国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

凝乳酶的研究進(jìn)展

2016-11-11 07:34:39王欽博劉沛毅劉振民
食品科學(xué) 2016年3期
關(guān)鍵詞:凝乳酶皺胃凝乳

杭 鋒,洪 青,王欽博,劉沛毅,劉振民,陳 衛(wèi)*

(1.江南大學(xué)食品學(xué)院,食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 214122;2.乳業(yè)生物技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,光明乳業(yè)股份有限公司乳業(yè)研究院,上海 200436)

凝乳酶的研究進(jìn)展

杭 鋒1,2,洪 青2,王欽博2,劉沛毅2,劉振民2,陳 衛(wèi)1,*

(1.江南大學(xué)食品學(xué)院,食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 214122;2.乳業(yè)生物技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,光明乳業(yè)股份有限公司乳業(yè)研究院,上海 200436)

傳統(tǒng)干酪制作使用的凝乳酶來源于小牛皺胃,目前小牛皺胃酶的供應(yīng)量僅能滿 足世界干酪產(chǎn)量所需凝乳酶的20%~30%。小牛皺胃酶的供需矛盾和價(jià)格高昂等因素,使得尋求其替代物成為乳品領(lǐng)域科學(xué)研究的熱點(diǎn)之一。本文首先介紹了小牛皺胃酶的研究現(xiàn)狀,其次從動(dòng)物、植物、基因重組以及微生物來源,綜述了不同凝乳酶之間酶性質(zhì)差異以及凝乳酶在干酪應(yīng)用中的研究,旨在為凝乳酶的研究提供一定的理論參考,為尋找凝乳酶替代物提供思路。

凝乳酶;凝乳酶活力;蛋白水解活力;干酪

凝乳酶(milk-clotting enzymes,MCEs)是制作干酪時(shí)凝固牛乳用的酶制劑。MCEs的凝乳性能及蛋白水解能力會(huì)最終影響干酪得率、質(zhì)構(gòu)和風(fēng)味。傳統(tǒng)干酪加工中所使用的小牛皺胃酶(calf rennet)來源于未斷奶小牛第四胃(皺胃)。隨著世界干酪產(chǎn)量的不斷增加,小牛皺胃酶的供應(yīng)已出現(xiàn)世界性短缺。為此,國內(nèi)外學(xué)者進(jìn)行了大量的研究以尋找小牛皺胃酶的替代物,利用微生物生產(chǎn)MCEs是目前最有效的發(fā)展途徑。

1 小牛皺胃酶的凝乳機(jī)制

1.1 小牛皺胃酶

早在公元前6世紀(jì),小牛皺胃酶已被應(yīng)用于干酪制作中,是人類最早用于食品生產(chǎn)的酶之一[1]。小牛皺胃酶來源于未斷奶小牛的皺胃,其中主要有凝乳酶(chymosin,EC3.4.23.4)、胃蛋白酶A(pepsin A,EC 3.4.23.1)和胃亞蛋白酶(gastriscin或pepsin B或pepsin C,EC3.4.23.3)[2],凝乳酶根據(jù)第244位氨基酸殘基的不同又分為凝乳酶A(殘基為Asp)和凝乳酶B(殘基為Gly)[3];成年反芻動(dòng)物皺胃則主要分泌胃蛋白酶A。在最初狀態(tài)時(shí),凝乳酶是以酶原前體(preprochymosin)的形式分泌至皺胃中,16 個(gè)殘基組成的酶原前體被去除后轉(zhuǎn)變?yōu)槟槊冈╬rochymosin),由365 個(gè)氨基酸殘基組成,分子質(zhì)量為40 777 D[4]。在酸性條件下,非活性凝乳酶原被進(jìn)一步分解成兩種活性物質(zhì):當(dāng)pH值達(dá)到4.2時(shí),N端42 個(gè)氨基酸殘基被水解除去,生成由323 個(gè)氨基酸殘基組成分子質(zhì)量為35 600 D的凝乳酶(chymosin);在pH值為2.0時(shí),N端27 個(gè)氨基酸殘基被水解除去,生成由337 個(gè)氨基酸殘基組成分子質(zhì)量為37 400 D的假凝乳酶(pseudochymosin),該酶在pH<3.0或pH>6.0時(shí)穩(wěn)定,在pH值為4.5時(shí)進(jìn)一步轉(zhuǎn)變成凝乳酶(圖1)。

圖1 凝乳酶轉(zhuǎn)化過程Fig.1 Conversion process of chymosin[3]

1.2 小牛皺胃酶的凝乳機(jī)制

凝乳酶介導(dǎo)凝乳反應(yīng)涉及兩個(gè)步驟[5]:1)酶解酪蛋白(casein,CN):凝乳酶主要水解κ-CN中的Phe105-Met106的肽鍵,生成κ-酪蛋白巨肽(κ-casein macropeptide)和副κ-CN;2)當(dāng)足夠的κ-CN被水解時(shí),副κ-酪蛋白發(fā)生聚集形成三維網(wǎng)狀凝膠,Ca2+促發(fā)酪蛋白膠束聚集,進(jìn)而引起酪蛋白膠束失穩(wěn)并形成干酪凝塊(圖2)。Hsieh等[6]利用十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳(sodium dodecyl sulfate-polyacrylamide gels electrophoresis,SDS-PAGE)、二維凝膠電泳和質(zhì)譜研究手段的蛋白質(zhì)組學(xué)方法進(jìn)一步闡明了凝乳酶的凝乳機(jī)理。通常κ-CN的水解度要達(dá)到80%~90%時(shí)才能發(fā)生凝乳,在凝乳第二步非酶反應(yīng)過程,pH值的降低、溫度的升高以及Ca2+濃度的增加均可加速干酪凝乳過程[7]。

圖2 凝乳酶凝乳機(jī)制[6]Fig.2 Mechanism for the coagulation of milk proteins by chymosin[6]

目前,小牛皺胃凝乳酶供應(yīng)量僅能滿足20%~30%世界干酪產(chǎn)量。小牛皺胃凝乳酶的供需矛盾和價(jià)格高昂、宗教(伊斯蘭教和猶太教)、飲食(素食主義)以及食品法規(guī)等因素,使得尋求其替代物成為乳品領(lǐng)域科學(xué)研究的熱點(diǎn)之一。

