地震破裂的運(yùn)動(dòng)學(xué)特征大體如下:
破裂首先在位于映秀—北川斷裂帶上的震源處起始,在最先的開始階段,表現(xiàn)為雙側(cè)的破裂形式,在東北及西南的兩個(gè)方向同時(shí)產(chǎn)生破裂,但向西南方向的破裂很快就終止.而在斷層的東北方向,破裂繼續(xù)前行,跨越了多個(gè)斷層階區(qū),破裂經(jīng)過的斷層面形狀復(fù)雜(如彎曲、拐折、交叉等),破裂最后在青川斷裂帶上終止.汶川大地震破裂的總長度大約為300 km,破裂持續(xù)時(shí)間大約100 s;破裂速度在不同的地方差異很大(但基本上都小于剪切波速度),靜態(tài)位錯(cuò)分布也很不均勻,斷層的傾角由南向北越來越大,位錯(cuò)方向由近純逆沖逐漸過渡到走滑類型.
盡管運(yùn)動(dòng)學(xué)模型告訴我們斷層破裂的長度、破裂速度、位錯(cuò)大小等很多物理量,也為認(rèn)識(shí)汶川地震及抗震救災(zāi)發(fā)揮了重要作用.但是,是什么因素造成了這樣的破裂格局?或者說,汶川地震破裂過程中,什么物理量起著決定性作用?這些問題至今依然沒有給出回答.實(shí)際上,這些問題在物理上是動(dòng)力學(xué)問題,只有通過對(duì)汶川地震的破裂過程進(jìn)行動(dòng)力學(xué)分析,才有可能加以解決.汶川地震發(fā)生后,其震源破裂的動(dòng)力學(xué)過程倍受人們的關(guān)注,國內(nèi)外不少專家對(duì)此進(jìn)行了探索,獲得了一些認(rèn)識(shí).
Duan(2010)利用三維有限元方法對(duì)汶川地震的破裂動(dòng)力學(xué)過程進(jìn)行了研究.模型中,汶川地震的破裂面假定為一條平直斷層面,其傾角為33°;介質(zhì)材料均勻,初始應(yīng)力場(chǎng)不均勻并隨深度變化.通過研究發(fā)現(xiàn),隨著初始應(yīng)力場(chǎng)方向的改變,斷層的破裂速度會(huì)發(fā)生很大的變化,初始應(yīng)力場(chǎng)的方向還可以導(dǎo)致截然不同的位錯(cuò)格局及地表運(yùn)動(dòng)形態(tài).特別是當(dāng)初始場(chǎng)的指向與斷層走向之間的夾角處在最不利于斷層破裂的方位時(shí),破裂會(huì)自然地停止.汶川地震在斷層?xùn)|北端的終止以及兩處破壞最強(qiáng)的區(qū)域,也許就是初始場(chǎng)的方向在起著作用.Wen等(2012) 利用顯示的三維有限元方法,所用模型與Duan(2010)的模型基本相同,設(shè)定了不均勻的初始應(yīng)力條件,模擬結(jié)果表明初始應(yīng)力場(chǎng)決定了破裂速度、位錯(cuò)的空間分布等主要破裂特征.
Zhu和Zhang(2010,2013)利用改進(jìn)的有限單元模型,分兩步(即先反演,后正演)分別模擬了汶川地震震間變形及同震破裂過程.第一步利用大地測(cè)量資料(水準(zhǔn)測(cè)量及GPS觀測(cè))作約束,反演震間的最佳數(shù)值模型,獲得汶川地震前的應(yīng)力、應(yīng)變狀態(tài);然后據(jù)此最佳模型,進(jìn)行正演計(jì)算模擬斷層的自發(fā)破裂過程.計(jì)算結(jié)果顯示:下部緩傾角斷層上的破裂對(duì)上部陡傾角上的錯(cuò)動(dòng)有觸發(fā)作用,破裂過程中,斷層面上的剪切應(yīng)力和法向應(yīng)力都有利于斷層的錯(cuò)動(dòng),這可能也是高傾角逆沖斷層上發(fā)生大地震的原因之一.
雖然上述學(xué)者對(duì)汶川地震破裂動(dòng)力學(xué)機(jī)制研究方面作了不少探索,取得一定的進(jìn)展,但汶川地震破裂的最基本特征為單側(cè)破裂(或者認(rèn)為是不對(duì)稱的雙側(cè)破裂),對(duì)這個(gè)問題至今未見有文獻(xiàn)報(bào)道.此外,我們注意到龍門山斷裂帶兩側(cè)介質(zhì)物理性質(zhì)差異很大(Lei and Zhang,2009;Zhu and Zhang,2013;Liu et al.,2014),而斷層兩側(cè)介質(zhì)物理性質(zhì)差異(bimaterial contrast)會(huì)嚴(yán)重影響斷層的破裂過程和破裂特征(Weertman,1980;Adam,1995;Andrews and Ben-Zion,1997;Ben-Zion,2001;Ranjith and Rice,2001;Ben-Zion and Shi,2005;Ben-Zion et al.,2007;Rubin and Rice,2007;Ampuero and Ben-Zion,2008;Duan,2008;Ma and Beroza,2008;Olsen-Kettle et al.,2008;Brietzke et al.,2009;DeDontney et al.,2011;Langer et al.,2012;Scholz,2014;Yuan and Zhu,2016).所以本文將利用有限元方法,考慮龍門山斷裂帶兩側(cè)介質(zhì)物性的差異,模擬汶川地震的破裂過程,試圖定量給出汶川地震為什么會(huì)出現(xiàn)單側(cè)破裂的動(dòng)力學(xué)機(jī)制.
