江思宏,梁清玲,王少懷,張莉莉,劉春花,劉翼飛
1)中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所, 國土資源部成礦作用與資源評價重點實驗室, 北京 100037;2)四川省冶金地質(zhì)勘查局六〇六大隊, 四川成都 611730; 3)福州大學(xué)紫金礦業(yè)學(xué)院, 福建福州 350108
福建上杭盆地發(fā)現(xiàn)3.4 Ga碎屑鋯石
江思宏1),梁清玲2),王少懷3),張莉莉1),劉春花1),劉翼飛1)
1)中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所, 國土資源部成礦作用與資源評價重點實驗室, 北京 100037;2)四川省冶金地質(zhì)勘查局六〇六大隊, 四川成都 611730; 3)福州大學(xué)紫金礦業(yè)學(xué)院, 福建福州 350108
碎屑鋯石已經(jīng)成為研究區(qū)域地質(zhì)演化的一種重要手段。本文對華夏地塊東部上杭盆地底部產(chǎn)出的含礫石英砂巖中的碎屑鋯石開展了LA-MC-ICP-MS U-Pb測年和Hf同位素測量。結(jié)果表明, 這些碎屑鋯石主要是巖漿鋯石, 鋯石年齡變化于328~3 403 Ma, 至少記錄了10期的巖漿活動事件, 表明該地區(qū)曾經(jīng)歷了長期復(fù)雜的地質(zhì)演化歷史。與華夏地塊其他地區(qū)的碎屑鋯石或捕獲鋯石一樣, 上杭盆地這些碎屑鋯石年齡數(shù)據(jù)記錄下了諸如晚太古代—早元古代地殼生長事件、哥倫比亞超大陸和Rodinia超大陸的匯聚與裂解、岡瓦納大陸的聚合等全球主要地質(zhì)事件, 以及具有華夏地塊特征的早古生代強烈的板內(nèi)造山運動(武夷—云開運動)。最高峰值年齡出現(xiàn)在450 Ma, 表明研究區(qū)附近最為強烈的事件是加里東運動(當(dāng)?shù)胤Q作武夷—云開運動, 或者廣西運動)。Hf同位素數(shù)據(jù)表明, ?Hf(t)= -27.2 ~ 19.8, 絕大多數(shù)εHf(t)值小于0, 兩階段虧損地幔Hf模式年齡(tDM2)介于1 124~3 979 Ma, 峰值1 800~1 900 Ma, 表明其早期巖漿活動主要與大規(guī)模的新生地殼有關(guān), 而晚期主要表現(xiàn)為對早期形成地殼的大規(guī)模改造, 古老物質(zhì)的再循環(huán), 很少有新生地殼增生。
碎屑鋯石; 前寒武紀(jì)地質(zhì); 華夏地塊; 上杭盆地; 福建
自從李獻(xiàn)華等(1989)最早報道了在華南花崗巖中發(fā)現(xiàn)了25億年的太古代殘留鋯石, 證明華南確實存在太古代古老地殼的再循環(huán)物質(zhì), 有很多學(xué)者在華南的廣大地區(qū)發(fā)現(xiàn)和報道了太古宙的碎屑鋯石或捕獲鋯石, 并對其地質(zhì)意義進(jìn)行了深入探討(如:李獻(xiàn)華等, 1991, 1998; 甘曉春等, 1996; 于津海等,2005; 向磊和舒良樹, 2010; Yu et al., 2010; Wan et al., 2010; Wang et al., 2011, 2015; Yao et al., 2011,2012; Li et al., 2012, 2014; Li Z X et al., 2012; Yao W H et al., 2012, 2015; 徐亞軍等, 2013; Zhao et al.,2014, 2015; Lan et al., 2015; Zhang et al., 2015;Zhou et al., 2015; Zheng et al., 2011), 其中徐亞軍等(2013)在廣西南寧西部的西大明山寒武系砂巖中發(fā)現(xiàn)了一顆結(jié)晶年齡達(dá)4.1 Ga的碎屑鋯石, 這是目前報道的在華南地區(qū)發(fā)現(xiàn)的最古老的鋯石。到目前為止, 華夏地塊上發(fā)現(xiàn)的地表出露最古老的巖石是浙江的八都巖群和陳蔡巖群以及福建的麻源群變質(zhì)巖,年齡在1.89~1.83 Ga, 屬于早元古代晚期(Li and Li,2007; Liu et al., 2009; Yu et al., 2009; Xia et al., 2012;Li et al., 2014), 對于華夏地塊到底有沒有太古宙基底, 仍然存在很大爭議(Zheng et al., 2011; Li et al.,2014)。
福建上杭火山盆地是我國東南沿海地區(qū)眾多中生代火山盆地中的一個典型代表, 沉積有早白堊世的雜色粗粒碎屑巖和火山巖, 以及晚白堊世的碎屑巖, 總厚度超過2 890 m。為了對該盆地活動的時間進(jìn)行限定, 我們曾對盆地底部的底礫巖開展了碎屑鋯石測年, 發(fā)現(xiàn)了一些太古宙的碎屑鋯石, 有關(guān)數(shù)據(jù)已經(jīng)發(fā)表(Jiang et al., 2015), 本次工作我們又補充測量了18顆碎屑鋯石, 并開展了鋯石的Hf同位素測量, 為該區(qū)的地質(zhì)演化和華夏地塊的前寒武紀(jì)地質(zhì)與演化研究提供基礎(chǔ)數(shù)據(jù)。