2 小牛皺胃酶替代物的研究

小牛皺胃凝乳酶替代物應(yīng)當(dāng)具備以下幾個(gè)特征[8]:1)在干酪加工中酸性pH值和一定溫度條件下具有較高活力,在pH 6.0~6.3條件下形成的凝乳具有更加緊密和相互作用的結(jié)構(gòu);2)能迅速水解κ-CN和較低的蛋白水解活力,即凝乳酶活力(milk-clotting activity,MCA)/非特異性蛋白水解活力(proteolytic activity,PA)的比值必須高;3)具有較高的熱敏性、較低的熱處理性來確保乳清中沒有殘留酶活性,從而提高乳清得率。目前,國內(nèi)外學(xué)者主要從動(dòng)物、植物、基因重組以及微生物來源進(jìn)行凝乳酶替代物的相關(guān)研究。

2.1 動(dòng)物來源凝乳酶

2.1.1 小型反芻動(dòng)物凝乳酶

在地中海沿岸國家,來源于小型反芻動(dòng)物(小綿羊、小山羊)凝乳酶被廣泛用于生產(chǎn)多種原產(chǎn)地保護(hù)(protected designation of origin,PDO)干酪,如意大利的Fiore Sardo、Pecorino Romano和Canestrato Pugliese干酪以及希臘的Feta干酪。這種凝乳酶除了具有蛋白水解活力外,還具有使干酪產(chǎn)生特征風(fēng)味的解脂酶活性。解脂酶主要為胃前脂肪酶(pregastric lipases,PGLs)和胃前酯酶(pregastric esterases,PGEs)。PGEs的解脂作用影響游離 脂肪酸(free fatty acid,F(xiàn)FA)的含量和比例,在Fiore Sardo、Pecorino Romano和Canestrato Pugliese干酪成熟過程中水解脂肪酸生成FFA,最終使得這些干酪呈現(xiàn)辛辣的特征風(fēng)味[2,9]。

2.1.2 水牛凝乳酶

與小牛凝乳酶相比,水牛凝乳酶在穩(wěn)定性和蛋白水解活力等方面有細(xì)微差別。Mohanty等[10]從1~2月齡水牛皺胃組織中分離純化水牛凝乳酶,其分子質(zhì)量為35.6 kD,N端前8 個(gè)氨基酸組成(甘氨酸-谷氨酸-纈氨酸-丙氨酸-絲氨酸-纈氨酸-脯氨酸-亮氨酸)與小牛凝乳酶氨基酸序列相同。水牛凝乳酶在55 ℃條件下處理15 min能保持相對穩(wěn)定,60 ℃條件下處理15 min剩余酶活力為50%,較小牛凝乳酶的熱穩(wěn)定性稍高;在pH 5.5時(shí)具有最大的凝乳酶活力,隨著pH值升高,MCA逐漸降低,pH≥7.0時(shí)凝乳酶活性消失;MCA與PA的比例為3.03。

2.1.3 駱駝凝乳酶

駱駝凝乳酶由分子質(zhì)量為52 kD和39 kD兩種組分構(gòu)成[11],但通過基因克隆表達(dá)的駱駝凝乳酶SDS-PAGE表觀分子質(zhì)量為40 kD[12]。駱駝凝乳酶作用于駱駝乳κ-CN的位點(diǎn)為Phe97-Ile98的肽鍵[13],作用于牛乳κ-CN的水解位點(diǎn)仍是Phe105-Met106的肽鍵。與小牛凝乳酶相比,駱駝凝乳酶對牛乳具有更強(qiáng)的凝乳作用。在駱駝和小牛凝乳酶水解κ-CN的Michaelis-Menten模型中,與小牛凝乳酶相比,駱駝凝乳酶親和力(Km)約低30%,但催化速率(kcat)高約60%,導(dǎo)致催化效率(kcat/Km)提高了約15%。駱駝凝乳酶表面較低密度的負(fù)電荷簇降低了κ-CN中His-Pro簇的靜電引力,進(jìn)而降低了底物親和力,加速了酶-底物的分離[14]。

2.2 植物來源凝乳酶

幾乎所有的植物組織均發(fā)現(xiàn)具備凝乳功能的蛋白酶[15],5 種植物內(nèi)肽酶已得到明確描述,分別為絲氨酸(serine proteases,SPs)、半胱氨酸(cysteine proteases,CPs)、天冬氨酸(aspartic proteases,APs)、蘇氨酸(threonine proteases,TPs)和金屬蛋白酶(metallo proteases,MPs)。目前由于大部分植物蛋白酶凝乳存在過度蛋白水解特性降低干酪得率和產(chǎn)生苦味問題,在干酪生產(chǎn)中具有一定的局限性[16]。而部分植物天冬氨酸蛋白酶具有與小牛皺胃酶相似的特性,引起了食品工業(yè)的廣泛關(guān)注[17]。目前已報(bào)道的植物凝乳酶均屬于CPs、SPs和APs類型[15]。

2.2.1 APs型

從羅馬時(shí)期開始,含有蛋白酶的菜薊屬植物如刺苞菜薊、蒿草和朝鮮薊花朵水溶性提取物就已經(jīng)用于傳統(tǒng)綿羊或山羊乳干酪制作中[18]。刺苞菜薊花朵中含有能夠切斷κ-CN中的Phe105-Met106肽鍵并促使凝乳的APs[19],該粗酶可進(jìn)一步分離純化,并按其活力分為3 種活性蛋白酶異構(gòu)體。Sousa等[20]表明該酶3 種異構(gòu)體分離圖譜中僅峰2和峰3組分具有凝乳和蛋白水解酶活力,這兩種蛋白酶后來被命名為cardosin A(峰2)和cardosin B(峰3)。根據(jù)其水解特性和活力,cardosin A與凝乳酶相似,cardosin B與胃蛋白酶相似,cardosin B較cardosin A對酪蛋白水解度更高[21]。刺苞菜薊來源的凝乳酶由于其對牛乳αs-CN和β-CN水解會(huì)形成苦味肽而不用于牛乳干酪的生產(chǎn)中[19,21]。

2.2.2 CPs型

CPs是分布最廣泛的植物蛋白酶,主要來源于植物乳液中。目前,有關(guān)于菠蘿、牛角瓜、無花果、木瓜、生姜、獼猴桃以及野木瓜等來源CPs蛋白酶具有凝乳作用的報(bào)道[22-26]。由于該類蛋白酶具有較廣的溫度適宜范圍和pH值穩(wěn)定性,已在食品工業(yè)中也得到了廣泛應(yīng)用。CPs的活性中心具有一個(gè)CPs殘基,導(dǎo)致其最大的缺點(diǎn)是其酶活力易被空氣氧和金屬離子降低。因此,使用這類酶需要還原劑和金屬螯合劑,故而不具有經(jīng)濟(jì)性和便利性。