為研究汶川地震單側(cè)破裂的物理機(jī)制,首先必須對(duì)實(shí)際復(fù)雜問題進(jìn)行抽象與簡化.
汶川地震中,斷層破裂規(guī)模巨大,斷層幾何形狀復(fù)雜多變,既有平面也有曲面,斷層面傾角自南向北不斷發(fā)生變化,斷層在空間上還存在不連續(xù)分布等多種特征.此外,地震中斷層的位錯(cuò)主要表現(xiàn)為由逆沖向走滑性質(zhì)過渡:從震源處的幾乎純逆沖,然后不斷地由南向北過渡到幾乎純走滑類型.研究中,為抓住主要矛盾,重點(diǎn)突出汶川地震單側(cè)破裂過程的物理本質(zhì),研究中將實(shí)際的三維地質(zhì)體簡化為二維模型(通過震源的水平面),將復(fù)雜的斷層幾何簡化為平面,復(fù)雜的斷層破裂過程簡化為簡單的走滑類型.模擬中,同時(shí)還假定汶川大地震之前龍門山斷裂帶及其附近區(qū)域處在均勻的應(yīng)力環(huán)境里,這樣文中研究的破裂問題就簡化為標(biāo)準(zhǔn)的滑開型(Ⅱ-型)破裂模式.計(jì)算時(shí),首先讓破裂在汶川地震的震源處成核,然后讓破裂自由地向東南—西北兩個(gè)方向自發(fā)地傳播、演化.
2.1 基本控制方程
對(duì)于二維模型,當(dāng)模型四周利用無限單元來吸收地震波時(shí),破裂動(dòng)力學(xué)過程的能量表達(dá)形式為(Hibbitt et al.,2006)
(1)
此外假定斷層面上的法向位移為連續(xù),即
(2)
斷層面上的質(zhì)點(diǎn)所處的運(yùn)動(dòng)狀態(tài)表達(dá)式為
(3)
其中σn法向接觸應(yīng)力,τ為剪切應(yīng)力,μ為摩擦系數(shù).
利用有限元方法對(duì)于上述 (1)—(3)的方程進(jìn)行求解,即可得到模型中位移、速度、加速度,應(yīng)力,應(yīng)變以及能量等物理量.
2.2 有限元時(shí)間積分方法及計(jì)算時(shí)間步長
2.3 有限元模型
圖1 有限元模型圖中坐標(biāo)原點(diǎn)處的粗實(shí)線為汶川地震的震中(成核區(qū)).龍門山斷裂帶的走向沿X軸正方向(東北方向).Fig.1 Sketch of the finite element modelThe thicksolid line at the origin of coordinates stands for the epicenter of the 2008 Wenchuan earthquake.The strike of the Longmen Shan fault is in the direction of X-axis,namely northeast.
根據(jù)汶川地震的震中位置以及龍門山斷裂帶的實(shí)際構(gòu)造,研究中構(gòu)造了二維有限元模型,如圖1所示.模型空間幾何尺度為500 km×500 km.為減少地震波輻射對(duì)破裂行為的影響,模型四周施加了吸收邊界(利用ABAQUS中的無限單元來實(shí)施).地震破裂的成核位置位于模型的中心(圖中粗黑線段).有限元網(wǎng)格全部為三角形單元,單元最小邊長為100 m,單元最大邊長為500 m.破裂帶長度為500 km,利用ABAQUS中接觸單元來表示.由于初始應(yīng)力場(chǎng)影響破裂行為,所以模擬中根據(jù)對(duì)龍門山斷裂帶及附近地區(qū)地應(yīng)力的觀測(cè)結(jié)果(Wu et al.,2009)來選擇初始應(yīng)力場(chǎng).
2.4 摩擦本構(gòu)關(guān)系及正則化
摩擦本構(gòu)關(guān)系決定著破裂的形式及其演化特征,根據(jù)前人對(duì)斷層兩側(cè)物性不同發(fā)生破裂情況的模擬經(jīng)驗(yàn)(Rubin and Ampuero,2007;Ampuero and Ben-Zion,2008;Ma and Beroza,2008;Finzi and Langer,2012;Gabriel et al.,2012;Langer et al.,2012),研究中選擇速度-狀態(tài)相依的摩擦本構(gòu)關(guān)系,具體數(shù)學(xué)表達(dá)式為
(4)
其中μs為靜摩擦系數(shù),V為滑移速率,Vc為特征速度,αf及βf表示演化效果的常數(shù),θ為狀態(tài)參量,tc表示特征時(shí)間尺度.
通常情況下,當(dāng)斷層兩側(cè)介質(zhì)物性不同時(shí),斷層自發(fā)破裂會(huì)出現(xiàn)所謂的Adams不穩(wěn)定現(xiàn)象(Adams,1995,1998;Harris and Day,1997;Sim?nes and Martins,1998;Cochard and Rice,2000;Ben-Zion,2001;Ranjith and Rice,2001),這種現(xiàn)象在物理上表現(xiàn)為破裂產(chǎn)生的脈沖隨著傳播距離變得更加尖銳并且發(fā)散.在數(shù)學(xué)上,該系統(tǒng)對(duì)微擾的響應(yīng)是病態(tài)的(ill-posedness),并且數(shù)值計(jì)算結(jié)果隨著網(wǎng)格的變化而變化(Ben-Zion and Huang,2002).為此,要得到穩(wěn)定的解,需要進(jìn)行正則化處理.根據(jù)前人數(shù)值模擬的結(jié)果(Cochard and Rice,2000;Ranjith and Rice,2001;Rubin and Ampuero,2007;Ampuero and Ben-Zion,2008;Brietzke et al.,2009),計(jì)算時(shí)通過減緩斷層面上的剪切應(yīng)力隨正應(yīng)力變化的過程來實(shí)現(xiàn)正則化,從而提高計(jì)算的穩(wěn)定性.實(shí)際數(shù)值模擬中,斷層面上的剪切應(yīng)力隨時(shí)間的變化率為(DeDontney et al.,2011)
(5)
其中σ、τ、μf分別為正應(yīng)力、剪切應(yīng)力以及摩擦系數(shù);t*為正則化時(shí)間尺度,取值為:4Δx/Cs1(其中,Δx為滑移面上的單元尺度,Cs1為斷層兩側(cè)中軟弱介質(zhì)的S波速度),理論上t*應(yīng)遠(yuǎn)大于計(jì)算的時(shí)間步長,通常在實(shí)際計(jì)算時(shí)大一個(gè)數(shù)量級(jí)即可.具體數(shù)值見表1.
