楊玉靜,張丹瑾,聶瑞強,謝建山,3,范瑞文,高文俊,董常生
?
綿羊MITF-M在黑素細胞中過表達后的功能分析
楊玉靜1,張丹瑾2,聶瑞強1,謝建山1,3,范瑞文1,高文俊1,董常生1
(1山西農(nóng)業(yè)大學(xué)動物科技學(xué)院,山西太谷030801;2山西醫(yī)科大學(xué)晉祠學(xué)院,太原030025;3山西醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,太原030001)
【目的】小眼畸形相關(guān)轉(zhuǎn)錄因子-M型(microphthalmia associated transcription factor M,MITF-M)在動物皮膚和毛發(fā)的黑色素合成途徑中發(fā)揮重要作用,克隆綿羊小眼畸形相關(guān)轉(zhuǎn)錄因子-M型基因序列,研究在綿羊黑素細胞中過表達綿羊MITF-M是否影響TYR、TYRP-1和TYRP-2的表達,從而探究對黑色素的生成的影響?!痉椒ā渴褂迷囼炇覂龃娴牡?代綿羊黑素細胞,通過PCR方法用引物以綿羊黑素細胞cDNA為模板克隆MITF-M基因cDNA序列,構(gòu)建綿羊MITF-M克隆載體和真核表達載體;通過細胞轉(zhuǎn)染技術(shù)在細胞水平過量表達綿羊MITF-M;轉(zhuǎn)染后使用熒光顯微鏡觀察細胞轉(zhuǎn)染效率,采用分光光度計對綿羊黑素細胞中黑色素含量進行測定,并進行Real-time PCR試驗檢測轉(zhuǎn)染后細胞MITF、TYR、TYRP-1和TYRP-2基因在mRNA水平表達量的變化,Western blot試驗檢測轉(zhuǎn)染后細胞MITF、TYR蛋白水平的變化?!窘Y(jié)果】經(jīng)測序和拼接,最終獲得長度為1 242 bp的綿羊 MITF-M基因的cDNA 序列;成功構(gòu)建真核表達載體,載體上連有一個啟動報告基因綠色熒光蛋白和特異性TYRP-2基因啟動子;細胞轉(zhuǎn)染后,在熒光顯微鏡下可觀察到黑素細胞帶有綠色熒光說明轉(zhuǎn)染效率明顯;分光光度計檢測顯示,轉(zhuǎn)染后綿羊黑素細胞中黑色素量增加1.15倍(<0.05);熒光定量檢測結(jié)果顯示,綿羊黑素細胞中MITF mRNA表達量增加極顯著(<0.001),表明綿羊MITF-M轉(zhuǎn)染效率顯著,TYR mRNA表達量增加極顯著(<0.001),TYRP-1 mRNA表達量升高至5.06倍(<0.05),TYRP-2 mRNA表達量升高至1.49倍,變化不明顯。蛋白免疫印跡結(jié)果顯示,綿羊黑素細胞中MITF-M轉(zhuǎn)染組MITF蛋白表達量是空載體組的1.65倍(P<0.001),轉(zhuǎn)染組TYR蛋白表達量是空載體組的2.38倍(<0.001),這與熒光定量檢測結(jié)果一致?!窘Y(jié)論】通過PCR和克隆技術(shù)及核酸測序技術(shù)獲得了綿羊MITF-M基因全長1 242 bp的CDS區(qū),過表達綿羊MITF-M會使黑素細胞TYR、TYRP-1的表達量增加,對TYRP-2的表達量變化不明顯,從而揭示綿羊MITF-M可以通過調(diào)節(jié)TYR和TYRP-1的表達量控制綿羊黑素細胞中黑色素的生成。
小眼畸形相關(guān)轉(zhuǎn)錄因子(MITF);TYR;TYRP-1;TYRP-2