2.2.3 SPs型

SPs活性中心由SPs、組氨酸和Aps這3 種氨基酸殘基組成“催化三聯(lián)體”結(jié)構(gòu),哺乳動(dòng)物中的胰蛋白酶、胰凝乳蛋白酶家族及微生物中枯草桿菌蛋白酶家族均屬于SPs。已有茄屬植物、萵苣、鵲腎樹、大戟屬和榕屬植物來源SPs蛋白酶具有凝乳作用的報(bào)告,其中銀葉茄成熟漿果在墨西哥部分地區(qū)已用于制作Filata干酪Asadero長達(dá)數(shù)百年之久[16,27-31]。與CPs蛋白酶不同的是,在高溫、高pH值以及存在表面活性劑和氧化劑等嚴(yán)苛的條件下,SPs蛋白酶仍能保持穩(wěn)定和活性[22],這一特點(diǎn)在工業(yè)化生產(chǎn)中非常有用,但不符合干酪的加工需求。

2.3 基因重組凝乳酶

由于小牛皺胃酶價(jià)格昂貴與稀缺等原因,將小牛皺胃酶編碼基因在霉菌、食品級(jí)酵母和大腸桿菌(Escherichia coli)等宿主中并由lac、trp、trp-beta和gly A基因啟動(dòng)子控制表達(dá)來生產(chǎn)重組皺胃酶已成為解決現(xiàn)實(shí)問題的有效途徑之一。重組凝乳酶通常只含有一種基因變體,而小牛皺胃酶可能含有A、B、C 3 種基因變體外還含有胃蛋白酶[32]。通過黑曲霉、乳酸克魯維酵母(Kluyveromyces lactis)和E. coli的基因處理而產(chǎn)生的凝結(jié)劑分別稱為Chymogen(Genencor/Chr. Hansens)、Maxiren(Gist-brocades/DSM)和Chy-Max(Pfizer),它們在美國和英國被廣泛用于干酪生產(chǎn)中,超過50%的干酪已使用重組凝乳酶來生產(chǎn)。但一些國家如法國、德國和荷蘭禁止使用重組凝乳酶,動(dòng)物和微生物仍是干酪生產(chǎn)MCEs的主要來源。

2.4 微生物來源MCEs

許多微生物,尤其是霉菌和細(xì)菌來源的胞外蛋白酶具有與MCEs相似的性質(zhì),較植物和動(dòng)物來源的MCEs,微生物來源的MCEs具有生產(chǎn)成本低、更廣泛的生化多樣性以及簡便的基因改造方法。目前,微生物蛋白酶已占據(jù)了全球酶市場份額的65%,微生物MCEs更是占到了全球蛋白酶市場份額的33%。然而,微生物MCEs通常具有較高的蛋白水解能力,導(dǎo)致蛋白質(zhì)降解并轉(zhuǎn)化為乳清,對干酪得率具有負(fù)面作用,因此只有部分適于干酪生產(chǎn)[8]。

2.4.1 真菌來源MCEs

真菌來源MCEs與小牛皺胃酶具有相似的凝乳機(jī)制,但前者具有對干酪終產(chǎn)品不利的、更高的化學(xué)穩(wěn)定性和較高PA的影響。如嗜熱菌米黑根毛霉(Rhizomucor miehei)產(chǎn)生的MCE的MCA/PA比值較小牛皺胃酶低,但PA和耐熱性較小牛皺胃酶強(qiáng),導(dǎo)致了干酪得率降低,55 ℃條件下熱處理30 min后殘存PA達(dá)95%,成熟過程中對酪蛋白進(jìn)行非特異性水解,造成干酪苦味形成及質(zhì)構(gòu)缺陷;隨乳清排除的MCE對乳清蛋白也存在過度水解現(xiàn)象,降低了經(jīng)濟(jì)利用價(jià)值。也有研究發(fā)現(xiàn)純化的真菌MCEs與小牛MCEs混合物較單獨(dú)的小牛MCEs在干酪成熟和風(fēng)味形成具有一定的優(yōu)勢。此外,不同菌株產(chǎn)生的MCEs在氨基酸組成、pI、比活力和糖基化特性等方面存在明顯差異,從而表征出不同的酶學(xué)特性。近年來,已報(bào)道的真菌產(chǎn)酶水平及其凝乳酶的酶學(xué)特性見表1。

表1 不同真菌的MCEs產(chǎn)量及其酶學(xué)特性Table1 Production and characteristics of milk-clotting enzymes from different fuunnggii

2.4.2 細(xì)菌來源MCEs

近年 來,有關(guān)細(xì)菌MCEs的研究報(bào)道逐漸增加,相關(guān)菌株MCEs產(chǎn)量及其酶學(xué)特性見表2。芽孢桿菌(Bacillus spp.)主要在對數(shù)生長周期分泌蛋白酶,以中性和堿性蛋白酶居多,并主要屬于SPs、CPs和MPs家族,在pH 5.0~8.0較窄的范圍內(nèi)具有活性并且熱穩(wěn)定較低,由于其反應(yīng)速率中等,中性蛋白酶較動(dòng)物蛋白酶水解蛋白可產(chǎn)生更少的苦味物質(zhì)[48]。

表2 不同細(xì)菌MCEs產(chǎn)量及其酶學(xué)特性Table 2 Production and characteristics of milk-clotting enzymes from different bacteria

3 MCEs在干酪應(yīng)用中研究

干酪品質(zhì)主要由MCEs、乳內(nèi)源酶以及來源于發(fā)酵劑和非發(fā)酵微生物酶類引起的。蛋白質(zhì)水解是凝乳和干酪成熟過程中一個(gè)關(guān)鍵的生化反應(yīng)過程[59]。κ-CN的非特異水解會(huì)影響凝乳速率,進(jìn)而影響干酪的得率、質(zhì)構(gòu)和風(fēng)味,因此在研究一種潛在MCEs時(shí),評價(jià)其對酪蛋白的降解模式至關(guān)重要。