2.5 地震成核過程
在數(shù)值模擬中,要使破裂過程啟動(dòng),通常利用減小摩擦系數(shù)來實(shí)現(xiàn).具體計(jì)算中是將成核區(qū)內(nèi)的靜態(tài)摩擦系數(shù)突然減小,表達(dá)式為
(6)
破裂在成核區(qū)一旦形成,在其外的區(qū)域里,破裂行為由摩擦本構(gòu)關(guān)系及應(yīng)力環(huán)境來決定.破裂可以自發(fā)地向斷層兩側(cè)傳播、演化,直至最后終止.
為模擬2008年汶川地震的破裂過程,我們根據(jù)前人對(duì)龍門山地區(qū)的地震層析成像、以及其他地球物理反演結(jié)果等資料,建立具體的有限元模型.模型中龍門山斷裂帶及附近地區(qū)介質(zhì)的地震波速度根據(jù)地震層析成像結(jié)果(以汶川地震震源深度處)來選取(Lei and Zhao,2009;Liu et al.,2014),數(shù)值見表1.這樣龍門山斷裂帶兩側(cè)(川西高原與四川盆地)介質(zhì)的地震波速度相差大約為20%.模擬中關(guān)于摩擦行為的基本參數(shù)參考前人的模擬結(jié)果來選定(Rubin and Ampuero,2007;Ampuero and Ben-Zion,2008;Ma and Beroza,2008;Finzi and Langer,2012).
圖2為模擬給出的汶川地震震中(成核中心)兩側(cè)斷層面上的滑移量分布(為清楚起見,該圖只展示了局部區(qū)域,以下同).由圖可知,破裂為明顯的不對(duì)稱分布,向北東方向的破裂距離明顯大于向西南方向的距離,位錯(cuò)量也是在東北方向的大于向西南向的.因此許多學(xué)者認(rèn)為汶川地震為單側(cè)破裂類型(實(shí)際為不對(duì)稱的雙側(cè)破裂).破裂向東北方向傳播距離遠(yuǎn),而向西南方向傳播的距離很小,僅10余千米.
圖2 震中兩側(cè)斷層面上的位錯(cuò)在不同時(shí)刻的空間分布Fig.2 Spatial distribution of fault displacements on both sides of the epicenter at different times
參量物理性質(zhì)參數(shù)(單位)數(shù)值四川盆地S波速度Vs1(m·s-1)4120四川盆地P波速度Vp1(m·s-1)7150川西高原S波速度Vs2(m·s-1)3380川西高原P波速度Vp2(m·s-1)5850初始剪應(yīng)力τ0(MPa)69初始正應(yīng)力σ0(MPa)200介質(zhì)密度ρ(kg·m-3)2900靜摩擦系數(shù)μs0.6直接演化系數(shù)αf0.01演化系數(shù)βf0.40特征速度Vc(m·s-1)0.7特征時(shí)間tc(s)0.3速率弱化特征長度Dc(m)0.21成核區(qū)大小Lnucl(km)1正則化時(shí)間尺度t*(s)1.2×10-3
此外,圖2還顯示,斷層面上任一點(diǎn)的位錯(cuò)持續(xù)時(shí)間很短,遠(yuǎn)遠(yuǎn)小于整個(gè)斷層破裂的持續(xù)時(shí)間,因此該破裂為脈沖型(pulse-like)破裂(袁杰和朱守彪,2014a).另外,我們還可以從圖2中大體知道破裂的傳播速度為2.7 km·s-1,因此屬于亞剪切破裂(破裂速度小于剪切波速度).該破裂速度與張勇等(2008)以及Xu等(2009)通過反演給出的運(yùn)動(dòng)學(xué)震源破裂模型的破裂速度大體相當(dāng).
根據(jù)圖1所示的應(yīng)力邊界條件以及川西高原所在一側(cè)是物質(zhì)相對(duì)較柔軟的格局,我們知道本研究中破裂的正方向應(yīng)該是朝龍門山斷裂帶的東北方向,即圖中的x軸正向;那么破裂的負(fù)方向就是x軸的反向(Andrews and Ben-Zion,1997;Ben-Zion and Andrews,1998;Ben-Zion,2001;Ranjith and Rice,2001;Ben-Zion and Shi,2005;Shi and Ben-Zion,2006;Ben-Zion et al.,2007;Rubin and Ampuero,2007;Ampuero and Ben-Zion,2008).對(duì)于雙層不同性質(zhì)的斷層,破裂的正向應(yīng)為破裂的優(yōu)勢(shì)取向,即破裂在東北方向應(yīng)有較好的破裂效果,圖2的結(jié)果正是說明了這一點(diǎn).