上杭火山盆地位于華夏地塊東部(圖1a), 處于宣和復(fù)背斜和云霄—上杭深斷裂交匯處。區(qū)域范圍內(nèi)出露的最古老基底為新元古界千枚巖和細(xì)粒變質(zhì)砂巖, 位于上杭盆地東北部(圖1b)。這些前寒武紀(jì)基底被泥盆—石炭系碎屑巖和灰?guī)r不整合覆蓋。白堊系火山-沉積巖主要產(chǎn)在上杭盆地內(nèi)(圖1b), 為早白堊世雜色粗粒碎屑巖和火山巖, 以及晚白堊世的碎屑巖。地層走向NW—SE, 總厚度大于2 890 m,出露面積超過100 km2。根據(jù)巖石組合和形成的先后時間順序, 這些巖石分別被劃分為下白堊統(tǒng)石帽山群和上白堊統(tǒng)赤石群, 這兩個群又分別由黃坑組和寨下組, 以及沙縣組和崇安組組成。
黃坑組由上下兩段組成, 其下段為雜色復(fù)成分礫巖、砂質(zhì)礫巖, 夾粉砂巖, 代表上杭盆地沉積的開始; 上段噴發(fā)不整合沉積在其下段巖層上, 含有大量的火山巖, 包括玄武質(zhì)安山巖、安山巖、粗面安山巖和英安巖, 并夾有砂質(zhì)礫巖和粉砂巖。
寨下組整合沉積在黃坑組上面, 也是由上下段地層組成, 下段由雜色復(fù)成分礫巖、凝灰質(zhì)礫巖和砂質(zhì)礫巖組成, 夾有含礫石的硬砂巖、粉砂巖和流紋質(zhì)晶屑凝灰?guī)r; 上段由流紋巖、流紋斑巖、流紋質(zhì)晶屑凝灰?guī)r、流紋質(zhì)晶質(zhì)碎屑熔結(jié)凝灰?guī)r, 夾有少量火山角礫巖、玄武質(zhì)安山巖和凝灰?guī)r, 不整合覆蓋在寨下組下段和其他更老的地層上面。
沙縣組地層出露在上杭盆地的西部, 巖性主要為紅色粉砂巖、粉砂質(zhì)泥巖和泥巖, 夾有復(fù)成分砂質(zhì)礫巖、含礫砂巖和硬砂巖。崇安組地層出露在上杭盆地的西北部, 巖性主要為紅色復(fù)成分礫巖、砂質(zhì)礫巖夾含礫硬砂巖。
總的來說, 上杭火山盆地經(jīng)歷了從雜色粗粒碎屑沉積(黃坑組下段), 到中基性和中酸性火山噴發(fā)(黃坑組上段), 再到雜色粗粒碎屑巖(寨下組下段),和中酸性和酸性火山噴發(fā)(寨下組上段)的演化。雜色粗粒碎屑巖主要沉積在黃坑組下段和寨下組的下段, 礫石含量達(dá)60%~70%, 礫石大小80~400 mm。中基性至酸性火山巖的分布受中心式噴發(fā)機制的控制, 與NW向深斷裂有關(guān), 并且僅發(fā)育在黃坑組和寨下組。根據(jù)我們對上杭盆地內(nèi)的火山巖開展的鋯石U-Pb定年結(jié)果, 上杭盆地火山活動的形成時間從大約105~98 Ma, 持續(xù)了大約7 Ma(Jiang et al.,2015)。
樣品SH12-5采自悅洋礦區(qū)西北部的黃坑組下段, 地理坐標(biāo): 25°11′29.6″N, 116°19′43.6″E(圖1b),巖性為紫紅色含礫石英砂巖(圖2)。
圖1 研究區(qū)大地構(gòu)造位置圖(a)與福建上杭火山盆地地質(zhì)簡圖(b)(改編自Jiang et al., 2015)Fig. 1 Sketch tectonic map showing the location of the study area (a) and simplified geological map of the Shanghang Basin (b) (modified after Jiang et al., 2015)圖中標(biāo)出了開展碎屑鋯石測年樣品的采樣位置Also shown is the sample location for LA-MC-ICP-MS detrital zircon U-Pb age dating reported in this paper
圖2 上杭火山盆地底部紫紅色含礫石英砂巖野外(a)和鏡下照片(b) (Q-石英)Fig. 2 Outcrop photograph (a) and photomicrograph (b) of the conglomerate-bearing quartz sandstone from the basal part of Shanghang Basin (Q-Quartz)
圖3 含礫石英砂巖中代表性鋯石的CL圖像(單位: Ma)Fig. 3 Representative CL images of zircon grains of the conglomerate-bearing quartz sandstone(unit: Ma)圓圈、圓圈附近的數(shù)字及數(shù)值分別代表激光原位剝蝕位置、分析點號和鋯石U-Pb年齡Circle, the number near the circle and values represent the position of the laser in situ ablation, analytical point number and zircon U-Pb ages, respectively
圖4 鋯石U-Pb諧和圖Fig. 4 Zircon U-Pb concordia diagram
圖5 含礫石英砂巖中碎屑鋯石年齡直方圖Fig. 5 Histogram of the detrital zircon ages from the conglomerate-bearing quartz sandstone鋯石年齡小于1 000 Ma, 采用206Pb/238U年齡值;鋯石年齡大于1 000 Ma, 采用207Pb/206Pb年齡值The206Pb/238U age is used to represent the zircon age younger than 1 000 Ma, and the207Pb/206Pb age is used to represent the zircon age older than 1 000 Ma