3.1 MCEs對干酪組成、理化指標(biāo)和得率的影響

干酪加工伴隨著酪蛋白、脂肪濃縮的脫水過程,因此,脂肪、蛋白回收率及其干酪得率是評判新型MCEs的重要指標(biāo)[60]。

將基因重組MCEs和板栗疫病菌(Cryphonectria parasitica)MCEs分別按1∶0、0∶1、67∶33和33∶67比例混合制作Cheddar干酪,發(fā)現(xiàn)4 組干酪在制作第1天時(shí)理化指標(biāo)間均無顯著差異[32]。以小牛MCEs和R. miehei NRRL 2034 MCEs制作的白奶酪在60 d成熟過程中較小牛MCEs干酪組在總固形物(total solids,TS)、總氮(total nitrogen,TN)和脂肪含量指標(biāo)上無顯著差異[61]。以小牛MCEs和解淀粉芽孢桿菌D4 MCEs制作的Cheddar干酪,除了微生物MCEs組在第40天和第60天的pH值顯著低于小牛MCEs組干酪外,水分、脂肪、蛋白質(zhì)、鹽含量均無顯著差異[62]。以Thermomucor indicae-seudaticae N31MCEs與R. miehei來源的商業(yè)化MCEs制作的半硬質(zhì)Prato干酪在酸度、水分含量、灰分及鹽含量均存在差異,T. indicae-seudaticae N31干酪組的酸度更高、水分含量更低、灰分和鹽含量更高[63];與商業(yè)化根毛霉MCEs制作Prato干酪的比較研究中,T. indicae-seudaticae N31 MCEs在凝乳過程中pH值降低程度高于根毛霉MCEs,前者干酪脫水作用更強(qiáng)、水分含量更低,進(jìn)而導(dǎo)致成熟過程中的蛋白水解程度和pH 4.6可溶性氮含量更低、硬度更高[61]。小牛皺胃酶、黑曲霉重組MCEs和R. miehei MCEs對白色鹽腌制奶酪60 d成熟期間的滴定酸度、干物質(zhì)和鹽含量影響顯著,在成熟初期,小牛皺胃酶干酪組在成熟起始階段滴定酸度值最高、鹽含量最低,重組MCEs組的干物質(zhì)含量最低,主要可能與其在排乳清階段形成可保留更多水的結(jié)構(gòu)有關(guān)[64]。不同來源MCEs對干酪得率的影響見表3。

表3 不同來源凝乳酶對干酪得率的影響Table3 Influence of milk-clotting enzymes on cheese yield

3.2 MCEs對干酪成熟過程的影響

干酪成熟是一個(gè)緩慢、費(fèi)用較高的過程,因此,加速干酪成熟所帶來經(jīng)濟(jì)效益十分可觀,干酪促熟主要集中在蛋白質(zhì)水解方面。微生物MCEs蛋白水解能力之間存在差異,對不同酪蛋白的水解能力有所不同,微生物MCEs由于較強(qiáng)的蛋白水解活力表現(xiàn)為對干酪成熟具有促進(jìn)作用。

如利用小牛MCEs、黑曲霉重組MCEs和R. miehei MCEs制作Braided干酪時(shí)發(fā)現(xiàn),R. miehei MCEs制作的干酪在第90天時(shí)水溶性氮(water soluble nitrogen,WSN)含量最大,成熟度最高,表明R. miehei MCEs具有較高的水解能力[67]。R. miehei和C. parasitica來源MCEs對綿羊酪蛋白的水解能力要高于小牛和綿羊凝乳酶,C. parasitica MCEs的蛋白水解程度較R. miehei MCEs更強(qiáng)[68]。小牛MCEs和R. miehei NRRL 2034 MCEs制作的白干酪在成熟過程中pH值均逐漸下降,可溶性氮(soluble nitrogen,SN)、揮發(fā)性脂肪酸(total volatile fatty acids,TVFAs)、酪氨酸(tyrosine,Tyr)和色氨酸(tryptophan,Try)含量均逐漸升高,但微生物MCEs干酪組pH值下降速率更快,SN、TVFAs、Tyr和Try含量更高,這也表明R. miehei NRRL 2034MCEs的蛋白水解和脂解能力更強(qiáng)[66]。以R. miehei凝乳酶制作的Malatya干酪在成熟過程中WSN較小牛MCEs干酪中更高,αs1-CN水解程度更強(qiáng),表現(xiàn)為質(zhì)地較軟和融化性較好[61]。隨著成熟期的延長,T. indicae-seudaticae N31和根毛霉制作的Prato干酪(pH 4.6)的可溶性氮和三氯乙酸可溶性氮的含量逐漸升高、硬度逐漸下降,經(jīng)毛細(xì)管電泳,αs1-CN 8P和αs1-CN 9P均在最初的19 d成熟期內(nèi)開始降解,αs1-CN 8P的降解產(chǎn)物αs1-Ι-CN 8P在成熟的前5 d即可觀察到,而αs1-CN 9P降解產(chǎn)物αs1-Ι-CN 9P在成熟33 d可明顯觀察到,并分別在43 d和33 d完全降解;β-CN也逐漸降解,生成γ-CN和γ2-CN,其中γ2-CN也在33 d后可明顯觀察到[60]。

3.3 MCEs對干酪質(zhì)構(gòu)和風(fēng)味的影響

干酪成熟過程中的流變學(xué)特征變化復(fù)雜,主要受αs1-CN、β-CN及其后續(xù)更加廣泛的蛋白水解影響,αs1-CN的水解程度與干酪融化性成正相關(guān),與干酪硬度成負(fù)相關(guān),而β-CN的水解則與干酪融化性成負(fù)相關(guān),與硬度成正相關(guān)[32]。干酪成熟過程中蛋白質(zhì)水解對風(fēng)味特性也有著極其重要的影響。

將基因重組MCEs和C. parasitica MCEs分別按不同比例混合制作Cheddar干酪發(fā)現(xiàn),隨著C. parasitica MCEs比例的增加,Cheddar干酪的融化性和流動(dòng)性逐漸增強(qiáng),硬度顯著提高;風(fēng)味、不良風(fēng)味強(qiáng)度和感官接受度方面無明顯差異;咀嚼過程中的苦味、致密度和硬度方面明顯增強(qiáng)。以100%重組MCEs制作的干酪酸味和苦味最弱、質(zhì)地最軟[32]。An Zhigang等[62]以小牛MCEs和解淀粉芽孢桿菌D4的MCEs制作Cheddar干酪發(fā)現(xiàn),硬度、彈性和內(nèi)聚性3 個(gè)指標(biāo)均呈下降趨勢,微生物MCEs組硬度顯著低于小牛MCEs組,而在彈性和內(nèi)聚性方面無差異;隨著成熟時(shí)間的增加,兩組干酪的儲(chǔ)能模量(G’)均呈逐漸下降趨勢,反映干酪內(nèi)部蛋白質(zhì)間相互作用力的損耗角正切(tanδ)最大值也逐漸下降,兩個(gè)流變學(xué)指標(biāo)組間無顯著差異。