【研究意義】綿羊毛是毛紡工業(yè)最主要原料,毛色成為了主要經(jīng)濟特性。如今研究毛色種類,成為毛色研究的主要方向,而毛色的形成是一個復(fù)雜的過程,與毛色的發(fā)育和色素沉著有關(guān)。毛色主要由黑色素的合成和分布決定,主要影響皮膚、毛囊、眼睛等色素的沉著[1-2]。在細胞水平,黑色素由黑素細胞合成,黑素細胞位于表皮基底層,有規(guī)律的散布于基部的角質(zhì)細胞之間。黑素細胞的發(fā)育和黑色素生成受許多基因調(diào)控。其中,小眼畸形相關(guān)轉(zhuǎn)錄因子(microphthalmia associated transcription factor,MITF)是黑素細胞發(fā)展和黑色素生成的主要調(diào)節(jié)者[3-4]。MITF調(diào)控3個主要的色素沉著酶的轉(zhuǎn)錄,TYR、TYRP-1和TYRP-2/ DCT[2, 5-10]。所以,研究MITF的表達和功能至關(guān)重要,使動物產(chǎn)生多彩羊毛纖維,形成不同的毛色。【前人研究進展】黑色素合成過程,受多個信號轉(zhuǎn)錄因子的調(diào)控,轉(zhuǎn)錄因子也調(diào)控諸多的黑色素相關(guān)基因。目前,MITF基因的研究主要集中于動物組織、皮膚、黑色素瘤、視網(wǎng)膜、及基因結(jié)構(gòu)功能。鄭嫩珠等[11]報道MITF基因表達量在白絨烏雞各組織間差異表達由高到低:皮膚>腎>肌胃>肝>肌肉,皮膚表達量最高。Zhu等[2]研究表明在羊駝白色被毛皮膚組織中MITF基因表達量顯著低于棕色毛皮膚組織。Wang等[12]研究報道黑素細胞/黑素瘤特有的MITF-M廣泛表達于黑素細胞、黑素瘤細胞系和組織,在非黑素瘤細胞系中幾乎檢測不到。Hartman等[13]研究了在黑素瘤中抑制MITF活性,導(dǎo)致腫瘤退化,但是低水平MITF是致癌的。在成人視網(wǎng)膜上皮細胞中Maruotti等[14]證明“黑素細胞特有的”類型MITF-M有表達。有關(guān)基因結(jié)構(gòu)功能的研究,Kurita等[15]探究C57BL/6J小鼠毛色變白,由于核苷酸在MITF的DNA結(jié)合區(qū)域突變形成的。此外,Baranowska等[16]研究證明MITF-M啟動子突變的長多態(tài)性(Lp)導(dǎo)致MITF-M的活性降低,也導(dǎo)致狗毛色形成白色斑點。還有報道在MITF磷酸化位點突變也會導(dǎo)致白色或白色斑點毛色[17]。Dbbache等[18]研究表明小眼畸形相關(guān)轉(zhuǎn)錄因子絲氨酸磷酸化作用增加MITF轉(zhuǎn)錄活性,而穩(wěn)定性下降,MITF的磷酸化狀態(tài)調(diào)控其活性和穩(wěn)定性。研究黑色素相關(guān)基因過表達在綿羊黑素細胞中的功能,從本質(zhì)上揭示黑色素相關(guān)基因作用機制的重要性?!颈狙芯壳腥朦c】目前,在小鼠、人類、腫瘤黑素細胞中研究了MITF表達,結(jié)果不太一致。然而,在綿羊黑素細胞中MITF過表達的研究未見報道,本試驗將綿羊MITF-M在黑素細胞中過表達驗證TYR以及酪氨酸酶相關(guān)蛋白的表達是否受到影響,調(diào)控黑色素生成?!緮M解決的關(guān)鍵問題】本研究,在細胞水平,采用細胞轉(zhuǎn)染技術(shù)在綿羊黑素細胞中過量表達MITF-M,以探究綿羊MITF-M過量表達對TYR、TYRP-1和TYRP-2的影響。
試驗于2015年2月—11月在山西農(nóng)業(yè)大學(xué)羊駝生物工程實驗室完成。
1.1 試驗材料
黑素細胞培養(yǎng)基(ScienCell)、RIPA裂解液(碧云天)、TRIZOL(Invitrogen,美國)、反轉(zhuǎn)錄PCR試劑盒(TaKaRa,大連)、 qRT-PCR kit(TaKaRa,大連)、MITF多克隆抗鼠IgG抗體(abcam,艾博抗上海)、TYR多克隆抗鼠IgG抗體(abcam,艾博抗上海)、T4 DNA Ligase(TaKaRa,大連)、蛋白marker(Fermentas公司);StepOne Fast Real time PCR System(Life technologies,美國)、電泳槽(北京六一儀器廠)、紫外凝膠成像系統(tǒng)(型號:WV-BP330,Panasonic公司,日本)、核酸蛋白測定儀(型號:Nanodrop-1000,Thermo,美國)。