用于LA-MC-ICP-MS鋯石U-Pb測年的鋯石樣品挑選是由廊坊市科大巖石礦物分選技術(shù)服務(wù)公司完成的。將挑選顆粒較好的鋯石用環(huán)氧樹脂固定,待環(huán)氧樹脂充分固化后拋光至鋯石露出核部, 然后進(jìn)行鋯石的陰極發(fā)光(CL)和電子相分析。鋯石測年是在中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所LA-MC-ICP-MS實驗室完成, 鋯石定年分析所用儀器為Finnigan Neptune型MC-ICP-MS及與之配套的Newwave UP 213激光剝蝕系統(tǒng)。采用單點剝蝕的方式, 數(shù)據(jù)分析前用鋯石GJ-1進(jìn)行調(diào)試儀器, 使之達(dá)到最優(yōu)狀態(tài), 鋯石U-Pb定年以鋯石GJ-1為外標(biāo),U、Th含量以鋯石M127(U: 923×10-6; Th: 439×10-6;Th/U)0.475為外標(biāo)進(jìn)行校正(Nasdala et al., 2008)。測試過程中在每測定5~7個樣品前后重復(fù)測定兩個鋯石GJ-1對樣品進(jìn)行校正, 并測量一個鋯石Plesovice, 觀察儀器的狀態(tài)以保證測試的精確度。數(shù)據(jù)處理采用ICPMSDataCal 4.3程序(Liu et al.,2008), 測量過程中絕大多數(shù)分析點206Pb/204Pb>1000, 未進(jìn)行普通鉛校正,204Pb由離子計數(shù)器檢測,204Pb含量異常高的分析點可能受包體等普通Pb的影響, 對204Pb含量異常高的分析點在計算時剔除, 鋯石年齡諧和圖用Isoplot 3.0程序獲得。詳細(xì)實驗測試過程可參見侯可軍等(2009)。本次樣品分析過程中, Plesovice標(biāo)樣的分析結(jié)果為(337.4± 2.6) Ma(2σ, n=4, MSWD=0.003), 對應(yīng)的年齡推薦值為(337.1±0.4) Ma(2σ)(Sláma et al., 2008) , 兩者在誤差范圍內(nèi)完全一致。
鋯石原位Hf同位素分析測試是在中國地質(zhì)科學(xué)院地質(zhì)研究所大陸動力學(xué)國家實驗室的N e w w a v e U P 2 1 3紫外激光剝蝕系統(tǒng)(LA-MC-ICP-MS)上完成的。實驗過程中使用鋯石國際標(biāo)樣GJ1為參考, Hf同位素分析點在U-Pb分析點上進(jìn)行, 采用He作為剝蝕物質(zhì)載氣, 剝蝕直徑采用44 μm, 剝蝕時間為26.2 s。分析流程及Yb、Lu的校正方法詳見侯可軍等(2007)。
表1 含礫石英砂巖中碎屑鋯石的 LA-ICP-MS 測年結(jié)果Table 1 LA-ICP-MS zircon U-Pb ages of the conglomerate-bearing quartz sandstone
續(xù)表1
表2 含礫石英砂巖中的碎屑鋯石原位 Hf 同為素分析結(jié)果table 2 In situ zircon Hf isotopic compositions of the conglomerate-bearing quartz sandstone
續(xù)表2
2.1 鋯石U-Pb測年結(jié)果
樣品SH12-5的含礫石英砂巖中所含碎屑鋯石形態(tài)為圓形到半自形結(jié)構(gòu), 鋯石晶體長度為100~150 μm, 半自形晶鋯石的長寬比從1:1到2:1。除了一顆鋯石的Th/U比值為0.17, 小于0.2, 其他均大于0.2(表1), 并且大多數(shù)鋯石具有震蕩的生長環(huán)帶, 因此可以認(rèn)為鋯石主要是巖漿成因(圖3)。在諧和圖上(圖4), 可以看到>1.4 Ga的鋯石都不同程度地發(fā)生了Pb的丟失。因此, 對于206Pb/238U年齡小于1 000 Ma的鋯石, 采用206Pb/238U年齡值; 對于206Pb/238U年齡大于1 000 Ma的鋯石, 采用207Pb/206Pb年齡值, 結(jié)果43粒鋯石中獲得了42個有效的年齡數(shù)據(jù), 這些鋯石年齡變化于328~3 403 Ma,主要峰值出現(xiàn)在450 Ma(圖5)其中太古宙年齡的鋯石有6顆, 元古宙年齡的鋯石有16顆, 古生代年齡的鋯石有20顆。在這42個鋯石測年數(shù)據(jù)中, 其中有17個鋯石的測點年齡相對比較集中, 其206Pb/238U表面年齡范圍從(440.4±6.8) Ma到(450.7±10.4) Ma, 獲得的加權(quán)平均年齡為(445.8± 2.5) Ma(MSWD=0.24; Jiang et al., 2015), 被解釋為這些鋯石原巖(應(yīng)為巖漿巖)的侵位年齡。
2.2 鋯石Hf同位素分析結(jié)果
碎屑鋯石原位Hf同位素分析結(jié)果詳見表2 , 并投在圖6中。
對含礫石英砂巖中的碎屑鋯石進(jìn)行了鋯石Hf同位素分析, 42個鋯石測點給出了變化較大的Hf同位素組成, 其176Hf/177Hf變化于0.280 759 ~0.282 450, ?Hf(t)= -27.2 ~ 19.8, 絕大多數(shù)εHf(t)值小于0(表2, 圖6b)。兩階段虧損地幔Hf模式年齡(tDM2)介于1 124~3 979 Ma, 峰值1 800~1 900 Ma(圖6a;表2)。
3.1 鋯石形態(tài)對源區(qū)的示蹤