以小牛MCEs和R. miehei NRRL 2034MCEs制作的白奶酪在60 d成熟過程中,由于R. miehei NRRL 2034MCEs的蛋白水解和解脂能力更強(qiáng),在風(fēng)味和質(zhì)構(gòu)上也表現(xiàn)出該組干酪較小牛MCEs干酪具有更強(qiáng)的風(fēng)味和較軟的質(zhì)構(gòu),但均未觀察到風(fēng)味缺陷和苦味,且微生物MCEs組干酪略高于小牛MCEs組干酪[66]。以R. miehei MCEs制備的Mozzarella干酪較小牛MCEs和重組MCEs具有最高的硬度,隨成熟期延長風(fēng)味和質(zhì)構(gòu)的感官評分而增加,但外觀評分則逐漸下降,R. miehei MCEs干酪組風(fēng)味和質(zhì)構(gòu)較其他兩組干酪評分更高[69]。由黑曲霉重組MCEs制備的白色鹽腌奶酪在色澤、外觀、滋氣味感官評分較高,色澤、外觀、滋氣味和質(zhì)構(gòu)方面的綜合感官評分非常接近R. miehei MCEs干酪組,且均高于小牛皺胃酶干酪組[64]。

4 結(jié) 語

由于我國原制干酪產(chǎn)業(yè)長期以來未形成大規(guī)模的工業(yè)化生產(chǎn),在乳品消費(fèi)市場中份額也較小,因此,關(guān)于原制干酪生產(chǎn)加工中所需MCEs等方面的研究一直未受重視。隨著我國干酪市場需求增長和加工產(chǎn)業(yè)的興起,必將進(jìn)一步加劇全球MCEs市場的需求。

本文綜述了不同來源的MCEs及其相應(yīng)的酶學(xué)性質(zhì)。微生物源MCEs因周期短、產(chǎn)量高、生產(chǎn)成本低、經(jīng)濟(jì)效益高等優(yōu)點(diǎn),是解決小牛皺胃酶短缺的有效途徑,篩選高產(chǎn)、高M(jìn)CA/PA比值MCEs菌株是該領(lǐng)域的重要研究工作。

[1] FOX P, MCSWEENEY P. Rennets: their role in milk coagulation and cheese ripening[M]. London: Springer, 1997: 1-49. DOI:10.1007/978-1-4613-1121-81.

[2] MOSCHOPOULOU E. Characteristics of rennet and other enzymes from small ruminants used in cheese production[J]. Small Ruminant Research, 2011, 101(1/3): 188-195. DOI:10.1016/ j.smallrumres.2011.09.039.

[3] MOHANTY A K, MUKHOPADHYAY U K, GROVER S, et al. Bovine chymosin: production by rDNA technology and application in cheese manufacture[J]. Biotechnology Advances, 1999, 17(2/3): 205-217. DOI:10.1016/S0734-9750(99)00010-5.

[4] KUMAR A, GROVER S, SHARMA J, et al. Chymosin and other milk coagulants: sources and biotechnological interventions[J]. Critical Reviews in Biotechnology, 2010, 30(4): 243-258. DOI:10.3109/07388 551.2010.483459.

[5] BRUNO M A, LAZZA C M, ERRASTI M E, et al. Milk clotting and proteolytic activity of an enzyme preparation from Bromelia hieronymi fruits[J]. LWT-Food Science and Technology, 2010, 43(4): 695-701. DOI:10.1016/j.lwt.2009.12.003.

[6] HSIEH J F, PAN P H. Proteomic profiling of the coagulation of milk proteins induced by chymosin[J]. Journal of Agricultural and Food Chemistry, 2012, 60(8): 2039-2045. DOI:10.1021/jf204582g.

[7] NAJERA A I, de RENOBALES M, BARRON L J R. Effects of pH, temperature, CaCl2and enzyme concentrations on the rennet-clotting properties of milk: a multifactor ial study[J]. Food Chemistry, 2003, 80(3): 345-352. DOI:10.1016/S0308-8146(02)00270-4.

[8] JUNIOR B R D C L, TRIBSTA A L, CRISTIANINI M. High pres sure homogenization of porcine pepsin protease: effects on enzyme activity, stability, milk coagulation profile and gel development[J]. PLoS ONE, 2015. DOI:10.1371/journal.pone.0125061.

[9 ] ADDIS M, PIREDDA G, PIRISI A. The use of lamb rennet paste in traditional sheep milk cheese production[J]. Small Ruminant Research, 2008, 79(1): 2-10. DOI:10.1016/j.smallrumres.2008.07.002.

[10] MOHANTY A K, MUKHOPADHYAY U K, KAUSHIK J K, et al. Isolation, p urification and characterization of chymosin from riverine buffalo (Bubalus bubalis)[J]. Journal of Dairy Research, 2003, 70(1): 37-43. DOI:10.1017/S0022029902005927.

[11] ELAGAMY E I. Physicochemical, molecular and immu nological characterization of camel calf rennet: a comparison with buffalo rennet[J]. Journal of Dairy Research, 2000, 67(1): 73-81. DOI:10.1017/ S0022029999003957.

[12] KAPPELER S R, va n den BRINK H J M, RAHBE K-NIELSEN H, et al. Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk[J]. Biochemical and Biophysical Research Communications, 2006, 342(2): 647-654 . DOI:10.1016/j.bbrc.2006.02.014.

[13] BENKERROUM N, DEHHAOUI M, FAYQ A E, et al. The effect of concentration of chymosin on the yield and sensory properties of camel cheese and on its microbiological quality[J]. International Journal of Dairy Technolog y, 2011, 64(2): 232-239. DOI:10.1111/ j.1471-0307.2010.00662.x.

[14] M±LLER LLER M K K, RATTRAY F P, S± RENSEN J C, et al. Comparison of the hydrolysis of bovine κ-casein by camel and bovine chymosin: a kinetic and specificity stud y[J]. Journal of Agricultural and Food Chemistry, 2012, 60(21): 5454-5460. DOI:10.1021/ jf300557d.

[15] SHAH M A, MIR S A, PARAY M A. Plant proteases as milk-clotting enzymes in cheesemaking: a review[J]. Dairy Scienc e & Technology, 2014, 94(1): 5-16. DOI:10.1007/s13594-013-0144-3.