1.2 試驗方法
1.2.1 綿羊MITF-M核酸序列查找和目的基因的克隆 使用NCBI信息查詢系統(tǒng)檢索綿羊小眼畸形相關(guān)轉(zhuǎn)錄因子(Oar MITF-M)的mRNA,找出CDS區(qū)的核酸序列。以cDNA為模版進行PCR擴增,產(chǎn)物跑電泳檢測,切下目的條帶,送公司進行測通,確定目的序列大小的正確。綿羊 MITF-M的引物,由華大科技公司合成。
1.2.2 綿羊MITF-M克隆載體和真核表達載體的構(gòu)建 綿羊MITF-M載體的構(gòu)建。首先,用T載體試劑進行16℃過夜連接,然后轉(zhuǎn)化、涂板,在培養(yǎng)箱中37℃培養(yǎng);待菌長出藍白斑進行挑菌、搖菌;待菌液渾濁,但未出現(xiàn)絮狀沉淀時,即可使用試劑盒進行質(zhì)粒提取,送公司測序,確定克隆載體是否構(gòu)建成功。再將克隆載體質(zhì)粒和表達載體進行酶切和電泳,回收目的基因和載體片段,用T4連接酶進行連接,之后步驟與連接克隆載體一樣,最后獲得質(zhì)粒,送測序。
1.2.3 綿羊黑素細胞轉(zhuǎn)染 使用實驗室保存的第5代黑素細胞進行培養(yǎng),在6孔板的每孔加入大約2 mL正常生長培養(yǎng)基,為轉(zhuǎn)染提供在底壁長到60%—80%的正常細胞。設(shè)置3、9、18 μg DNA組和空載組,將試劑A與B混合在一起,在室溫條件下孵育20 min。在去除培養(yǎng)基的培養(yǎng)孔中加入800 μL不含血清的培養(yǎng)基和脂質(zhì)體,37℃培養(yǎng)24 h,換成正常培養(yǎng)基,培養(yǎng)48 h,提取總蛋白和RNA進行測定。
1.2.4 黑色素含量測定 收集轉(zhuǎn)染后各組黑色素,PBS沖洗2—3次后,用0.2 mol·L-1NaOH溶解黑素細胞,進行測值。
1.2.5 Real-time PCR檢測 利用Premier 5.0引物設(shè)計軟件,根據(jù)GenBank上綿羊MITF、TYR、TYRP-1和TYRP-2序列設(shè)計實時熒光定量PCR擴增引物,并通過NCBI初步檢測引物的特異性。引物如表1。
表1 引物序列
按照實時熒光定量方法進行擴增后,判定PCR反應(yīng)的特異性,根據(jù)標準曲線以及熒光曲線的CT值計算定量結(jié)果,目的基因的相對表達量采用ΔΔCT法計算[19]。數(shù)據(jù)用 Microsoft Excel進行統(tǒng)計分析,實時熒光定量PCR結(jié)果均用平均值±標準誤(Means±SE)表示,其中各基因的表達量所示結(jié)果均應(yīng)經(jīng)內(nèi)參基因β-actin表達量的校正,最后計算出的數(shù)據(jù)都采用Prism軟件進行單因素方差分析檢驗。
1.2.6 蛋白免疫印跡試驗方法 用總蛋白的提取試劑盒提取轉(zhuǎn)染后黑色素細胞總蛋白,進行SDS-PAGE電泳,轉(zhuǎn)膜,孵一抗,4℃過夜。孵育后,用TBST洗膜后,孵二抗,37℃孵育1 h;孵育二抗后,用TBST洗膜。按照發(fā)光試劑盒說明書配制發(fā)光液,顯色后暗室曝光,獲得有條帶膠片,標定Marker,分析掃描。用Quantity one進行灰度值分析,β-actin作為內(nèi)參,誤差校正=目的蛋白灰度值/β-actin蛋白含量灰度值,用采用Prism軟件進行單因素方差分析。
2.1 綿羊MITF-M核酸序列獲取和真核表達載體構(gòu)建
