王曉峰,邢敏捷,劉 歌,趙汝鵬
(1.空軍航空大學(xué) 信息對(duì)抗系,長春 130022;2.解放軍93175部隊(duì),長春 130051)
?
基于改進(jìn)DFT相位差的正弦波頻率估計(jì)*
王曉峰**,邢敏捷2,劉歌1,趙汝鵬1
(1.空軍航空大學(xué) 信息對(duì)抗系,長春 130022;2.解放軍93175部隊(duì),長春 130051)
針對(duì)基于離散傅里葉變換(DFT)相位差的正弦波頻率估計(jì)方法對(duì)頻偏敏感的問題,提出了一種改進(jìn)DFT相位差頻率估計(jì)方法。首先推導(dǎo)了DFT相位差法頻率估計(jì)的均方誤差,然后提出了基于Rife插值的改進(jìn)DFT相位差頻率估計(jì)方法,較好地解決了正弦波頻率估計(jì)對(duì)頻偏敏感的問題。仿真實(shí)驗(yàn)結(jié)果表明,改進(jìn)方法在各種頻偏下均能取得較高的估計(jì)精度,估計(jì)性能接近克拉美羅限(CRLB)。
正弦波頻率估計(jì);頻偏敏感;DFT相位差;Rife插值
正弦波信號(hào)頻率估計(jì)在雷達(dá)、通信、聲納以及電子對(duì)抗等諸多涉及信號(hào)處理的領(lǐng)域有著廣泛的應(yīng)用,且經(jīng)常作為其他復(fù)雜信號(hào)處理的基礎(chǔ)工具,具有十分重要的研究價(jià)值[1-5]。文獻(xiàn)[6]給出了加性高斯白噪聲背景下正弦波頻率的最大似然估計(jì),估計(jì)性能接近克拉美羅限(Cramer-Rao Lower Bound,CRLB),是最優(yōu)估計(jì),但該方法需要進(jìn)行一維搜索,計(jì)算量太大,無法工程實(shí)現(xiàn)[7]?;陔x散傅里葉變換(Discrete Fourier Transform,DFT)的快速傅里葉變換(Fast Fourier Transform,FFT)計(jì)算速度快,適合于實(shí)時(shí)處理,特別是隨著硬件技術(shù)的迅速發(fā)展,基于DFT的頻率估計(jì)方法獲得了廣泛應(yīng)用,但DFT算法柵欄效應(yīng)導(dǎo)致的頻偏嚴(yán)重影響了頻率估計(jì)精度。文獻(xiàn)[8]提出利用信號(hào)FFT的最大兩根譜線進(jìn)行插值估計(jì)正弦波頻率,即Rife算法。但Rife算法沒有考慮到噪聲的影響,在信噪比較低且信號(hào)實(shí)際頻率接近FFT量化頻率點(diǎn)時(shí),容易出現(xiàn)插值方向的錯(cuò)判,影響頻率估計(jì)精度。為此,相繼出現(xiàn)了基于Rife算法的各種改進(jìn)正弦波頻率估計(jì)方法[9-12],但這些方法均沒有有效解決頻偏對(duì)Rife算法頻率估計(jì)性能的影響。文獻(xiàn)[13]利用DFT相位直接估計(jì)信號(hào)頻率,但存在相位模糊問題。為解決DFT相位估計(jì)信號(hào)頻率時(shí)的相位模糊問題,文獻(xiàn)[14]提出了基于DFT相位差的頻率估計(jì)算法,該方法通過計(jì)算兩段DFT譜線峰值處的相位差完成頻率估計(jì),但當(dāng)信號(hào)頻率位于兩根DFT量化譜線之間時(shí),噪聲將嚴(yán)重影響DFT的相位提取,進(jìn)而導(dǎo)致頻率估計(jì)錯(cuò)誤。
針對(duì)上述文獻(xiàn)研究的不足,本文提出一種基于Rife插值的改進(jìn)DFT相位差頻率估計(jì)方法,介紹了DFT相位差法頻率估計(jì)原理,推導(dǎo)了DFT相位差法頻率估計(jì)的均方誤差,最后結(jié)合Rife插值思想給出了一種改進(jìn)的DFT相位差頻率估計(jì)方法。理論分析表明改進(jìn)方法能夠較好地解決頻偏對(duì)正弦波頻率估計(jì)的影響。仿真實(shí)驗(yàn)結(jié)果驗(yàn)證了改進(jìn)估計(jì)方法的有效性。
2.1算法原理
頻率為f0,初始相位為φ0,幅值為a的正弦波信號(hào)可以表示為
s(n)=a·exp[j(2πf0Tn/N+φ0)],n=0,1,…,N-1。
(1)
(2)
2.2性能分析
DFT最大譜線處幅值的輸出信噪比可近似為[7]
(3)
被噪聲污染信號(hào)r(n)的DFT最大譜線處的相位φk0可以表示為[14]
(4)
式中:φk0為信號(hào)s(n)的DFT最大譜線處相位;Ak0為DFT最大譜線幅值;φz為噪聲DFT相位。式(4)第二項(xiàng)即為噪聲產(chǎn)生的相位誤差。
(5)
(6)
綜上所述,DFT相位差頻率估計(jì)均方誤差可近似為
(7)
根據(jù)噪聲DFT的不相關(guān)特性[6],上式可寫為
(8)