[16] PIERO A R L, LVANA P, GOFFREDO P. Characterization of“l(fā)ettucine”, a serine-like protease from Lactuca sativa lea ves, as a nov el enzyme for milk clotting[J]. Journal of Agricultural and Food Chemistry, 2002, 50(8): 2439-2443. DOI:10.1021/jf011269k.

[17] GONZáLEZ-RáBADE N, BADILLO-CORONA J A, ARANDABARRADAS J S, et al. Productio n of plant proteases in vivo and in vitro: a review[J]. Biot echnology Advances, 2011, 29(6): 983-996. DOI:10.1016/j.biotechadv.2011.08.017.

[18] REIS P C M, LOUREN O P L, DOMINGOS A, et al. Applicability of extracts from Centaurea calcitrapa in ripening of bovine cheese[J]. International Dairy Jou rnal, 2000, 10(11): 775-780. DOI:10.1016/ S 0958-6946(00)00105-9.

[19] VERISSIMO P, ESTEVES C, FARO C, et al. The vegetable rennet of Cynara cardunculus L. contains two proteinases with chymosin and pepsin-like specificities[J]. Biotechnology Letters, 1995, 17(6): 621-626. DOI:10.10 07/BF00129389.

[20] SOUSA M J, MALCATA F X. Advances i n the role of a plant coagulant (Cynara cardunculus) in vitro and during ripening of cheeses from several milk species[J]. Le Lait, 2002, 82(2): 151-170. DOI:10.1051/lait:2002001.

[21] BARROS R, MALCATA F. Molecular characterization of peptid es released from β-lactoglobulin and α-lactalbumin via cardosins A and B[J]. Journal of Dairy Science, 2006, 89(2): 483-494. DOI:10.3168/jds. S0022-0302(06)72111-7.

[22] TOMAR R, KUMAR R, J AGANNADHAM M. A stable serine protease, wrightin, from the latex of the plant Wrightia tinctoria (Roxb.) R. Br.: purification and biochemical properties[J]. Journal of Agricultural and Food Chemistry, 2008, 56(4): 1479-1487. DOI:10.1021/jf0726536.

[23] HASHIM M M, DONG M, IQBAL M F, et al . Ginger protease used as coagulant enhances the proteolysis and sensory quality of Peshawari cheese compared to calf rennet[J]. Dairy Science & Technology, 2011, 91(4): 431-440. DOI:10.1007/s13594- 011-0021-x.

[24] HUANG X, CHEN L, LUO Y, et al. Purification, characterization, and milk coagulating properties of ginger proteases[J]. Journal of Dairy Science, 2011, 94(5): 225 9-2269. DOI:10.3168/jds.2010-4024.

[25 ] PIERO A R L, PUGLISI I, PETRONE G. Characterization of the purified actinidin as a plant coagulant of bovine milk[J]. European Food Research and Technology, 2011, 233(3): 517-524. DOI:10.1007/ s00217-011-1543-4.

[26] DUARTE A R, DUARTE D M R, MOREIRA K A, et al. Jacaratia corumbensis O. Kuntze a new vegetable source for milk-clotting enzymes[J]. Brazilian Archives of Biology and Technology, 2009, 52(1): 1-9. DOI:10.1590/S1516-891320090001 00001.

[27] NéSTOR G M, RUBí C G D, HéCTOR J C. Exploring the milk-clotting properties of a plant coagulant from the berries of S.elaeagnifolium var. Cavanilles[J]. Journal of Food Science, 2012, 77(1): C89-C94. DOI:10.1111/j.1750 -3841.2011.02468.x.

[28] TRIPATHI P, TOMAR R, JAGANNADHAM M V. Purification and biochemical characterisation of a novel protease streblin[J]. Food Chemistry, 2011, 125(3): 1005-1012. DOI:10.1016/ j.foodchem.2010.09.108.

[29] YADAV R P, PATEL A K, JAGANNADHAM M. Neriifolin S, a dimeric serine protease from Euphorbia neriifolia Linn.: purification and biochemical characterisation[J]. Food Chemistry, 2012, 132(3): 1296-1304. DOI:10.1016/j.foodchem.2011.11.107.

[30] KUMARI M, SHARMA A, JAGANNADHAM M. Religiosin B, a milk -clotting serine protease from Ficus religiosa[J]. Food Chemistry, 2012, 131(4): 1295-1303. DOI:10.1016/j.foodchem.2011.09.122.

[31] SHARMA A, KUMARI M, JAGANNADHAM M. Religiosin C, a cucumisin-like serine protease from Ficus religiosa[J]. Process Biochemistry, 2012, 47(6): 914-921. DOI:10.1016/ j.procbio.2012.02.015.

[32] KIM S Y, GUNASEKARAN S, OLSON N F. Combined use of chymosin and protease from Cryphonectria parasitica for c ontrol of meltability and firmness of Cheddar cheese[J]. Journal of Dairy Science, 2004, 87(2): 274-283. DOI:10.3168/jds.S0022-0302(04)73166-5.

[33] de LIMA C, CORTEZI M, LOVAGLIO R B, et al. Production of rennet in submerged ferm entation with the filamentous fungus Mucor miehei NRRL 3420[J]. World Applied Sciences Journal, 2008, 4(4): 578-585.

[34] NOUANI A, BELHAMICHE N, SLAMANI R, et al. Extracellular protease from Mucor pusillus: purification and characterization[J]. International Journal of Dairy Technology, 2009, 62(1): 112-117. DOI:10.1111/j.1471-0307.2008.00454.x.

[35] VENERA G D, MACHALINSKI C, ZUMARRAGA H, et al. Further characterization and kinetic parame ter determination of a milk-clotting protease from Mucor bacilliformis[J]. Applied Biochemistry and Biotechnology, 1997, 68(3): 207-216. DOI:10.1007/BF02785991.

[36] FERNáNDEZ L H, GALLEGO D M V, CASCONE O, et al. Solid state production of a Mucor bacilliformis acid protease[J]. Revista Argentina de Microbiologia, 1996, 29(1): 1-6.

[37] YEGIN S, FERNANDEZ-LAHORE M, GUVENC U, et al. Production of extracellular aspartic proteas e in submerged fermentation with Mucor mucedo DSM 80 9[J]. African Journal of Biotechnology, 2010, 9(38): 6380-6386.

[38] YEGIN S, GOKSUNGUR Y, FERNANDEZ-LAHORE M. Purification, structural characterization, and technological properties of an aspartyl proteinase from submerged cultures of Mucor mucedo DSM 809[J]. Food Chemistry, 2012, 133(4): 1312-1319. DOI:10.1016/ j.foodchem.2012.01.075.