對于碎屑鋯石來說, 其形態(tài)能夠比較好地說明其所經(jīng)歷的搬運距離。從圖3可以看出, 這些碎屑鋯石為圓形-橢圓形或半自形結(jié)構(gòu), 并且多數(shù)鋯石有增生邊。圓形-橢圓形鋯石的磨蝕痕跡非常明顯,表明這些鋯石曾經(jīng)歷了長期的搬運或者多期的沉積作用, 相反, 那些半自形的鋯石表明搬運距離較短。在上杭盆地演化早期, 其底部沉積的含礫石英砂巖和其他的礫巖總體分選性差, 應(yīng)該都是盆地早期快速沉淀沉積產(chǎn)物, 所以這些沉積物(包括鋯石)應(yīng)該不會搬運太遠(yuǎn), 幾乎就是盆地附近巖石剝蝕沉淀的產(chǎn)物。從地質(zhì)年代上來看, 這些圓形-橢圓形鋯石的年齡基本上都是在前寒武紀(jì), 表明這些前寒武紀(jì)的碎屑鋯石可能經(jīng)歷了多期的沉積作用, 曾經(jīng)經(jīng)歷了長期的搬運, 從而被磨蝕形成現(xiàn)在的這種圓形-橢圓形結(jié)構(gòu)。因此, 這些鋯石原來可能并不是產(chǎn)在上杭盆地的周邊地區(qū), 盡管發(fā)現(xiàn)了大量的太古宙碎屑鋯石, 也很難判斷上杭盆地周邊地區(qū)就一定存在太古宙基底, 但是, 這并不影響通過碎屑鋯石年齡的統(tǒng)計, 來獲得對本區(qū)所在區(qū)域地質(zhì)演化的認(rèn)識。
3.2 前寒武紀(jì)年齡的碎屑鋯石及其地質(zhì)意義
3.2.1 3.4 Ga碎屑鋯石
從全球來看, 盡管在3 400~3 000 Ma有幾個花崗巖活動的峰值, 但是只有3 300 Ma峰值的花崗巖在全球主要克拉通都有分布, 而其他時代的花崗巖分布較為零星(Condie et al., 2009)。本文有1顆碎屑鋯石年齡為3 403 Ma, 與澳大利亞伊爾崗克拉通Jack Hills石英巖和Narryer片麻巖里面的碎屑鋯石年齡(峰值3 380 Ma)近于一致(Crowley et al., 2005)。而華夏地塊西南部的碎屑鋯石也記錄有3.3 Ga的地質(zhì)事件, 可能反映了古太古代時期的地殼生長事件(Zhao et al., 2015)。該3.4 Ga碎屑鋯石的εHf(t)值為3.9, 靠近虧損地幔演化線(圖6b), 同樣記錄了古太古代時期的地殼生長事件。
3.2.2 晚太古宙—早元古代早期碎屑鋯石
晚太古代是地球歷史上花崗巖侵位和年輕陸殼生長最為重要的時期, 并可以進(jìn)一步劃分出兩個高峰期, 分別在大約2.7 Ga(如澳大利亞、勞倫古大陸和歐洲)和2.5 Ga(如華北、印度和南極東部)(Condie et al., 2009; Li et al., 2014)。本文有5顆鋯石年齡集中在2 567~2 365 Ma, 峰值在2 500 Ma,還有1顆鋯石年齡在2 786 Ma, 其εHf(t)值分別為-8.4 ~ -1.0和-11.6。這6顆鋯石年齡與全球晚太古代古陸核生長事件基本一致, 但是其較低的εHf(t)值也表明有較多的古老地殼物質(zhì)的再循環(huán)。在華南地區(qū), 很多地區(qū)的碎屑鋯石或捕獲鋯石記錄下了這一期重要的地質(zhì)事件(Li et al., 2014), 如華南中—上二疊統(tǒng)地層、贛南地區(qū)泥盆紀(jì)和奧陶紀(jì)粗碎屑巖、廣西云開地體上的二云母片麻巖和海南島地區(qū)的寒武—志留紀(jì)砂巖中的碎屑鋯石等(Wan et al., 2010;向磊和舒良樹, 2010; Li et al., 2012, 2014; Zhou et al., 2015)。
3.2.3 早元古代晚期—中元古代碎屑鋯石
本文有3顆鋯石年齡分別為1 929 Ma、1 891 Ma和1 847 Ma, 與前人報道的武夷山地區(qū)的古元古代花崗巖的時間(1.89~1.86 Ga)近于一致(Yu et al.,2010), 其εHf(t)值分別為-3.0, -1.8和-1.4, 可能代表了該地區(qū)的一次地殼活化與再造事件, 并可能有地幔物質(zhì)的參與。從全球來看, 與全球哥倫比亞超大陸的聚合時間基本吻合。
圖6 鋯石Hf模式年齡直方圖(a)和鋯石U-Pb年齡與εHf(t)值關(guān)系圖解(b)Fig. 6 Histogram of zircon Hf model ages (a) and plot of zircon U-Pb ages versus εHf(t) values (b)
有2顆鋯石年齡分散在1 691 Ma和1 584 Ma,其εHf(t)值分別為19.6和-0.7, 這一時間段的年齡數(shù)據(jù)相對比較少, 數(shù)據(jù)比較分散和零星, 可能與Columbia超大陸匯聚后發(fā)生的較弱的陸內(nèi)巖漿活動有關(guān), 如華夏地塊西南部海南島地區(qū)1.43 Ga侵入的非造山花崗巖類(Li et al., 2002)。
而1顆1 213 Ma的碎屑鋯石與Yao等(2011)報道的贛南奧陶紀(jì)砂巖中的年齡峰值在1 250 Ma的碎屑鋯石一致, 可能與Rodinia最終聚合之前大洋板塊俯沖有關(guān)的弧巖漿作用有關(guān)(Yao et al., 2011),其較高的εHf(t)值(2.9), 表明有較多的地幔物質(zhì)參與。
3.2.4 新元古代碎屑鋯石
這一時期的鋯石年齡數(shù)據(jù)較多, 總體可分為四期:
(1)有2顆鋯石年齡分別為989 Ma和981 Ma,εHf(t)值分別為-0.8和-0.6。這個時間與全球Grenville造山期大致相當(dāng), 與Rodinia匯聚事件一致。在華南, 這個時間與贛東北田里片巖的變質(zhì)變形時間(1.04~0.94 Ga)相當(dāng)(Li et al., 2007), 大致相當(dāng)于揚子地塊與華夏地塊拼合的時間(Li et al., 2008;Li et al., 2009), 即四堡運動的時間。