NCBI中獲得綿羊目的基因的CDS區(qū),成功構(gòu)建真核表達載體(圖1)。慢病毒載體上連接一個啟動報告基因綠色熒光蛋白和小鼠黑素細胞特異性TYRP2基因啟動子,由I和I切開的載體間插入同樣用I和I切開克隆載體得到的綿羊 MITF- M序列。表達載體構(gòu)建成功后,提出質(zhì)粒,為了確保載體連接的準確性,對質(zhì)粒進行了測序。通過對測序結(jié)果和在NCBI中找出的綿羊MITF-M的CDS區(qū)進行比對,分析結(jié)果顯示:序列大小為1 242 bp,完全一致。
圖1 綿羊MITF-M真核表達載體結(jié)構(gòu)
2.2 黑素細胞轉(zhuǎn)染前后的形態(tài)特征
正常的綿羊黑素細胞接種6 h貼壁伸展,第二天呈樹突狀。細胞培養(yǎng)2 d后即可進行傳代或進行試驗,此時細胞密集(圖2)。
2.3 綿羊MITF-M在綿羊黑素細胞的轉(zhuǎn)染
2.3.1 黑素細胞轉(zhuǎn)染效率觀察 在黑素細胞對數(shù)生長期進行轉(zhuǎn)染,多次試驗后發(fā)現(xiàn)在六孔板上,9 μgDNA/孔轉(zhuǎn)染效率最高,此濃度做為轉(zhuǎn)染試驗選用濃度(圖3)。
A 為正常培養(yǎng)的黑素細胞(Control)(100×);B 為正常培養(yǎng)的黑素細胞(Control)(200×);C 為只轉(zhuǎn)染空載體的黑素細胞(vector-GFP)(200×);D 為轉(zhuǎn)染綿羊 MITF-M的黑素細胞(vector-GFP-Oar MITF-M)(200×)
A 暗場正常培養(yǎng)的黑素細胞(Control,100×);B 明場正常培養(yǎng)的黑素細胞(Control,200×);C 為轉(zhuǎn)染空載體的熒光圖(Vector-GFP,100×);D 為轉(zhuǎn)染空載體的熒光圖(Vector-GFP,200×);E 為轉(zhuǎn)染Vector-GFP-Oar MITF-M的熒光圖(Vector-GFP-Oar MITF-M,100×);F 為轉(zhuǎn)染Vector-GFP-Oar MITF-M的熒光圖(Vector-GFP-Oar MITF-M,200×)
2.3.2 Real-time PCR檢測MITF-M在綿羊黑素細胞系的轉(zhuǎn)染效率 本試驗設(shè)計了綿羊黑素細胞空白對照組,空載組和試驗組,在對數(shù)生長期分別進行轉(zhuǎn)染,結(jié)果發(fā)現(xiàn)試驗組綿羊MITF-M被極顯著的提高(<0.001,圖4)。
2.3.3 轉(zhuǎn)染后黑色素含量測定 黑色素的含量用分光光度法進行測定,測定結(jié)果經(jīng)分析得出,黑素細胞中黑色素含量增加1.15倍(<0.05,圖5)。
2.3.4 Western blot檢測轉(zhuǎn)染后MITF和TYR蛋白在黑素細胞中的表達 本試驗對所轉(zhuǎn)染細胞進行蛋白提取,通過Western blot得出不同細胞蛋白的目的條帶,再經(jīng)軟件統(tǒng)計分析,結(jié)果顯示(圖6),與空載組相比,試驗組MITF蛋白顯著升高至1.65倍,TYR蛋白顯著升高至2.38倍(<0.001)。由此得出,綿羊MITF-M可以顯著增加MITF和TYR蛋白的產(chǎn)生。
2.3.5 轉(zhuǎn)染后黑素細胞TYR、TYRP-1和TYRP-2 mRNA檢測 使用實時熒光定量PCR的方法檢測了綿羊MITF-M過表達對TYR、TYRP-1和TYRP-2 mRNA的影響。統(tǒng)計分析結(jié)果顯示:與空載組相比,綿羊MITF-M組的TYR mRNA極顯著增加(<0.001),TYRP-1 mRNA升高至5.06倍(<0.05),TYRP-2 mRNA升高至1.49倍,變化不明顯(圖7)。由此可以得出,綿羊 MITF-M能改變TYR和TYRP-1 mRNA的表達,對TYRP-2 mRNA影響不明顯。
