程小莉, 魏 紅, 李文英, 李克斌
(1.西安理工大學(xué) 西北水資源與環(huán)境生態(tài)教育部重點實驗室,陜西 西安 710048;2.西北大學(xué) 化學(xué)與材料科學(xué)學(xué)院合成與天然功能分子化學(xué)教育部重點實驗室,陜西 西安 710069)
?
Co2+催化超聲/H2O2降解環(huán)丙沙星
程小莉1, 魏紅1, 李文英1, 李克斌2
(1.西安理工大學(xué) 西北水資源與環(huán)境生態(tài)教育部重點實驗室,陜西 西安 710048;2.西北大學(xué) 化學(xué)與材料科學(xué)學(xué)院合成與天然功能分子化學(xué)教育部重點實驗室,陜西 西安 710069)
論文研究過渡金屬離子Co2+對超聲/H2O2(US/H2O2)降解環(huán)丙沙星的催化效果,考察了Co2+、H2O2添加濃度、反應(yīng)溫度及初始pH值等主要因素的影響。結(jié)果表明,Co2+能夠有效催化超聲/H2O2體系降解環(huán)丙沙星,降解過程符合假一級反應(yīng)動力學(xué)。H2O2濃度在4.0~32.0 mmol/L,Co2+濃度在25.8~96.8 mmol/L范圍,環(huán)丙沙星的降解率隨H2O2和Co2+添加濃度的增加而升高;溫度對環(huán)丙沙星的降解影響較大,15 ℃~45 ℃范圍,降解率隨溫度的升高而升高;初始pH值為3.0時環(huán)丙沙星的降解率最高。異丙醇的抑制實驗表明,Co2+增強環(huán)丙沙星超聲降解主要在于·OH的氧化作用。HPLC譜圖表明,環(huán)丙沙星在Co2+/US/H2O2降解體系中主要生成三種產(chǎn)物,推斷其通過兩種途徑進(jìn)行降解。
Co2+; 超聲/H2O2; 環(huán)丙沙星; 羥基自由基; 一級動力學(xué)
喹諾酮類抗菌藥全球年銷量居高不下,因其廣譜抗菌性被廣泛應(yīng)用于預(yù)防、治療人類及動物疾病,水產(chǎn)、畜牧養(yǎng)殖中也被用來促進(jìn)養(yǎng)殖物生長[1]。環(huán)丙沙星(Ciprofloxacin, CIP)因其抗菌作用強、活性高、對革蘭氏陰性及陽性菌、支原體等具有良好的抗菌作用而成為目前喹諾酮類中應(yīng)用最廣泛的藥物之一[2]。長期頻繁使用環(huán)丙沙星導(dǎo)致其在各類水體的普遍殘留,在養(yǎng)殖、醫(yī)藥廢水中尤為突出[3]。自然環(huán)境中殘留的環(huán)丙沙星可能誘發(fā)耐藥細(xì)菌產(chǎn)生,并隨食物鏈富集,對人體健康造成嚴(yán)重的威脅[4-5]。因此有效去除抗生素類污染物逐漸成為水處理領(lǐng)域的研究熱點之一。
1.1實驗試劑
CoSO4·7H2O(分析純,紅巖試劑廠);30% H2O2(優(yōu)級純,國藥集團(tuán)化學(xué)試劑有限公司);NaOH、H2SO4(分析純,天津市天力化學(xué)試劑有限公司);異丙醇(分析純,天津市福晨化學(xué)試劑廠);乙腈(色譜純,OCEANPAK);環(huán)丙沙星(>98.0 %,東京化成工業(yè)株式會社),分子式:C17H18FN3O3,分子量為332,其結(jié)構(gòu)式見圖1。
圖1 環(huán)丙沙星的結(jié)構(gòu)式Fig.1 Chemical structure of ciprofloxacin
1.2實驗儀器
pH500數(shù)顯酸度計(CLEAN),配備E-201-C-9型pH復(fù)合電極(上海羅素科技);SCIENTZ-IID超聲波細(xì)胞粉碎機,配備直徑8 mm的鈦探頭;DC-1006節(jié)能型智能恒溫槽(寧波新芝生物科技股份有限公司);Aglient1200液相色譜儀,配備G13111A四元泵,柱溫箱30 ℃,G1314C XL 紫外檢測器。