(2)2顆鋯石年齡分別為802 Ma和776 Ma, 這個時間段落在全球Rodinia超大陸裂解發(fā)生的時間范圍內(nèi), 區(qū)域上相對應(yīng)的還有閩中馬面山雙峰式火山巖的噴發(fā)時間(818±9) Ma(Li et al., 2005)。新元古代期間年齡在830~750 Ma的非造山火成巖在華南、韓國和Rodinia大陸的其他地區(qū)(包括澳大利亞、南非、北美、印度和馬達(dá)加斯加)廣泛分布, 被認(rèn)為與由超級地幔柱引起的Rodinia超大陸的裂解有關(guān)(Li et al., 1999, 2003; Li et al., 2005)。2顆鋯石的εHf(t)值分別為-10.0和-8.1, 表明有較多的古老地殼物質(zhì)參與。
(3)有3顆鋯石年齡集中在685~680 Ma, 這一年齡值在華夏地塊尚未見報道, 但是與揚子地塊南秦嶺地區(qū)耀嶺河群火山巖和基性侵入巖群年齡分別為(685±5) Ma和(679±3) Ma(Ling et al., 2008)相當(dāng), 這個時期揚子與華夏地塊已經(jīng)拼合在一起, 反映了整個華南當(dāng)時處于板內(nèi)的伸展構(gòu)造環(huán)境。這3顆鋯石的εHf(t)值變化范圍較大, 從-14.3~2.7, 表明地幔物質(zhì)和古老地殼物質(zhì)不均勻地參與了這期巖漿事件。
(4)有2顆鋯石年齡分別為582 Ma和578 Ma,對應(yīng)的是東、西岡瓦納等陸塊拼貼聚合的泛非事件,這一事件在華夏地塊里面有廣泛記錄, 如, 贛南地區(qū)泥盆紀(jì)和奧陶紀(jì)粗碎屑巖、江西武功山雜巖里的奧陶紀(jì)變質(zhì)砂巖和廣西西大明山寒武系砂巖中的碎屑鋯石中都有這一期的年齡峰值(向磊和舒良樹,2010; Yao et al., 2011; 徐亞軍等, 2013; Wang et al.,2015), 被認(rèn)為與泛非期的碰撞造山形成的S型花崗巖有關(guān)(Li et al., 2014)。這2顆鋯石的εHf(t)值分別為-16.4和-27.2, 表明這期巖漿事件以古老地殼物質(zhì)的活化為主。
3.3 顯生宙年齡的碎屑鋯石及其地質(zhì)意義
上杭盆地底部含礫石英砂巖中42顆碎屑鋯石中的19顆鋯石年齡分布在465~406 Ma, 峰值450 Ma, 表明這期巖漿活動在研究區(qū)附近非常強烈。這一年齡段正是全球各地褶皺造山-巖漿活動的高峰期, 稱加里東事件, 而在我國華南一帶也被稱作武夷—云開運動, 或者廣西運動, 本文將近一半的碎屑鋯石記錄下了這期在本區(qū)最為強烈的巖漿活動事件。贛南地區(qū)的泥盆紀(jì)粗碎屑巖、華南地區(qū)晚二疊世砂巖和海南島的志留紀(jì)砂巖中的碎屑鋯石里都含有大量的這期鋯石(向磊和舒良樹, 2010; Li et al., 2012; Zhou et al., 2015), 被認(rèn)為是一次板內(nèi)的造山運動(Yao J L et al., 2012)。這19顆鋯石的εHf(t)值變化于-10.6 ~ -3.7, TDM2介于1 664~2 099 Ma(表2,圖6), 反映可能為古元古代新生地殼物質(zhì)的活化產(chǎn)物。
還有1顆碎屑鋯石的年齡為328 Ma, εHf(t)值為-9.7, 在晚泥盆世和早石炭世—中三疊世期間, 整個華南基本處在一個穩(wěn)定的濱?!獪\海環(huán)境, 沒有出現(xiàn)大規(guī)模的火山活動(舒良樹, 2012), 在前人的碎屑鋯石研究中也未見有石炭紀(jì)的碎屑鋯石年齡的報道。因此有可能為一個局部地質(zhì)事件, 但是這顆鋯石年齡數(shù)據(jù)的具體地質(zhì)意義還有待于進(jìn)一步研究確定。
總之, 上杭盆地底部產(chǎn)出的含礫石英砂巖中的碎屑鋯石包含了豐富的區(qū)域地質(zhì)背景及演化信息,其鋯石年齡最早可以追索到古太古代, 至少記錄了10期的巖漿活動事件, 表明該地區(qū)曾經(jīng)歷了長期復(fù)雜的地質(zhì)演化歷史, 其中最為強烈的事件是加里東運動(當(dāng)?shù)胤Q作武夷—云開運動, 或者廣西運動),表明對早期形成地殼的大規(guī)模改造。與華夏地塊其他地區(qū)的碎屑鋯石或捕獲鋯石一樣, 上杭盆地這些碎屑鋯石年齡數(shù)據(jù)記錄下了諸如晚太古代—早元古代地殼生長事件、哥倫比亞超大陸和Rodinia超大陸的匯聚與裂解、岡瓦納大陸的聚合等全球主要地質(zhì)事件, 以及具有華夏地塊特征的早古生代強烈的板內(nèi)造山運動(武夷—云開運動)。Hf同位素數(shù)據(jù)表明, 早期巖漿活動主要與大規(guī)模的新生地殼有關(guān),而晚期主要表現(xiàn)為對早期形成地殼的大規(guī)模改造,古老物質(zhì)的再循環(huán), 很少有新生地殼增生。
致謝: 感謝《地球?qū)W報》編輯部的邀稿。僅將此拙作獻(xiàn)給中國地質(zhì)科學(xué)院成立60華誕。
Acknowledgements:
This study was supported by The Special Scientific Research Fund of Public Welfare Profession of Ministry of Land and Resources of the People's Republic of China (No. 200911007-1-17).