*P<0.05 ***P<0.001
MITF基因?qū)τ诿纬杀夭豢缮賉20],調(diào)控諸多黑色素相關(guān)基因及相關(guān)因子,包括TYR、TYRP-1、TYRP-2、MART1/MLANA、SILV/PMEL17、AIM和TRPM1[21],引起毛色的變化,其中TYR、TYRP-1、TYRP-2是定位于黑素小體上直接參與黑色素生成關(guān)鍵酶,本試驗通過構(gòu)建綿羊MITF-M過表達載體,細胞轉(zhuǎn)染技術(shù),對綿羊MITF-M影響色素沉著酶的調(diào)節(jié)機制進行研究。試驗表明,綿羊MITF-M過量表達增加黑素細胞MITF、TYR、TYRP-1 mRNA表達量,尤其是MITF、TYR表達量明顯增加,TYRP-1表達量增加較小,TYRP-2增加不明顯。結(jié)論顯示,綿羊MITF-M在綿羊黑素細胞中的過表達上調(diào)TYR、TYRP-1的表達,對TYRP-2影響不明顯,從而影響黑色素的生成。已有研究表明,在人類黑素細胞中MITF的過表達增加酪氨酸酶家族基因TYR和TYRP-1表達,不影響TYRP-2表達[22],與本試驗結(jié)果一致。GAGGIOLI等[20]研究MITF過表達,在B16小鼠黑素瘤細胞或人類黑素細胞中,TYR表達幾乎不變;轉(zhuǎn)染MITF優(yōu)勢負性突變體會抑制內(nèi)源性TYR、TYRP-1的表達,降低黑色素合成;可知MITF對于酪氨酸酶的表達是必需條件,但不是充分條件。此外,F(xiàn)ANG等[23]也研究證實抑制黑素細胞轉(zhuǎn)錄因子MITF的活性,選擇性下調(diào)酪氨酸酶家族TYRP-1基因。所以,與MITF互相作用調(diào)控黑素生成基因表達和黑色素合成的調(diào)控機制仍存在未知,仍需要繼續(xù)進行探究。LI等[24]研究證明廣泛表達的因子YY1能夠與黑素細胞系特異的M-MITF協(xié)同作用調(diào)節(jié)黑素細胞中基因的組織特異性表達。DESPLAN等[25]研究顯示PAX6調(diào)控MITF的視網(wǎng)膜色素上皮細胞亞型的表達,同時與MITF協(xié)同作用激活有關(guān)色素形成基因的表達。此外,研究證明轉(zhuǎn)錄因子GLI2、轉(zhuǎn)化生長因子β[26]及miR-128[27]等抑制MITF基因表達,抑制酪氨酸酶活性,從而抑制黑色素的生成。以上報道,揭示MITF受不同基因調(diào)控的同時調(diào)節(jié)著多個下游基因,在黑素細胞和黑色素合成中的發(fā)揮著重要作用。是否還存在其他作用途徑、影響因素等一些問題尚需繼續(xù)探究。本試驗研究MITF在綿羊黑素細胞中過表達調(diào)節(jié)黑色素生成關(guān)鍵酶的功能,有利于進一步揭示更多相關(guān)基因的作用機制。
在綿羊黑素細胞中通過轉(zhuǎn)染脂質(zhì)體過表達MITF- M,檢測相關(guān)基因的表達,發(fā)現(xiàn)過表達MITF可以增加TYR表達,試驗結(jié)果證明MITF能夠通過調(diào)節(jié)黑素細胞中TYR、TYRP-1和TYRP-2的表達,從而影響到綿羊不同毛色的形成。
[1] DE LUCA M, D'ANNA F, BONDANZA S, FRANZI A T, CANCEDDA R. Human epithelial cells induce human melanocyte growthbut only skin keratinocytes regulate its proper differentiation in the absence of dermis., 1988, 107(5):1919-1926.