[39] SATHYA R, PRADEEP B, ANGAYARKANNI J, et al. Production of milk clotting protease by a local isolate of Mucor circinelloides under SSF using agro-industrial wastes[J]. Biotechnology and Bioprocess Engineering, 2009, 14(6): 788-794. DOI:10.1007/s12257-008-0304-0.

[40] CHEN C C, CHO Y C, LAI C C, et al. Purification and characterization of a new rhizopuspepsin from Rhizopus oryzae NBRC 4749[J]. Journal of Agricultural and Food Chemistry, 2009, 57(15): 6742-6747. DOI:10.1021/jf8040337.

[41] KUMAR S, SHARMA N S, SAHARAN M R, et al. Extracellular acid protease from Rhizopus oryzae: purification and characterization[J]. Process Biochemistry, 2005, 40(5): 1701-1705. DOI:10.1016/ j.procbio.2004.06.047.

[42] VISHWANATHA K S, APPU R A G, SINGH S A. Production and characterization of a milk-clotting enzyme from Aspergillus oryzae MTCC 5341[J]. Applied Microbiology and Biotechnology, 2010, 85(6): 1849-1859. DOI:10.1007/s00253-009-2197-z.

[43] FAZOUANE-NAIMI F, MECHAKRA A, ABDELLAOUI R, et al. Characterization and cheese-making properties of rennet-like enzyme produced by a local Algerian isolate of Aspergillus niger[J]. Food Biotechnology, 2010, 24(3): 258-269. DOI:10.1080/08905436.2010.507149.

[44] ZHANG Z G, WANG C Z, YAO Z Y, et al. Isolation and identification of a fungal strain QY229 producing milk-clotting enzyme[J]. European Food Research and Technology, 2011, 232(5): 861-866. DOI:10.1007/ s00217-011-1454-4.

[45] SILVA B, GERALDES F, MURARI C, et al. Production and characterization of a milk-clotting protease produced in submerged fermentation by the thermophilic fungus Thermomucor indicaeseudaticae N31[J]. Applied Biochemistry and Biotechnology, 2014, 172(4): 1999-2011. DOI:10.1007/s12010-013-0655-7.

[46] ALMEIDA C M, GOMES D, FARO C, et al. Engineering a cardosin B-derived rennet for sheep and goat cheese manufacture[J]. Applied Microbiology & Biotechnology, 2015, 99(1): 269-281. DOI:10.1007/ s00253-014-5902-5.

[47] ZHAO X, WANG J, ZHENG Z, et al. Production of a milk-clotting enzyme by glutinous rice fermentation and partial characterization of the enzyme[J]. Journal of Food Biochemistry, 2015, 39(1): 70-79. DOI:10.1111/jfbc.12108.

[48] SINGH T, DRAKE M, CADWALLADER K. Flavor of Cheddar cheese: a chemical and sensory perspective[J]. Comprehensive Reviews in Food Science and Food Safety, 2003, 2(4): 166-189. DOI:10.1111/j.1541-4337.2003.tb00021.x.

[49] HE X L, REN F Z, GUO H Y, et al. Purification and properties of a milk-clotting enzyme produced by Bacillus amyloliquefaciens D4[J]. Korean Journal of Chemical Engineering, 2011, 28(1): 203-208. DOI:10.1007/s11814-010-0347-8.

[50] HE X L, ZHANG W B, REN F Z, et al. Screening fermentation parameters of the milk-clotting enzyme produced by newly isolated Bacillus amyloliquefaciens D4 from the Tibetan Plateau in China[J]. Annals of Microbiology, 2012, 62(1): 357-365. DOI:10.1007/s13213-011-0270-1.

[51] DING Z Y, WANG W F, WANG B D, et al. Production and characterization of milk-clotting enzyme from Bacillus amyloliquefaciens JNU002 by submerged fermentation[J]. European Food Research and Technology, 2012, 234(3): 415-421. DOI:10.1007/ s00217-011-1650-2.

[52] DING Z Y, AI L Z, OUYANG A, et al. A two-stage oxygen supply control strategy for enhancing milk-clotting enzyme production by Bacillus amyloliquefaciens[J]. European Food Research and Technology, 2012, 234(6): 1043-1048. DOI:10.1007/s00217-012-1723-x.

[53] SHIEH C J, PHAN THI L A, SHIH I L. Milk-clotting enzymes produced by culture of Bacillus subtilis natto[J]. Biochemical Engineering Journal, 2009, 43(1): 85-91. DOI:10.1016/ j.bej.2008.09.003.

[54] DING Z Y, LIU S P, GU Z H, et al. Production of milk-clotting enzyme by Bacillus subtilis B1 from wheat bran[J]. African Journal of Biotechnology, 2011, 10(46): 9370-9378. DOI:10.5897/AJB10.1647.

[55] LI Y, LIANG S, ZHI D J, et al. Purification and characterization of Bacillus subtilis milk-clotting enzyme from Tibet Plateau and its potential use in yak dairy industry[J]. European Food Research and Technology, 2012, 234(4): 733-741. DOI:10.1007/s00217-012-1663-5.

[56] EL-BENDARY M A, MOHARAM M E, ALI T H. Purification and characterization of milk clotting enzyme produced by Bacillus sphaericus[J]. Journal of Applied Sciences Research, 2007, 3(8): 695-699.

[57] AGRAHARI S, WADHWA N. Isolation and characterization of feather degrading enzymes from Bacillus megaterium SN1 isolated from Ghazipur poultry waste site[J]. Applied Biochemistry and Microbiology, 2012, 48(2): 175-181. DOI:10.1134/ S0003683812020020.

[58] AGEITOS J, VALLEJO J, SESTELO A, et al. Purification and characterization of a milk-clotting protease from Bacillus licheniformis strain USC13[J]. Journal of Applied Microbiology, 2007, 103(6): 2205-2213. DOI:10.1111/j.1365-2672.2007.03460.x.

[59] AZARNIA S, ROBERT N, LEE B. Biotechnological methods to accelerate Cheddar cheese ripening[J]. Critical Reviews in Biotechnology, 2006, 26(3): 121-143. DOI:10.1080/07388550600840525.

[60] ALVES L, MERHEB-DINI C, GOMES E, et al. Yield, changes in proteolysis, and sensory quality of Prato cheese produced with different coagulants[J]. Journal of Dairy Science, 2013, 96(12): 7490-7499. DOI:10.3168/jds.2013-7119.