甘曉春, 趙風(fēng)清, 金文山, 孫大中. 1996. 華南火成巖中捕獲鋯石的早元古代-太古宙U-Pb年齡信息[J]. 地球化學(xué), 25(2):112-120.
侯可軍, 李延河, 田有榮. 2009. LA-MC-ICP-MS鋯石微區(qū)原位U-Pb定年技術(shù)[J]. 礦床地質(zhì), 28(4): 481-492.
侯可軍, 李延河, 鄒天人, 曲曉明, 石玉若, 謝桂青. 2007. LA-MC-ICP-MS鋯石Hf同位素的分析方法及地質(zhì)應(yīng)用[J].巖石學(xué)報, 23(10): 2595-2604.
李獻(xiàn)華, TATSUMOTO M, 桂訓(xùn)唐. 1989. 華南湯湖花崗巖中25億年太古代殘留鋯石的發(fā)現(xiàn)及其意義初探[J]. 科學(xué)通報,(3): 206-209.
李獻(xiàn)華, 王一先, 趙振華, 陳多福, 張宏. 1998. 閩浙古元古代斜長角閃巖的離子探針鋯石U-Pb年代學(xué)[J]. 地球化學(xué),27(4): 327-334.
李獻(xiàn)華, 趙振華, 桂訓(xùn)唐, 于津生. 1991. 華南前寒武紀(jì)地殼形成時代的Sm-Nd和鋯石U-Pb同位素制約[J]. 地球化學(xué), (3):255-264.
舒良樹. 2012. 華南構(gòu)造演化的基本特征[J]. 地質(zhì)通報, 31(7):1035-1053.
向磊, 舒良樹. 2010. 華南東段前泥盆紀(jì)構(gòu)造演化: 來自碎屑鋯石的證據(jù)[J]. 中國科學(xué): 地球科學(xué), 40(10): 1377-1388.
徐亞軍, 杜遠(yuǎn)生, 黃宏偉, 黃志強, 胡麗沙, 朱延輝, 余文超. 2013. 華南發(fā)現(xiàn)4.1 Ga的碎屑鋯石[J]. 科學(xué)通報, 58(3):240-246.
于津海, 周新民, O’REILLY Y S, 趙蕾, GRIFFIN W L, 王汝成,王麗娟, 陳小明. 2005. 南嶺東段基底麻粒巖相變質(zhì)巖的形成時代和原巖性質(zhì): 鋯石的U-Pb-Hf同位素研究[J]. 科學(xué)通報, 50(16): 1758-1767.
CONDIE K C, BELOUSOVA E, GRIFFIN W L, SIRCOMBE K N. 2009. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 15: 228-242.
CROWLEY J L, MYERS J S, SYLVESTER P J, COX R A. 2005. Detrital zircon from the Jack Hills and Mount Narryer, Western Australia: Evidence for diverse >4.0 Ga source rocks[J]. Journal of Geology, 113: 239-264.
GAN Xiao-chun, ZHAO Qing-feng, JIN Wen-shan, SUN Da-zhong. 1996. The U-Pb ages of early Proterozoic-Archean Zircons captured by igneous rocks in Southern China[J]. Geochimica,25(2): 112-120(in Chinese with English abstract).
HOU Ke-jun, LI Yan-he, TIAN You-rong. 2009. In situ U-Pb zircon dating using laser ablation-multi ion couting-ICP-MS[J]. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract).
HOU Ke-jun, LI Yan-he, ZHOU Tian-ren, QU Xiao-ming, SHI Yu-ruo, XIE Gui-qing. 2007. Laser ablation-Mc-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract).
JIANG Si-hong, BAGAS L, LIANG Qing-ling. 2015. New insights into the petrogenesis of volcanic rocks in the Shanghang Basin in the Fujian Province, China[J]. Journal of Asian Earth Sciences, 105: 48-67.
LAN Zhong-wu, LI Xian-hua, ZHANG Qi-rui, LI Qiu-li. 2015. Global synchronous initiation of the 2nd episode of Sturtian glaciation: SIMS zircon U-Pb and O isotope evidence from the Jiangkou Group, South China[J]. Precambrian Research,267: 28-38.
LI Wu-xian, LI Xian-hua, LI Zheng-xiang, LOU Fa-sheng. 2008. Obduction-type granites within the NE Jiangxi Ophiolite: Implications for the final amalgamation between the Yangtze and Cathaysia Blocks[J]. Gondwana Research, 13: 288-301.
LI Wu-xian, LI Xian-hua, LI Zheng-xiang. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Research, 136:51-66.
LI Xian-hua, LI Wu-xian, LI Zheng-xiang, LO Ching-hua, WANG Jian, YE Mei-fang, YANG Yue-heng. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174: 117-128.
LI Xian-hua, LI Zheng-xiang, HE Bin, LI Wu-xian, LI Qiu-li, GAO Yu-ya, WANG Xuan-ce. 2012. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons[J]. Chemical Geology, 328: 195-207.
LI Xian-hua, LI Zheng-xiang, LI Wu-xian. 2014. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis[J]. Gondwana Research, 25:1202-1215.