結(jié)合sinc函數(shù)特性可知,當(dāng)信號(hào)頻率位于DFT某個(gè)離散頻率附近時(shí),頻偏δ的絕對(duì)值較小,DFT相位差頻率估計(jì)具有較高的估計(jì)精度,但是當(dāng)信號(hào)頻率位于兩個(gè)離散頻率的中心區(qū)域時(shí),頻偏δ的絕對(duì)值較大,DFT相位差法頻率估計(jì)誤差較大,而實(shí)際應(yīng)用中DFT最大譜線對(duì)應(yīng)頻率與實(shí)際頻率的頻偏是不可控因素。
文獻(xiàn)[8]提出利用信號(hào)頻譜的最大兩根譜線進(jìn)行插值對(duì)正弦波頻率進(jìn)行估計(jì):
(9)
當(dāng)Ak0+1 (1)將序列分為兩個(gè)長度相同的序列s1(n)和s2(n),分別計(jì)算其N/2點(diǎn)DFT并搜索出最大頻譜對(duì)應(yīng)的量化頻點(diǎn)k0。 (2)利用Rife插值計(jì)算信號(hào)頻移的量化頻率單位δ0: (10) (3)將序列s1(n)和s2(n)頻移δ0個(gè)量化單位后,利用頻譜細(xì)化技術(shù)分別計(jì)算 綜上所述,隨著新時(shí)期的發(fā)展,銀行理財(cái)業(yè)務(wù)將逐漸多元化發(fā)展,滿足人民在傳統(tǒng)存儲(chǔ)的基礎(chǔ)上開展靈活的投資,銀行必須把握我國經(jīng)濟(jì)及國民經(jīng)濟(jì)較為深厚的機(jī)遇,發(fā)揮自身特點(diǎn),積極與保險(xiǎn)、證券等行業(yè)跨行業(yè)、跨機(jī)構(gòu)開展合作,并在銀監(jiān)會(huì)的監(jiān)管下,合理設(shè)計(jì)及銷售產(chǎn)品,標(biāo)準(zhǔn)化管理,公開、透明的信息披露,為消費(fèi)者提供可靠的金融投資環(huán)境,吸引眾多投資資金,推動(dòng)銀行改革升級(jí)。 (11) (12) (4)分別提取S1(k0+δ0)和S2(k0+δ0)的相位,計(jì)算相位差 Δφ=angle[S2(k0+δ0)]-[S1(k0+δ0)]。 (13) (5)計(jì)算信號(hào)頻率的估計(jì)值 (14) 進(jìn)行Rife插值時(shí),若信號(hào)頻率位于兩個(gè)離散頻率的中心區(qū)域,Ak0和Ak0+r的值較為接近,Rife插值能夠很好地將信號(hào)頻率搬移至k0附近,提高DFT相位差法的估計(jì)精度;若信號(hào)頻率與k0較為接近,Ak0將遠(yuǎn)遠(yuǎn)大于Ak0+r,此時(shí)計(jì)算所得δ0將非常小,即頻率搬移后的信號(hào)頻率仍然位于k0附近。改進(jìn)DFT相位差頻率估計(jì)方法對(duì)頻率與DFT最大譜線位置的相對(duì)關(guān)系不敏感,較好地解決了頻偏對(duì)頻率估計(jì)的影響。 4.1復(fù)雜度分析 基于改進(jìn)DFT相位差的頻率估計(jì)方法除需要作兩次N/2點(diǎn)的FFT外,還需計(jì)算兩次單點(diǎn)DFT和利用反正切函數(shù)計(jì)算一次相位。兩次N/2點(diǎn)的FFT共需要N/2·lbN次復(fù)數(shù)乘法和N·lbN次復(fù)數(shù)加法,兩次單點(diǎn)DFT共需要N次復(fù)數(shù)乘法和N-1次復(fù)數(shù)加法。在采樣點(diǎn)數(shù)N較大的情況下,反正切的計(jì)算量可以忽略。各基于DFT的正弦波頻率估計(jì)算法的計(jì)算復(fù)雜度如表1所示。由表1可知,本文估計(jì)算法的計(jì)算復(fù)雜度略大于DFT相位差法和Rife算法,遠(yuǎn)小于其他Rife修正算法,能夠滿足實(shí)際應(yīng)用要求。 表1 各基于DFT的正弦波頻率估計(jì)算法計(jì)算復(fù)雜度 4.2仿真分析 為驗(yàn)證基于改進(jìn)DFT相位差的頻率估計(jì)性能,將其與DFT相位差法、Rife算法以及頻率估計(jì)的CRLB進(jìn)行對(duì)比仿真。仿真中信號(hào)采樣點(diǎn)數(shù)N=1 024,采樣頻率為1 024 kHz,DFT譜線間隔為1 kHz,信噪比為3 dB。正弦信號(hào)頻率由(19.5,20.5)kHz均勻地選取19個(gè)頻率值,即頻偏δ∈(-0.5,0.5)。每個(gè)頻率點(diǎn)作500次蒙特卡洛仿真實(shí)驗(yàn),并計(jì)算均方誤差,仿真實(shí)驗(yàn)結(jié)果如圖1所示。 圖1 不同頻偏下頻率估計(jì)性能對(duì)比 為進(jìn)一步驗(yàn)證基于改進(jìn)DFT相位差的正弦波頻率估計(jì)方法的性能,在不同信噪比下對(duì)其進(jìn)行仿真驗(yàn)證,并與DFT相位差法、Rife算法以及CRLB進(jìn)行比較。