[2] ZHU Z, HE J, JIA X, JIANG J, BAI R, YU X, LV L, FAN R, HE X, GENG J. MicroRNA-25 functions in regulation of pigmentation by targeting the transcription factor MITF in Alpaca () skin melanocytes., 2010, 38(3):200-209.
[3] LIN Y P, HSU F L, CHEN C S, CHERN J W, LEE M H. Constituents from the Formosan apple reduce tyrosinase activity in human epidermal melanocytes., 2007, 68(8):1189-1199.
[4] SCHALLREUTER K U, KOTHARI S, CHAVAN B, SPENCER J D. Regulation of melanogenesis-controversies and new concepts., 2008, 17(5):395- 404.
[5] BENTLEY N J, EISEN T, GODING C R. Melanocyte-specific expression of the human tyrosinase promoter. activation by the microphthalmia gene product and role of the initiator., 1994, 14(12): 7996-8006.
[6] HEMESATH T J, STEINGRIMSSON E, MCGILL G, HANSEN M J, VAUGHT J, HODGKINSON C A, ARNHEITER H, COPELAND N G, JENKINS N A, FISHER D E. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family., 1994, 8(22): 2770- 2780.
[7] YASUMOTO K, YOKOYAMA K, SHIBATA K, TOMITA Y, SHIBAHARA S. Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene.1994, 14(12): 8058-8070.
[8] PARK H Y, WU C, YONEMOTO L, MURPHY-SMITH M, WU H, STACHUR C M, GILCHREST B A. MITF mediates cAMP- induced protein kinase C-beta expression in human melanocytes., 2006, 395(3): 571 -578.
[9] DU J, MILLER AJ, WIDLUND H R, HORSTMANN M A, RAMASWAMY S, FISHER D E. MLANA/MART1 and SILV/ PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma., 2003, 163(1):333-343.
[10] ABDEL-MALEK Z, SWOPE V B, SUZUKI I, AKCALI C, HARRIGER M D, BOYCE S T, URABE K, HEARING V J. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides., 1995, 92(5): 1789-1793.