LI Xian-hua, TATSUMOTO M, GUI Xun-tang. 1989. Archean residual zircon of 2.5 Ga discovered in the Tang Lake granite of South China[J]. Chinese Science Bulletin, (3): 206-209(in Chinese).
LI Xian-hua, WANG Yi-xian, ZHAO Zhen-hua, CHEN Duo-fu,ZHANG Hong. 1998. SHRIMP U-Pb zircon geochronology for amphibolites from the Precambrian basement in SW Zhejiang and NW Fujian Provinces[J]. Geochimica, 27(4):327-334(in Chinese with English abstract).
LI Xian-hua, ZHAO Zhen-hua, GUI Xun-tang, YU Jin-sheng. 1991. Sm-Nd isotopic and zircon U-Pb constraints on the age of formation of the Precambrian crust in Southeast China[J]. Geochimica, (3): 255-264(in Chinese with English abstract).
LI Z X, LI X H, KINNY P D, WANG J. 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China?[J]. Earth & Planetary Science Letters, 173(3):171-181.
LI Z X, LI X H, KINNY P D,WANG J, ZHANG S, ZHOU H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122(S1-4): 85-109.
LI Z X, LI X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology,35(2): 179-182.
LI Z X, WARTHO J A, OCCHIPINTI S, ZHANG C L, LI X H,WANG J, BAO C M. 2007. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: New mica40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints[J]. Precambrian Research, 159: 79-94.
LI Zheng-xiang, LI Xian-hua, CHUNG Sun-lin, LO Ching-hua,XU Xi-sheng, LI Wu-xian. 2012. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plate boundary[J]. Tectonophysics, 532-535:271-290.
LI Zheng-xiang, LI Xian-hua, ZHOU Han-wen, KINNY P D. 2002. Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 30(2): 163-166.
LING W L, REN B F, DUAN R C, LIU X M, MAO X W, PENG L H, LIU Z X, YANG H M. 2008. Timing of the Wudangshan,Yaolinghe volcanic sequences and mafic sills in South Qinling:U-Pb zircon geochronology and tectonic implication[J]. Chinese Science Bulletin, 53(14): 2192-2199.
LIU R, ZHOU H W, ZHANG L, ZHONG Z Q, ZENG W, XIANG H, JIN S, LU X Q, LI C Z. 2009. Paleoproterozoic reworking of ancient crust in the Cathaysia Block, South China: Evidence from zircon trace elements, U-Pb and Lu-Hf isotopes[J]. Chinese Science Bulletin, 54(9): 1543-1554.
LIU Yong-sheng, HU Zhao-chu, GAO Shan, GUNTHER D, XU Juan, GAO Chang-gui, CHEN Hai-hong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257: 34-43.
NASDALA L, HOFMEISTER W, NORBERG N, MATTINSON J M, CORFU F, DOR W, KAMO S L, KENNEDY A K,KRONZ A, RAYNERS P W, FREI D, KOSLER J, WAN YUSHENG, G?TZE J, H?GER T, KR?NER A, VALLEY J. 2008. Zircon M257 - a Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon[J]. Geostandards and Geoanalytical Research, 32: 247-265.
SHU Liang-shu. 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract).
SLáMA J, KOSLER J, CONDON D J, CROWLEY J L, GERDES A, HANCHAR J M, HORSTWOOD M S A, MORRIS G A,NASDALA L, NORBERG N, SCHALTEGGER U,SCHOENE B, TUBRETT M N, WHITEHOUSE M J. 2008. Plesovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249:1-35.
WAN Yu-sheng, LIU Dun-yi, WILDE S A, CAO Jian-jin, CHEN Bin, DONG Chun-yan, SONG Biao, DU Li-lin. 2010. Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope[J]. Journal of Asian Earth Sciences, 37: 140-153.
WANG Jing-qiang, SHU Liang-shu, SANTOSH M, XU Zhi-qin. 2015. The Pre-Mesozoic crustal evolution of the CathaysiaBlock, South China: Insights from geological investigation,zircon U-Pb geochronology, Hf isotope and REE geochemistry from the Wugongshan complex[J]. Gondwana Research,28: 225-245.
WANG Yue-jun, ZHANG Ai-mei, FAN Wei-ming, ZHAO Guo-chun, ZHANG Guo-wei, ZHANG Yu-zhi, ZHANG Fei-fei, LI San-zhong. 2011. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains[J]. Lithos, 127: 239-260.
XIA Y, XU X S, ZHU K Y. 2012. Paleoproterozoic S- and A-type granites in southwestern Zhejiang: Magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement[J]. Precambrian Research, 216-219:177-207.
XIANG Lei, SHU Liang-shu. 2010. Pre-Devonian tectonic evolution of the eastern South China Block: Geochronological evidence from detrital zircons[J]. Sci China Earth Sci, 40(10):1377-1388(in Chinese).
XU Ya-jun, DU Yuan-sheng, HUANG Hong-wei, HUANG Zhi-qiang, HU Li-sha, ZHU Yan-hui, YU Wen-chao. 2012. Detrital zircon of 4.1 Ga in South China[J]. Chinese Science Bulletin 57(33): 4356-4362.
YAO Jin-long, SHU Liang-shu, SANTOSH M, LI Jin-yi. 2012. Precambrian crustal evolution of the South China Block and its relation to supercontinent history: Constraints from U-Pb ages, Lu-Hf isotopes and REE geochemistry of zircons from sandstones and granodiorite[J]. Precambrian Research,208-211: 19-48.
YAO Jin-long, SHU Liang-shu, SANTOSH M. 2011. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China[J]. Gondwana Research, 20:553-567.
YAO Wei-hua, LI Zheng-xiang, LI Wu-xian, SU Li, YANG Jin-hui. 2015. Detrital provenance evolution of the Ediacaran-Silurian Nanhua foreland basin, South China[J]. Gondwana Research,28: 1449-1465.