圖3為滑移速率在斷層上的不同位置的分布.由圖可見,在破裂的正方向上(東北向),速度脈沖的幅值隨著破裂傳播距離的增大而越來越大,說明破裂具有自己放大的能力,這樣地震破裂就能持續(xù)很長距離而不會(huì)衰減;此外,位錯(cuò)速率脈沖的寬度(最大振幅一半處的脈沖寬度)在正方向上是越來越小、越來越尖銳,說明破裂能量向低波長方向轉(zhuǎn)移.但在破裂的負(fù)方向,脈沖變小,最后終止.圖3還顯示,每個(gè)脈沖起始后,在很短的時(shí)間里就達(dá)到最大值,然后迅速降低為0(意味著斷層很快就愈合).可見,這種脈沖型破裂具有自己愈合的能力,這正是脈沖型破裂(pulse-like)的典型特征.圖3所示的破裂脈沖就是通常所稱謂的Weertman脈沖,它能自己愈合、自行維持、自行放大,對(duì)地震破裂過程的影響非常深遠(yuǎn)(Weertman,1980;Andrews and Ben-Zion,1997;Ben-Zion,2001;Shi and Ben-Zion,2006;Ma and Beroza,2008;Ampuero and Ben-Zion,2008;Brietzke et al.,2009;DeDontney et al.,2011;Finzi and Langer,2012;Langer et al.,2012;Scholz,2014;Yuan and Zhu,2016),一直受到國際地震學(xué)界的廣泛重視.由于破裂過程中產(chǎn)生的Weertman 脈沖具有自己放大、自行維持的屬性,所以這種破裂不易于停止,這就是為什么汶川地震的震級(jí)是如此巨大的重要因素.
圖3 斷層面上滑移速率沿著斷層上不同位置時(shí)的分布(時(shí)間間隔為1.5 s) Fig.3 Distribution of slip rates at different locations along the fault at regular time interval (1.5 s)
圖4 斷層面上的正應(yīng)力及剪切應(yīng)力在不同時(shí)刻的分布(a) 正應(yīng)力;(b) 剪切應(yīng)力.Fig.4 Distribution of normal and shear stresses on the surface of the fault at different times(a) Normal stress;(b) Shear stress.
圖5 當(dāng)模型中介質(zhì)性質(zhì)均勻時(shí),破裂傳播過程中斷層面上的正應(yīng)力及剪切應(yīng)力在不同時(shí)刻的分布(a) 正應(yīng)力;(b) 剪切應(yīng)力.Fig.5 Distribution of normal and shear stresses on the surface of the fault at different times in rupture propagation when the material in the model is not uniform(a) Normal stress;(b) Shear stress.
圖4給出了斷層面上的正應(yīng)力及剪切應(yīng)力在不同時(shí)刻的分布.圖中清楚地顯示,斷層上的正應(yīng)力是隨著時(shí)間變化的.但在模擬時(shí)模型施加的初始應(yīng)力場(chǎng)為均勻場(chǎng),即斷層面上的正應(yīng)力應(yīng)該是處處相等,不會(huì)發(fā)生變化.圖4結(jié)果表明,隨著破裂傳播距離的增大,張性正應(yīng)力變化會(huì)越大越大,特別是當(dāng)斷層很長,破裂傳播的距離很遠(yuǎn)時(shí),可以讓斷層處在拉張的應(yīng)力狀態(tài),這樣破裂就會(huì)變得更加容易,摩擦產(chǎn)生的熱幾乎為0,斷層的雙側(cè)介質(zhì)效應(yīng)會(huì)愈加明顯.所以震級(jí)俞大,Weertman脈沖的影響就會(huì)愈加顯著(Ranjith and Rice,2001;Ben-Zion and Huang,2002).
為了搞清楚斷層面上的正應(yīng)力變化的機(jī)理,我們又構(gòu)建了另外一個(gè)模型.該模型中斷層兩側(cè)介質(zhì)的物理性質(zhì)完全一樣,即整個(gè)模型介質(zhì)均勻(其他模型參量均保持不變).這時(shí),模擬給出的破裂傳播過程中斷層面上的應(yīng)力分布如圖5所示.通過與圖4的比較可以發(fā)現(xiàn),當(dāng)模型中介質(zhì)均勻時(shí),破裂傳播過程中斷層面上的正應(yīng)力不隨時(shí)間及位置的變化而變化.
實(shí)際上,早在1980年,對(duì)于斷層兩側(cè)介質(zhì)性質(zhì)不同的破裂傳播問題,Weertman(1980)就通過數(shù)學(xué)解析推導(dǎo),給出了斷層面上的剪切應(yīng)力變化及正應(yīng)力變化的數(shù)學(xué)表達(dá)式為
(7)
(8)
Andrews和Ben-Zion(1997)將介質(zhì)在斷層物性較軟弱一側(cè)的運(yùn)動(dòng)形象地比作為地毯在地板上的移動(dòng).當(dāng)?shù)靥涸诘孛嫔弦苿?dòng)時(shí)則會(huì)出現(xiàn)褶皺(wrinkle),介質(zhì)瞬時(shí)從接觸面離開,因此在褶皺傳播方向上就產(chǎn)生了一個(gè)凈的剪切位移,導(dǎo)致正應(yīng)力變小(Andrews and Ben-Zion,1997;Ben-Zion and Andrews,1998;Cochard and Rice,2000;Ranjith and Rice,2001;Ben-Zion and Huang,2002;Ben-Zion and Shi,2005).