[11] 鄭嫩珠, 辛清武, 朱志明, 繆中緯, 麗李, 劉鳳輝, 黃勤樓. 白絨烏雞MITF基因的cDNA 克隆、表達及其對黑色素沉積的影響. 中國農(nóng)業(yè)科學(xué), 2015, 48(18): 3711-3718.
ZHENG N Z, XIN Q W, ZHU Z M, MIAO ZHONG-WEI, LI L, LIU F H, HUANG Q L. cDNA cloning and expression of mitf gene and its effect on melanin deposition in Silky Fowl.2015, 48(18): 3711-3718. (in Chinese)
[12] WANG Y, RADFAR S, LIU S, RIKER A I, KHONG H T. Mitf-Mdel, a novel melanocyte/melanoma-specific isoform of microphthalmia- associated transcription factor-M, as a candidate biomarker for melanoma., 2010, 8:14.
[13] HARTMAN M L, CZYZ M. MITF in melanoma: mechanisms behind its expression and activity., 2015, 72(7):1249- 1260.
[14] MARUOTTI J, THEIN T, ZACK D J, ESUMI N. MITF-M, a ‘melanocyte-specific’ isoform, is expressed in the adult retinal pigment epithelium., 2012, 25(5): 641-644.
[15] KURITA K, NISHITO M, SHIMOGAKI H, TAKADA K, YAMAZAKI H, KUNISADA T. Suppression of progressive loss of coat color in microphthalmia-vitiligo mutant mice., 2005, 125(3):538- 544.
[16] BARANOWSKA KORBERG I, SUNDSTROM E, MEADOWS J R, ROSENGREN PIELBERG G, GUSTAFSON U, HEDHAMMAR A, KARLSSON E K, SEDDON J, SODERBERG A, VILA C. A simple repeat polymorphism in the MITF-M promoter is a key regulator of white spotting in dogs.2014, 9(8):e104363.
[17] BAUER G L, PRAETORIUS C, BERGSTEINSDOTTIR K, HALLSSON J H, GISLADOTTIR B K, SCHEPSKY A, SWING D A, O'SULLIVAN T N, ARNHEITER H, BISMUTH KThe role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue., 2009, 183(2): 581-594.
[18] DEBBACHE J, ZAIDI M R, DAVIS S, GUO T, BISMUTH K, WANG X, SKUNTZ S, MARIC D, PICKEL J, MELTZER P.role of alternative splicing and serine phosphorylation of the microphthalmia-associated transcription factor., 2012, 191(1): 133-144.
[19] 馬淑慧, 薛霖莉, 徐剛, 候亞琴, 耿建軍, 曹靖, 赫曉燕, 王海東, 董常生. 黑色素細胞中過量表達miR-137對TYRP-1和TYRP-2的影響. 中國農(nóng)業(yè)科學(xué), 2013, 46(16):3452-3459.
MA S H, XUE L L, XU G, HOU Y Q, GENG J J,CAO JING, HE X Y, WANG H D, DONG C S. The influences of over-expressing miR- 137 on TYRP-1 and TYRP-2 in melanocytes.2013, 46(16): 3452-3459. (in Chinese)
[20] GAGGIOLI C, BUSCA R, ABBE P, ORTONNE JP, BALLOTTI R. Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes., 2003, 16(4):374-382.
[21] LEVY C, FISHER D E. Dual roles of lineage restricted transcription factors: the case of MITF in melanocytes., 2011, 2(1): 19-22.
[22] YASUMOTO K, YOKOYAMA K, TAKAHASHI K, TOMITA Y, SHIBAHARA S. Functional analysis of microphthalmia -associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes., 1997, 272(1): 503- 509.
[23] FANG D, TSUJI Y, SETALURI V. Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF., 2002, 30(14): 3096-3106.
[24] LI J, SONG J S, BELL R J, TRAN T N, HAQ R, LIU H, LOVE K T, LANGER R, ANDERSON D G, LARUE L. YY1 regulates melanocyte development and function by cooperating with MITF., 2012, 8(5): e1002688.