仿真實(shí)驗(yàn)中信號(hào)采樣點(diǎn)數(shù)N=1 024,采樣頻率為1 024 kHz,DFT譜線間隔為1 kHz,信噪比步進(jìn)1 dB,每個(gè)信噪比下進(jìn)行500次蒙特卡洛仿真實(shí)驗(yàn)。表2~4分別是信號(hào)頻率為19.9 kHz(δ=0.1)、20.3 kHz(δ=0.3)和20.45 kHz(δ=0.45)時(shí)的頻率估計(jì)均方誤差。 表2 δ=0.1時(shí)的頻率估計(jì)性能 表3 δ=0.3時(shí)的頻率估計(jì)性能 表4 δ=0.45時(shí)的頻率估計(jì)性能 實(shí)驗(yàn)結(jié)果表明,本文算法在各信噪比下的頻率估計(jì)性能均優(yōu)于DFT相位差法和Rife算法,對(duì)各種頻偏具有較好的適應(yīng)性,較好地解決了頻偏對(duì)正弦波頻率估計(jì)的影響,估計(jì)性能接近CRLB。 本文研究了正弦波信號(hào)的頻率估計(jì)問題,首先推導(dǎo)了DFT相位差頻率估計(jì)的均方誤差,然后針對(duì)DFT相位差頻率估計(jì)不適用于頻偏較大的問題,提出了基于改進(jìn)DFT相位差的正弦波頻率估計(jì)方法。改進(jìn)方法較好地融合了DFT相位差分法和Rife算法的優(yōu)點(diǎn),能夠適應(yīng)各種頻偏,頻率估計(jì)性能接近CRLB,且算法計(jì)算簡單,具有較好的工程應(yīng)用價(jià)值。 [1]YAMADA T. High-accuracy estimations of frequency,amplitude,and phase with a modified DFT for asynchronous sampling[J].IEEE Transactions on Instrumentation and Measurement,2013,62(6):1428-1435. [2]FU H,KAM P Y. Phase-based,time-domain estimation of the frequency and phase of a single sinusoid in AWGN—the role and applications of the additive observation phase noise model[J].IEEE Transactions on Information Theory,2013,59(5):3175-3188. [3]RAMASAMY D,VENKATESWARAN S,MADHOW U.Compressive parameter estimation in AWGN[J].IEEE Transactions on Signal Processing,2014,62(8):2012-2027. [4]高瑞令,吳曉富,顏俊,等. 改進(jìn)的 DFT 正弦信號(hào)頻率估計(jì)[J].信號(hào)處理,2014,30(9):1072-1077.GAO Runling,WU Xiaofu,YAN Jun,et al.Frequency estimator based on autocorrelation with low SNR[J].Journal of Signal Processing,2014,30(9):1072-1077.(in Chinese) [5]侯盼衛(wèi),楊錄. 基于自相關(guān)檢測法和能量重心法的正弦信號(hào)頻率估計(jì)算法[J].科學(xué)技術(shù)與工程,2014(3):97-102.HOU Panwei,YANG Lu. Frequency estimation algorithm of sinusoid signal based on autocorrelation detection and energy centrobaric correction method[J].Science Technology and Engineering,2014(3):97-102.(in Chinese) [6]RIFE D C,BOORSTYN R R. Single tone parameter estimation from discrete time observation[J].IEEE Transactions on Information Theory,1974,20(5):591-598. [7]ABATZOGLOU T J.A fast maximum likelihood algorithm for the frequency estimation of a sinusoid based on Newton's method[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1985,33(1):77-89. [8]RIFE D C,VINCENT G A. Use of the discrete Fourier transform in the measurement of frequencies and levels of tones[J].Bell System Technical Journal,1970,49(2):97-228. [9]黃超,索繼東,于亮. 