事實(shí)上,正是由于龍門山斷裂帶兩側(cè)介質(zhì)物性的差異,導(dǎo)致了破裂在東北方向的傳播過程中斷層面上的正應(yīng)力減小,特別是當(dāng)傳播距離越來越遠(yuǎn)時(shí),甚至?xí)霈F(xiàn)完全的拉張正應(yīng)力狀態(tài)(Rubin and Ampuero,2007),這非常有利于破裂的傳播(破裂的正方向),使得破裂能夠自己維持、自己愈合、自行放大,破裂過程中摩擦產(chǎn)生的熱能極小,導(dǎo)致破裂傳播的距離很遠(yuǎn),最終導(dǎo)致地震的震級(jí)很大(Brietzke et al.,2009).
本文運(yùn)用完全動(dòng)力學(xué)方法模擬了斷層的破裂過程,顯示了龍門山斷裂帶兩側(cè)介質(zhì)物理性質(zhì)差異是導(dǎo)致汶川地震單側(cè)破裂的決定性因素.為研究介質(zhì)物性差異對(duì)地震破裂過程的影響,下面再展示一下上文提到的將模型中斷層兩側(cè)材料性質(zhì)視為均勻的模型中位錯(cuò)在空間的分布結(jié)果.圖6是當(dāng)模型中介質(zhì)均勻時(shí),位錯(cuò)在空間的分布圖.圖中顯示,當(dāng)斷層兩側(cè)介質(zhì)性質(zhì)完全相同時(shí)(其他模型參量不變),破裂確實(shí)是向兩側(cè)傳播,并且在空間上是對(duì)稱分布.但傳播的距離非常之短,總共只有16 km,因此在這種情況下,產(chǎn)生不了像汶川地震(Ms8.0)那樣的特大地震.由此可見,斷層兩側(cè)物性的差異對(duì)于破裂過程的影響是多么巨大.通過圖6與圖2的比較,我們清楚地認(rèn)識(shí)到龍門山地震帶兩側(cè)介質(zhì)物理性質(zhì)的差異導(dǎo)致了汶川大地震的單側(cè)傳播過程(或不對(duì)稱的雙側(cè)破裂).
在此之上,文中還專門針對(duì)斷層兩側(cè)介質(zhì)物性差異程度對(duì)破裂傳播過程的影響進(jìn)行了模擬分析.當(dāng)斷層兩側(cè)介質(zhì)物性差異分別為5%、10%以及15%時(shí),斷層破裂都會(huì)出現(xiàn)不對(duì)稱的雙側(cè)破裂行為,但不對(duì)稱性隨著物性差異程度的增大而不斷增大(Yuan and Zhu,2016).
龍門山斷裂帶及周邊地區(qū)的應(yīng)力狀態(tài)應(yīng)該是不均勻的.但Duan(2010)以及Wen等(2012)的研究結(jié)果表明,初始應(yīng)力場(chǎng)的不均勻性會(huì)嚴(yán)重影響破裂的靜態(tài)位錯(cuò)、應(yīng)力降以及破裂速度的分布,所以文中所用的均勻初始場(chǎng)不會(huì)影響對(duì)汶川地震單側(cè)破裂傳播過程這一物理本質(zhì)的認(rèn)識(shí).此外,文中的簡單模型導(dǎo)致斷層破裂很難終止,之所以汶川地震最后終止于青川斷裂帶,Duan(2010)認(rèn)為是初始應(yīng)力場(chǎng)的方位改變?cè)斐闪似屏训慕K止.所以初始應(yīng)力場(chǎng)的非均勻性,不影響我們對(duì)汶川地震破裂過程不對(duì)稱的數(shù)值模擬.但是,需要特別指出的是,汶川地震的向南終止絕對(duì)不是初始應(yīng)力場(chǎng)的方位發(fā)生變化造成的,因?yàn)樵阢氪ǖ卣鹫鹬懈浇恢毕蚱湮髂戏较蚝艽蟮姆秶铮瑧?yīng)力場(chǎng)方位幾乎是相同的(Wu et al.,2009).
此外,本文在模擬過程中,將龍門山斷裂帶的逆沖兼走滑性質(zhì)的斷層簡化為純走滑斷層,將實(shí)際的三維斷層結(jié)構(gòu)簡化為二維.這種簡化的合理性主要是:首先從地圖上看,汶川地震的破裂是由南向北傳播,所以從整體上看該地震可以等價(jià)為一個(gè)走滑型事件.其次,在地震的起始階段,破裂表現(xiàn)為逆沖型,但隨著時(shí)間的推移,走滑特征越來越明顯,特別是到破裂的后期,幾乎就是純走滑性質(zhì).所以,文中抓住汶川地震單側(cè)破裂這個(gè)根本性的科學(xué)問題,將其簡化處理,這不會(huì)從本質(zhì)上影響我們對(duì)這個(gè)問題的認(rèn)識(shí).當(dāng)然,今后可以利用三維模型,對(duì)破裂過程進(jìn)行更為符合實(shí)際的模擬,對(duì)文中的結(jié)果進(jìn)行進(jìn)一步的驗(yàn)證.順便指出,震源破裂過程不對(duì)稱性的運(yùn)動(dòng)學(xué)研究成果非常豐富(高原等,1997;Gao et al.,2000),這些結(jié)果對(duì)于深入研究震源破裂的動(dòng)力學(xué)過程提供非常重要的參考.
圖6 當(dāng)斷層兩側(cè)介質(zhì)均勻時(shí),位錯(cuò)隨在不同時(shí)刻的空間分布圖Fig.6 Spatial distribution of displacements on both sides of the fault from at different times when the material on both sides of the fault is uniform
根據(jù)文中的計(jì)算與分析,得出如下初步結(jié)論:
利用有限單元計(jì)算方法,可以模擬斷層的自發(fā)破裂動(dòng)力學(xué)過程.盡管對(duì)于斷層兩側(cè)介質(zhì)性質(zhì)不同的破裂問題,模擬中會(huì)出現(xiàn)Adams不穩(wěn)定現(xiàn)象,但通過正則化可以得到穩(wěn)定的數(shù)值解.