[61] HAYALOGLU A, KARATEKIN B, GURKAN H. T hermal stability of chymosin or microbial coagulant in the manufacture of Malatya, a Halloumi type cheese: proteolysis, microstructure and functional properties[J]. International Dairy Journal, 2014, 38(2): 136-144. DOI:10.1016/j.idairyj.2014.04.001.

[62] AN Z G, HE X L, GAO W D, et al. Characteristics of miniature Cheddartype cheese made by microbial rennet from Bacillus amyloliquefaciens: a comparison with commercial calf rennet[J]. Journal of Food Science, 2014, 79(2): 214-221. DOI:10.1111/1750-3841.12340.

[63] MERHEB-DINI C, GARCIA G A C, PENNA A L B, et al. Use of a new milk-clotting protease from Thermomucor indicaeseudaticae N31 as coagulant and changes during ripening of Prato cheese[J]. Food Chemistry, 2012, 130(4): 859-865. DOI:10.1016/ j.foodchem.2011.07.105.

[64] ?EPO?LU F, GüLER-AKtN M B. Eff ects of coagulating enzyme types (commercial calf rennet, Aspergillus niger var. awamori as recombinant chymosin and rhizomucor miehei as microbial rennet) on the chemical and sensory characteristics of white pickled cheese[J]. African Journal of Biotechnology, 2013, 12(37): 5588-5594. DOI:10.5897/AJB2013.12912.

[65] TUBESHA Z, AL-DELAIMY K. Ren nin-like milk coagulant enzyme produced by a local isolate of Mucor[J]. International Journal of Dairy Technology, 2003, 56(4): 237-241. DOI:10.1046/j.1471-0307.2003.00113.x.

[66] ABBAS H M, FODA M S, KASSEM J M, et al. Pro duction of white soft cheese using fungal coagulant produced by solid state fermentation technique[J]. World Applied Sciences Journal, 2013, 25(6): 939-944. DOI:10.5829/idosi.wasj.2013.25.06.13385.

[67] ?ELEBI M, ?IM?EK B. Effec ts of different coagulant enzymes used on quality of traditional ?rgü cheese (Braided cheese)[J]. Mljekarstvo, 2015, 65(1): 57-65. DOI:10.15567/mljekarstvo.2015.0108.

[68] TRUJILLO A J, GUAMIS B, LAENCINA J, et al. Proteolyt ic activities of some milk clotting enzymes on ovine casein[J]. Food Chemistry, 2000, 71(4): 449-457. DOI:10.1016/S0308-8146(00)00170-9.

[69] AHMED N S, EL-GAWAD M, EL-ABD M M, et al. Properti e s of buffalo Mozzarella cheese as affected by type of coagulante[J]. Acta Scientiarum Polonorum Technologia Alimentaria, 2011, 10(3): 339-357.

Advances in Research on Milk-Clotting Enzymes

HANG Feng1,2, HONG Qing2, WANG Qinbo2, LIU Peiyi2, LIU Zhenmin2, CHEN Wei1,*
(1. State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; 2. State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co. Ltd., Shanghai 200436, China)

Calf rennet is conventionally used as milk coagulant for the production of cheese. However, the supply of calf rennet is not equivalent to the demand in cheese industry, which merely meets 20%–30% of the global demand for cheese production. Due to the scarcity and high price of calf rennet, it is necessary and urgent to find potential substitutes. This review gives an overview of the current discoveries of calf rennet, the characteristics of different types of milkclotting enzymes including animal rennet, recombinant chymosin, plant- and microbial-derived coagulants, and specifies the application of coagulants in cheese production. The objective of this review is to provide the fundamental theory and inspiring ideas for the researchers and manufacturers to find calf rennet substitutes.

chymosin; milk-clotting activity; proteolytic activity; cheese

10.7506/spkx1002-6630-201603047

TS252.1

A

1002-6630(2016)03-0273-07

杭鋒, 洪青, 王欽博, 等. 凝乳酶的研究進(jìn)展[J]. 食品科學(xué), 2016, 37(3): 273-279. DOI:10.7506/spkx1002-6630-201603047. http://www.spkx.net.cn

HANG Feng, HONG Qing, WANG Qinbo, et al. Advances in research on milk-clotting enzymes[J]. Food Science, 2016, 37(3): 273-279. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-201603047. http://www.spkx.net.cn

2015-07-20

上海市科委青年科技啟明星人才計(jì)劃項(xiàng)目(14QB1400200);“十二五”國家科技支撐計(jì)劃項(xiàng)目(2013BAD18B02)

杭鋒(1982—),男,高級(jí)工程師,博士研究生,研究方向?yàn)槿槠房茖W(xué)與技術(shù)。E-mail:fhang0427@126.com

*通信作者:陳衛(wèi)(1966—),男,教授,博士,研究方向?yàn)槭称飞锛夹g(shù)。E-mail:chenwei66@jiangnan.edu.cn

猜你喜歡
凝乳酶皺胃凝乳
Little Miss Muffet
試論奶牛皺胃變位的發(fā)病機(jī)制和整復(fù)
奶牛皺胃右方變位扭轉(zhuǎn)方向之我見
摔倒致奶牛形成皺胃左方變位情形的報(bào)道
凝乳條件對干酪凝乳質(zhì)構(gòu)及成品的影響分析
米黑毛霉UV-LiCl-6凝乳酶酶學(xué)特性研究
奶牛飼喂亞麻籽粉和注入葵花籽油后皺胃氧化狀態(tài)
飼料博覽(2017年8期)2017-04-04 12:11:59
干酪用牛凝乳酶替代品的研究進(jìn)展*
牛凝乳酶原基因在畢赤酵母中的表達(dá)及其酶學(xué)特性的研究
米黑毛霉產(chǎn)凝乳酶固體發(fā)酵培養(yǎng)基優(yōu)化
双流县| 凉山| 崇义县| 璧山县| 安阳县| 定襄县| 和田县| 新蔡县| 墨竹工卡县| 巫山县| 剑河县| 社会| 高阳县| 嘉定区| 广昌县| 靖安县| 德州市| 蓝田县| 朔州市| 顺义区| 阿拉尔市| 察雅县| 五莲县| 静安区| 精河县| 绥宁县| 光山县| 永昌县| 通化市| 黔西县| 句容市| 大关县| 孙吴县| 乃东县| 闻喜县| 依安县| 五河县| 庄河市| 苏州市| 五大连池市| 缙云县|