基于自相關(guān)函數(shù)相位的正弦信號(hào)頻率估計(jì)新算法[J].電訊技術(shù),2014,54(1):63-67. HUANG Chao,SUO Jidong,YU Liang.A novel algorithm for estimation of sinusoid frequency based on argument of sample autocorrelation function [J].Telecommunication Engineering,2014,54(1):63-67.(in Chinese) [10]周龍健,羅景青,房明星. 基于IIN算法和Rife算法的正弦波頻率估計(jì)算法[J].數(shù)據(jù)采集與處理,2013,28(6):839-842. ZHOU Longjian,LUO Jingqing,FANG Mingxing.Frequency estimation of sinusoid wave based on IIN algorithm and Rife algorithm[J].Journal of Data Acquisition and Processing,2013,28(6):839-842.(in Chinese) [11]孫宏軍,徐冠群. 基于相角判據(jù)的Rife算法的渦街信號(hào)處理方法[J].儀器儀表學(xué)報(bào),2013,34(12):2860-2866. SUN Honjun,XU Guanqun. Modified Rife frequency estimation algorithm based on phase criterion for vortex signal processing[J].Chinese Journal of Scientific Instrument,2013,34(12):2860-2866.(in Chinese) [12]劉福東,陳智遠(yuǎn). 基于Rife算法的頻率估計(jì)及其FPGA實(shí)現(xiàn)[J].工業(yè)控制計(jì)算機(jī),2014(4):89-90.LIU Fudong,CHEN Zhiyuan. Frequency estimation based on Rife algorithm and its implementation on FPGA[J].Industrial Control Computer,2014(4):89-90.(in Chinese) [13]劉渝. 快速高精度正弦波頻率估計(jì)綜合算法[J].電子學(xué)報(bào),1999,27(6):126-128. LIU Yu.A fast and accurate single frequency estimator synthetic approach[J].Acta Electronica Sinica,1999,27(6):126-128.(in Chinese) [14]齊國清,賈欣樂. 基于DFT相位的正弦波頻率和初相的高精度估計(jì)方法[J].電子學(xué)報(bào),2001,29(9):1164-1167. QI Guoqing,JIA Xinle. High accuracy frequency and phase estimation of single tone based on phase of DFT[J].Acta Electronica Sinica,2001,29(9):1164-1167.(in Chinese) 王曉峰(1987—),男,河北承德人,2015年獲博士學(xué)位,現(xiàn)為講師,主要研究方向?yàn)樾盘?hào)與信息處理; WANG Xiaofeng was born in Chengde,Hebei Province,in 1987. He received the Ph.D.degree in 2015. He is now a lecturer. His research concerns signal and information processing. Email:wxf870516@126.com 邢敏捷(1977—),女,吉林長春人,2009年獲碩士學(xué)位,現(xiàn)為工程師,主要研究方向?yàn)橥ㄐ排c信息系統(tǒng); XING Minjie was born in Changchun,Jilin Province,in 1977.She received the M.S. degree in 2009. She is now an engineer.Her research concerns communication and information system. 