龍門山斷裂帶的西北側(cè)(青藏高原)介質(zhì)柔軟,而東南側(cè)(四川盆地)介質(zhì)剛硬.由于斷層兩側(cè)介質(zhì)物性的不同,導(dǎo)致了汶川地震破裂的不對(duì)稱性空間分布.
模擬結(jié)果表明,汶川地震在破裂過程中,斷層面上的正應(yīng)力在東北方向(破裂的正方向)隨著傳播距離的增大而不斷減小,位錯(cuò)速率隨著破裂的傳播距離而越來越大,其脈沖變得越來越尖銳,即產(chǎn)生了能夠自己放大、自己愈合、自行維持的Weertman脈沖,所以汶川地震在東北方向破裂的距離很大.但在西南方向,破裂過程中斷層面上的正應(yīng)力在不斷增大,不利于破裂繼續(xù)擴(kuò)展.所以,在龍門山斷裂帶及附近區(qū)域的應(yīng)力環(huán)境不變時(shí),斷裂帶兩側(cè)的物性差異造成了汶川大地震中發(fā)生了單側(cè)傳播現(xiàn)象.研究斷層兩側(cè)物性差異影響斷層的破裂行為,對(duì)于深入認(rèn)識(shí)地震動(dòng)力學(xué)過程、分析未來地震的震級(jí)大小、預(yù)測(cè)地震災(zāi)害等有重要的科學(xué)意義.
致謝 兩位審稿專家提出了十分寶貴的建議,在此表示衷心的感謝!
Adams G G.1995.Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction.Journal of Applied Mechanics,62(4):867-872.
Adams G G.1998.Steady sliding of two elastic half-spaces with friction reduction due to interface stick-slip.Journal of applied Mechanics,65(2):470-475.
Ampuero J P,Ben-Zion Y.2008.Cracks,pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction.Geophys.J.Int.,173(2):674-692.
Andrews D J,Ben-Zion Y.1997.Wrinkle-like slip pulse on a fault between different materials.Journal of Geophysical Research,102(B1):553-571.Ben-Zion Y.2001.Dynamic ruptures in recent models of earthquake faults.Journal of the Mechanics and Physics of Solids,49(9):2209-2244.
Ben-Zion Y,Huang Y Q.2002.Dynamic rupture on an interface between a compliant fault zone layer and a stiffer surrounding solid.Journal of Geophysical Research:Solid Earth (1978—2012),107(B2):ESE 6-1—ESE 6-13.
Ben-Zion Y,Peng Z,Zhao P,et al.2007.Variations of the velocity contrast and rupture properties of M6 earthquakes along the parkfield section of the san andreas fault.∥American Geophysical Union,Fall Meeting 2007.AGU.
Ben-Zion Y,Shi Z Q.2005.Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk.Earth and Planetary Science Letters,236(1-2):486-496.
Brietzke G B,Cochard A,Igel H.2007.Dynamic rupture along bimaterial interfaces in 3D.Geophysical Research Letters,34(11):L11305.
Brietzke G B,Cochard A,Igel H.2009.Importance of bimaterial interfaces for earthquake dynamics and strong ground motion.Geophysical Journal International,178(2):921-938.
Cochard A,Rice J R.2000.Fault rupture between dissimilar materials:Ill-posedness,regularization,and slip-pulse response.J.Geophys.Res.,105(B11):25891-25907.
DeDontney N,Rice J R,Dmowska R.2012.Finite element modeling of branched ruptures including off-fault plasticity.Bulletin of the Seismological Society of America,102(2):541-562.
DeDontney N,Templeton-Barrett E L,Rice J R,et al.2011.Influence of plastic deformation on bimaterial fault rupture directivity.Journal of Geophysical Research:Solid Earth,116(B10):B10312.
Dor O,Rockwell T K,Ben-Zion Y.2006.Geological observations of damage asymmetry in the structure of the San Jacinto,San Andreas and Punchbowl faults in Southern California:a possible indicator for preferred rupture propagation direction.Pure and Applied Geophysics,163(2-3):301-349.
Dor O,Yildirim C,Rockwell T K,et al.2008.Geological and geomorphologic asymmetry across the rupture zones of the 1943 and 1944 earthquakes on the North Anatolian Fault:possible signals for preferred earthquake propagation direction.Geophysical Journal International,173(2):483-504.
Du H L,Xu L S,Chen Y T.2009.Rupture process of the 2008 great Wenchuan earthquake from the analysis of the Alaska-array data.Chinese J.Geophys.(in Chinese),52(2):372-378.
Duan B C.2008.Asymmetric off-fault damage generated by bilateral ruptures along a bimaterial interface.Geophysical Research Letters,35(14):L14306.
Duan B C.2010.Role of initial stress rotations in rupture dynamics and ground motion:A case study with implications for the Wenchuan earthquake.J.Geophys.Res.,115(B5):B05301,doi:10.1029/2009JB006750.
Fielding E J,Sladen A,Li Z H,et al.2013.Kinematic fault slip evolution source models of the 2008 M7.9 Wenchuan earthquake in China from SAR interferometry,GPS and teleseismic analysis and implications for Longmen Shan tectonics.Geophysical Journal International,194(2):1138-1166.
Finzi Y,Langer S.2012.Predicting rupture arrests,rupture jumps and cascading earthquakes.J.Geophys.Res.,117:B12303,doi:10.1029/2012JB009544.