[25] DESPLAN C, RAVIV S, BHARTI K, RENCUS-LAZAR S, COHEN- TAYAR Y, SCHYR R, EVANTAL N, MESHORER E, ZILBERBERG A, IDELSON M. PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF., 2014, 10(5):e1004360.
[26] PIERRAT M J, MARSAUD V, MAUVIEL A, JAVELAUD D. Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-beta., 2012, 287(22): 17996-18004.
[27] GUO J, ZHANG J F, WANG W M, CHEUNG F W K, LU Y F, NG C F, KUNG H F, LIU W K. MicroRNA-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression., 2014, 11(6):732-741.
(責(zé)任編輯 林鑒非)
The Function Analysis of Over-Expression of Oar MITF-M in Melanocytes
YANG Yu-jing1, ZHANG DAN-Jin2, NIE Rui-qiang1, XIE Jian-shan1,3, FAN Rui-wen1, GAO Wen-jun1, DONG Chang-sheng1
(1College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi;2Jinci College of Shanxi Medical University, Taiyuan 030025;3School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001)
【Objective】 Microphthalmia associated transcription factor M (MITF-M) plays an important role in the melanin synthesis in animal’s skin and hair. The aim of this paper was to clone microphthalmia-associated transcription factor M, to investigate whether the over-expression of oar MITF-M regulated TYR, TYRP-1 and TYRP-2 expression in melanocytes of sheep, and to explore its influence on the formation of melanin. 【Method】The CDS region in oar MITF-M gene was cloned from melanocytes of sheep by primers and PCR, to build a sheep MITF-M cloning vector and eukaryotic expression vector. Over-expression of oar MITF-M was conducted in melanocytes of 5thgeneration sheep through the cell transfection technique and the transfer efficiency was observed by fluorescence microscope. The contents of melanin in melanocytes was detected by spectrophotometer, and the levels of MITF, TYR, TYRP-1 and TYRP-2 were detected using Real-time PCR and the proteins of MITF and TYR were detected using Western blot. 【Result】Results showed that the 1 242 bp cDNA sequence of oar MITF-M gene was obtained by sequencing and splicing. Eukaryotic expression vector was successfully constructed with a startup report gene of green fluorescent protein and specificity TYRP-2 gene promoter. Under the fluorescence microscope, green fluorescence could be identified in melanocytes of sheep. The contents of melanin in melanocytes were increased by 1.15 times (<0.05). Real-time PCR results showed that MITF mRNA was significantly increased (<0.001) which indicated the oar MITF-M high transfection efficiency. TYR mRNA was significantly increased (<0.001). TYRP-1 mRNA was significantly increased by 5.06 times (<0.05). TYRP-2 mRNA was not significantly increased by 1.49 times. MITF protein in MITF-M group was 1.65 times more than in empty vector group (<0.001) and TYR protein in MITF-M group was 2.38 times more than in empty vector group (<0.001), which was consistent with the real-time PCR results. 【Conclusion】The 1 242 bp length CDS region of oar MITF-M gene was got by PCR, TA cloning and nucleic acid sequencing technology. Results of the study suggested that oar MITF-M increased the production of TYR, TYRP-1 and had little influence on TYRP-2. Therefore, the oar MITF-M may mediate the alteration of coat color through regulating the expression of TYR and TYRP-1.
microphthalmia associated transcription factor (MITF); TYR; TYRP-1; TYRP-2
2015-12-18;接受日期:2016-09-13
國家公益性行業(yè)(農(nóng)業(yè))科研專項(201303119)、國家高科技研究發(fā)展計劃(863 計劃,2013AA102506)、山西農(nóng)業(yè)大學(xué)創(chuàng)新團隊
聯(lián)系方式:楊玉靜,E-mail:15110679040@163.com。通信作者董常生,E-mail:cs_dong@sxau.edu.cn