劉歌(1991—),女,山東威海人,2014年獲學(xué)士學(xué)位,現(xiàn)為碩士研究生,主要研究方向?yàn)槔仔盘?hào)處理; LIU Ge was born in Weihai,Shandong Province,in 1991. She received the B.S.degree in 2014. She is now a graduate student. Her research concerns radar signal processing. 趙汝鵬(1993—),男,廣東湛江人,2015年獲學(xué)士學(xué)位,現(xiàn)為碩士研究生,主要研究方向?yàn)槔走_(dá)信號(hào)處理。 ZHAO Rupeng was born in Zhanjiang,Guangdong Province,in 1993. He received the B.S.degree in 2015. He is now a graduate student.His research concerns radar signal processing. Sinusoidal Signal Frequency Estimation Based on Improved DFT Phase Difference WANG Xiaofeng1,XING Minjie2,LIU Ge1,ZHAO Rupeng1 (1.Information Countermeasure Department,Aviation University of Air Force,Changchun 130022,China;2.Unit 93175 of PLA,Changchun 130051,China) The frequency offset sensitivity problem of discrete Fourier transform(DFT) phase difference method in sinusoid wave frequency estimation is studied.An improved DFT phase difference frequency estimation method is presented. Firstly,the mean-squared error(MSE) of DFT phase difference method is deduced.And then,an improved DFT phase difference frequency estimation method based on Rife interpolation is proposed. The improved method has well solved the problem of sensitivity to frequency offset. The computer simulation results indicate that the improved method has higher estimation accuracy in any frequency offset,and its estimation performance is close to Cramer-Rao lower bound(CRLB). sinusoidal signal frequency estimation;frequency offset sensitivity;DFT phase difference;Rife interpolation 10.3969/j.issn.1001-893x.2016.10.012 2016-03-25; 2016-05-25Received date:2016-03-25;Revised date:2016-05-25 TN911.6 A 1001-893X(2016)10-1129-05 引用格式:王曉峰,邢敏捷,劉歌,等.基于改進(jìn)DFT相位差的正弦波頻率估計(jì)[J].電訊技術(shù),2016,56(10):1129-1133.[WANG Xiaofeng,XING Minjie,LIU Ge,et al.Sinusoidal signal frequency estimation based on improved DFT phase difference[J].Telecommunication Engineering,2016,56(10):1129-1133.] **通信作者:wxf870516@126.comCorresponding author:wxf870516@126.com14 性能分析及仿真驗(yàn)證
5 結(jié) 論