Gabriel A A,Ampuero J P,Dalguer L A,et al.2012.The transition of dynamic rupture styles in elastic media under velocity-weakening friction.J.Geophys.Res.,117:B09311,doi:10.1029/2012JB009468.
Gao Y,Wu Z,Liu Z,et al.2000.Seismic source characteristics of nine strong earthquakes from 1988 to 1990 and earthquake activity since 1970 in the Sichuan-Qinghai-Xizang (Tibet) zone of China.Pure and Applied Geophysics,157(9):1423-1443.
Gao Y,Zhou H L,Liu Z.1997.Analysis on rupture feature of unilateral rupture source.Journal of the Graduate School of the Chinese Academy of Science (in Chinese),14(1):39-42.
Hibbitt H D,Karlsson B I,Sorensen P.2006.ABAQUS theory manual,version 6.3.Pawtucket,Rhode Island,USA.
Ji C,Hayes G.2008.Preliminary result of the May 12,2008 Mw7.9 eastern Sichuan,China earthquake.US Geol.Surv.
Langer S,Olsen-Kettle L,Weatherley D.2012.Identification of supershear transition mechanisms due to material contrast at bimaterial faults.Geophysical Journal International,190(2):1169-1180.
Lei J S,Zhao D P.2009.Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (MS8.0).Geochem.Geophys.Geosyst.,10(10):Q10010,doi:10.1029/2009GC002590.
Liu Q Y,van der Hilst R D,Li Y,et al.2014.Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults.Nature Geoscience,7(5):361-365.
Ma S,Beroza G C.2008.Rupture dynamics on a bimaterial interface for dipping faults.Bulletin of the Seismological Society of America,98(4):1642-1658.
Nakamura T,Tsuboi S,Kaneda Y,et al.2010.Rupture process of the 2008 Wenchuan,China earthquake inferred from teleseismic waveform inversion and forward modeling of broadband seismic waves.Tectonophysics,491(1-4):72-84,doi:10.1016/j.tecto.2009.09.020.
Olsen-Kettle L M,Weatherley D,Saez E,et al.2008.Analysis of slip-weakening frictional laws with static restrengthening and their implications on the scaling,asymmetry,and mode of dynamic rupture on homogeneous and bimaterial interfaces.Journal of Geophysical Research:Solid Earth (1978—2012),113(B8).
Ranjith K,Rice J R.2001.Slip dynamics at an interface between dissimilar materials.Journal of the Mechanics and Physics of Solids,49(2):341-361.
Rubin A M,Ampuero J P.2007.Aftershock asymmetry on a bimaterial interface.J.Geophys.Res.,112(B5).
Scholz C H.2014.The rupture mode of the shallow large-slip surge of the Tohoku-Oki earthquake.Bulletin of the Seismological Society of America,104(5):2627-2631.
Shen Z K,Sun J B,Zhang P Z,et al.2009.Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake.Nature Geoscience,2(10):718-724,doi:10.1038/ngeo636.
Shi Z Q,Ben-Zion Y.2006.Dynamic rupture on a bimaterial interface governed by slip-weakening friction.Geophysical Journal International,165(2):469-484.
Sim?nes F M F,Martins J A C.1998.Instability and ill-posedness in some friction problems.Int.J.Eng.Sci.,36(11):1265-1293.
Wang W M,Zhao L F,Li J,et al.2008.Rupture process of the MS8.0 wenchuan earthquake of Sichuan,China.Chinese J.Geophys.(in Chinese),51(5):1403-1410.
Weertman J.1980.Unstable slippage across a fault that separates elastic media of different elastic constants.Journal of Geophysical Research:Solid Earth (1978—2012),85(B3):1455-1461.
Wen Y Y,Oglesby D,Duan B,et al.2012.Dynamic rupture simulation of the 2008 MW7.9 Wenchuan earthquake with heterogeneous initial stress.Bulletin of the Seismological Society of America,102(4):1892-1898.
Wu M L,Zhang Y Q,Liao C T,et al.2009.Preliminary results of in-situ stress measurements along the Longmenshan fault zone after the Wenchuan MS8.0 earthquake.Acta Geologica Sinica (English Edition),83(4):746-753.
Xu Y,Koper K D,Sufri O,et al.2009.Rupture imaging of the MW7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves.Geochem.Geophys.Geosyst.,10:Q04006,doi:10.1029/2008GC002335.
Yuan J,Zhu S B.2014a.FEM simulation of the dynamic processes of fault spontaneous rupture.Chinese J.Geophys.(in Chinese),57(1):138-156,doi:10.6038/cjg20140113.
Yuan J,Zhu S B.2014b.Effects of stepover on rupture propagation.Chinese J.Geophys.(in Chinese),57(5):1510-1521,doi:10.6038/cjg20140515.
Yuan J,Zhu S B.2016.Distributions of strong ground motion due to dynamic ruptures across a bimaterial fault:Implications for seismic hazard analyses.J.Asian Ear.Sci.,in review.
Zaliapin I,Yehuda Ben-Zion Y.2011.Asymmetric distribution of aftershocks on large faults in California.Geophys.J.Int.,185(3):1288-1304.
Zhang H,Ge Z X.2010.Tracking the rupture of the 2008 Wenchuan earthquake by using the relative back-projection method.Bull.Seismol.Soc.Am.,100(5B):2551-2560,doi:10.1785/0120090243.
Zhang Y,Feng W P,Xu L S,et al.2009.Spatio-temporal rupture process of the 2008 great Wenchuan earthquake.Science in China Series D:Earth Sciences,52(2):145-154.