YAO Wei-hua, LI Zheng-xiang, LI Wu-xian, WANG Xuan-ce, LI Xian-hua, YANG Jin-hui. 2012. Post-kinematic lithospheric delamination of the Wuyi-Yunkai orogen in South China:Evidence from ca. 435Ma high-Mg basalts[J]. Lithos, 154:115-129.
YU J H, WANG L J, GRIFFIN W L, O'REILLY S Y, ZHANG M, LI C Z, SHU L S. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China[J]. Precambrian Research, 174:347-363.
YU Jin-hai, O’REILLY S Y, WANG Li-juan, GRIFFIN W L,ZHOU Mei-fu, ZHANG Ming, SHU Liang-shu. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments[J]. Precambrian Research, 181: 97-114.
YU Jin-hai, ZHOU Xin-min, O’REILLY Y S, ZHAO Lei, GRIFFIN W L, WANG Ru-cheng, WANG Li-juan, CHEN Xiao-ming. 2005. Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U-Pb and Lu-Hf isotopic studies of single zircon grains[J]. Science Bulletin, 50(18): 2080-2089.
ZHANG Chuan-lin, SANTOSH M, ZHU Qing-bo, CHEN Xiang-yan, HUANG Wen-cheng. 2015. The Gondwana connection of South China: Evidence from monazite and zircon geochronology in the Cathaysia Block[J]. Gondwana Research, 28: 1137-1151.
ZHAO Lei, ZHOU Xi-wen, ZHAI Ming-guo, SANTOSH M,CENG Yuan-sheng. 2015. Zircon U-Th-Pb-Hf isotopes of the basement rocks in northeastern Cathaysia block, South China:Implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane[J]. Gondwana Research, 28:246-261.
ZHAO Lei, ZHOU Xi-wen, ZHAI Ming-guo, SANTOSH M, MA Xu-dong, SHAN Hou-xiang, CUI Xia-hong. 2014. Paleoproterozoic tectonic transition from collision to extension in the eastern Cathaysia Block, South China: Evidence from geochemistry, zircon U-Pb geochronology and Nd-Hf isotopes of a granite-charnockite suite in southwestern Zhejiang[J]. Lithos, 184-187: 259-280.
ZHENG J P, GRIFFIN W L, LI L S, REILLY S Y O, PEARSON N J, TANG H Y, LIU G L, ZHAO J H, YU C M, SU Y P. 2011. Highly evolved Archean basement beneath the western Cathaysia Block, South China[J]. Geochimica et Cosmochimica Acta, 75: 242-255.
ZHOU Yun, LIANG Xin-quan, LIANG Xi-rong, JIANG Ying,WANG Ce, FU Jiang-gang, SHAO Tong-bin. 2015. U-Pb geochronology and Hf-isotopes on detrital zircons of Lower Paleozoic strata from Hainan Island: New clues for the early crustal evolution of southeastern South China[J]. Gondwana Research, 27: 1586-1598.
The Discovery of 3.4 Ga Detrital Zircon in Shanghang Basin of Fujian Province
JIANG Si-hong1), LIANG Qing-ling2), WANG Shao-huai3), ZHANG Li-li1), LIU Chun-hua1), LIU Yi-fei1)
1) MLR Key Laboratory of Metallogeney and Mineral Assessment, Institute of Mineral Resources,Chinese Academy of Geological Sciences, Beijing 100037;2) No. 606 Exploration Party of Sichuan Metallurgical & Geological Exploration Bureau, Chengdu, Sichuan 611730;3) Zijin College of Mining, Fuzhou University, Fuzhou, Fujian 350108
The detrital zircons have become one of the major tools for the study of regional geological evolution. In this paper, the authors conducted the LA-MC-ICP-MS U-Pb dating and Hf isotopic analysis for the detrital zircons from the conglomerate-bearing quartz sandstone occurring in the basal part of the Shanghang basin in Cathaysia Block. It is shown that these detrital zircons are magmatic in origin. The age data obtained from these detrital zircons range from 3 403 Ma to 328 Ma, which document at least 10 magmatic events in the region,indicating a long and complex geological evolution. Similar to ages of the detrital and captured zircons in other regions of the Cathaysia Block, the ages of the detrital zircons from the Shanghang basin reveal the global events,such as the Neoarchean-Paleoproterozoic crustal growth event, the assembly and breakup of supercontinents Columbia and Rodinia, and the assembly of Gondwana as well as regional events, such as the Early Paleozoic intense intraplate orogeny (Wuyi-Yunkai orogeny) with the characteristics of the Cathaysia Block. The most prominent 450 Ma peak indicates that the Caledonian orogeny (locally called Wuyi-Yunkai orogeny or Kwangsian orogeny) is the most important event in the region. The in situ Hf isotope compositions give a large range of εHf(t) values (-27.2 to 19.8) with two-stage model ages (tDM2) of 1 124~3 979 Ma (peak of 1 800~1 900 Ma). The Hf data suggest that the early magmatism was mainly associated with the large scale crustalgrowth, while the late one was related to the reworking of the early crust, involving the recycling of older crustal components with less juvenile crustal growth.
detrital zircon; Precambrian geology; Cathaysia Block; Shanghang basin; Fujian Province
P578.941; P597
A
10.3975/cagsb.2016.05.12
本文由國土資源部公益性行業(yè)科研專項(編號: 200911007-1-17)資助。
2016-01-27; 改回日期: 2016-04-18。責(zé)任編輯: 閆立娟。
江思宏, 男, 1968年生。博士, 研究員, 博士生導(dǎo)師。主要從事金屬礦床成礦規(guī)律研究。E-mail: jiangsihong1@163.com。