Zhang Y,Wang R J.2015.Geodetic inversion for source mechanism variations with application to the 2008 MW7.9 Wenchuan earthquake.Geophysical Journal International,200(3):1627-1635.
Zhang Y,Wang R J,Zschau J,et al.2014.Automatic imaging of earthquake rupture processes by iterative deconvolution and stacking of high-rate GPS and strong motion seismograms.Journal of Geophysical Research:Solid Earth,119(7):5633-5650.
Zhao C P,Chen Z L,Zhou L Q,et al.2010.Rupture process of the Wenchuan 8.0 earthquake of Sichuan China:The segmentation feature.Chinese Science Bulletin,55(3):284-292,doi:10.1007/s11434-009-0425-7.
Zhu S B.2013.Numerical simulation of dynamic mechanisms of the 2008 Wenchuan MS8.0 earthquake:implications for earthquake prediction.Natural Hazards,69(2):1261-1279.
Zhu S B,Zhang P Z.2010.Numeric modeling of the strain accumulation and release of the 2008 Wenchuan,Sichuan,China,Earthquake.Bulletin of the Seismological Society of America,100(5B):2825-2839.
Zhu S B,Zhang P Z.2013.FEM simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan Earthquake.Tectonophysics,584:64-80.
附中文參考文獻(xiàn)
杜海林,許力生,陳運(yùn)泰.2009.利用阿拉斯加臺(tái)陣資料分析2008年汶川大地震的破裂過程.地球物理學(xué)報(bào),52(2):372-378.
高原,周蕙蘭,劉振.1997.單側(cè)破裂震源的破裂特征分析.中國科學(xué)院研究生院學(xué)報(bào),14(1):39-42.
王衛(wèi)民,趙連鋒,李娟等.2008.四川汶川8.0級(jí)地震震源過程.地球物理學(xué)報(bào),51(5):1403-1410.
袁杰,朱守彪.2014a.斷層自發(fā)破裂動(dòng)力過程的有限單元法模擬.地球物理學(xué)報(bào),57(1):138-156,doi:10.6038/cjg20140113.
袁杰,朱守彪.2014b.斷層階區(qū)對(duì)震源破裂傳播過程的控制作用研究.地球物理學(xué)報(bào),57(5):1510-1521,doi:10.6038/cjg20140515.張勇,馮萬鵬,許力生等.2008.2008年汶川大地震的時(shí)空破裂過程.中國科學(xué):D輯,38(10):1186-1194.
趙翠萍,陳章立,周連慶等.2009.汶川MW8.0級(jí)地震震源破裂過程研究:分段特征.科學(xué)通報(bào),54(22):3475-3482.
(本文編輯 張正峰)
Mechanisms for the fault rupture of the 2008 Wenchuan earthquake (MS=8.0) with predominately unilateral propagation
ZHU Shou-Biao1,2,YUAN Jie1,3
1 Institute of Crustal Dynamics,China Earthquake Administration,Beijing 100085,China2 Key Lab of Computational Geodynamics,Chinese Academy of Sciences,Beijing 100049,China3 Institute of Geophysics,China Earthquake Administration,Beijing 100081,China
The rupture processes of the 2008 Wenchuan earthquake are very complex.The rupture propagated northeastward a large distance as long as 300 km,while the rupture length is short in the southwest direction.Although a great deal of attention has been paid to why the rupture propagated preponderantly northeastward during this event,the physical mechanism remains unclear.By means of a finite element model in which bimaterial contrast across the Longmen Shan fault is taken into account,this study suggests that the nucleation process is initiated at the center of the fault,ruptures then spread out outward spontaneously in both directions.The simulation results show that the different materials between both sides of the fault lead to tensile changes of normal stresses on the fault,which enhances the propagation of the rupture.We find that bimaterial mechanism is important for the earthquake rupture,and the mode II rupture evolves with propagation distance along a bimaterial interface to a unilateral wrinkle-like Weertman pulse in the direction of slip on the more compliant side of the fault,namely in the positive direction (i.e,the northeast direction).This Weertman pulse can be self-amplified,self-sustained and self-healing,which gives rise to little frictional energy and long propagation distance.This may be the reason why the 2008 Wenchuan earthquake is a unilateral fault rupture and has a high seismic magnitude.In addition,the modelling results suggest that the rupture distance would be much smaller if the material in the model is homogeneous,in which no huge earthquakes can occur like the 2008 Wenchan event.Hence,the study of the bimaterial effect will play an important role in understanding fault dynamics,seismic hazard estimation and prediction.
Dynamic rupture process;Bimaterial contrast;Weertman pulse;Unilateral fault rupture;Wenchuan earthquake;Finite element
朱守彪,袁杰.2016.2008年汶川大地震單側(cè)破裂過程的動(dòng)力學(xué)機(jī)制研究.地球物理學(xué)報(bào),59(11):4063-4074,
10.6038/cjg20161111.
Zhu S B,Yuan J.2016.Mechanisms for the fault rupture of the 2008 Wenchuan earthquake (MS=8.0) with predominately unilateral propagation.Chinese J.Geophys.(in Chinese),59(11):4063-4074,doi:10.6038/cjg20161111.
國家自然科學(xué)基金項(xiàng)目(41574041)、北京市自然科學(xué)基金項(xiàng)目(8152034)以及廣西科技攻關(guān)項(xiàng)目(桂科攻1377002)共同資助.
朱守彪,男,研究員,理學(xué)博士,博士生導(dǎo)師,現(xiàn)主要從事地球動(dòng)力學(xué)及地震活動(dòng)性研究.E-mail:zhusb@pku.edu.cn;zhushoubiao@gmail.com
10.6038/cjg20161111
P315,P542
2016-04-05,2016-07-20收修定稿