1.3實驗方法
1.3.1環(huán)丙沙星超聲降解實驗
準(zhǔn)確移取一定體積濃度為500 mg/L的環(huán)丙沙星儲備液至250 mL燒杯,加入適量CoSO4、H2O2,攪拌溶解,用1 mol/L NaOH或H2SO4調(diào)節(jié)pH值,定容,轉(zhuǎn)至直徑為80 mm的燒杯中待反應(yīng)。鈦探針插入溶液,浸泡深度約為液面下1 cm,鈦脈沖(on/off)為1 s/1 s,在標(biāo)準(zhǔn)大氣壓和避光下超聲處理,每隔30 min取樣,用HPLC分析反應(yīng)液中環(huán)丙沙星的濃度。環(huán)丙沙星的去除率d按式(1)計算。
d=(C0-C)/C0×100%
(1)
式中,C0和C分別為0和t時刻環(huán)丙沙星的濃度(mg/L)。
1.3.2環(huán)丙沙星的HPLC分析
環(huán)丙沙星通過Agilent1200高效液相色譜儀分析,采用外標(biāo)法定量。色譜分離條件為色譜柱:Eclipse XDB-C18(150 mm×4.6 mm,5 μm);流動相為乙腈:0.2 %(v)甲酸水溶液=20∶80 (v);檢測波長277 nm;流速0.3 mL/min;進(jìn)樣量為10 μL;柱溫30 ℃。
2.1不同實驗條件下環(huán)丙沙星的降解效果
在pH=3.0,環(huán)丙沙星初始濃度20 mg/L,超聲功率152 W,攪拌速率200 r/min,溫度25 ℃時,分別考察了Co2+/US/H2O2、Co2+/US、Co2+/H2O2、US/H2O2、H2O2單獨氧化及Co2+/US/H2O2/異丙醇(IPA)不同條件下環(huán)丙沙星的降解率(見圖2)。
圖2 不同實驗條件下環(huán)丙沙星的降解率Fig.2 Ciprofloxacin degradation efficiency under different experimental conditions
由圖2可知,H2O2單獨氧化降解環(huán)丙沙星效果較低,與左氧氟沙星、堿性藍(lán)9的結(jié)果一致[12-13]。反應(yīng)180 min,Co2+/US、Co2+/H2O2、US/H2O2體系下環(huán)丙沙星的去除率分別為7.85 %、13.43 %和6.26 %。Co2+有效提高了US/H2O2對環(huán)丙沙星的降解效果,反應(yīng)180 min,降解率達(dá)到71.23 %。
一般認(rèn)為親水性、難揮發(fā)有機物在超聲作用下,很難進(jìn)入空化泡內(nèi)進(jìn)行熱分解反應(yīng),主要通過氣液表面和液相主體中的羥基自由基(·OH)進(jìn)行氧化降解[11]。Co2+/US條件下,超聲輻照水分子產(chǎn)生少量·OH(見式(2));US/H2O2體系中,超聲促進(jìn)H2O2中的-O-O-斷裂,產(chǎn)生較多·OH(見式(3))[14]。Co2+/H2O2體系中,Co2+催化H2O2發(fā)生類Fenton反應(yīng),產(chǎn)生·OH(見式(4));進(jìn)一步引入超聲輻照,形成超聲空化;空化泡崩潰瞬間,液相主體產(chǎn)生大量·OH,促進(jìn)了Co2+催化H2O2降解環(huán)丙沙星[15]。實驗進(jìn)一步加入·OH抑制劑,即異丙醇,環(huán)丙沙星降解率顯著降低,反應(yīng)180 min,降解率從71.23 %降低到1.00 %以下,這進(jìn)一步說明,Co2+催化US/H2O2降解環(huán)丙沙星主要在于·OH的氧化作用。
H2O+)))→·OH+·H
(2)
H2O2+)))→2·OH
(3)
Co2++ H2O2→Co3++·OH+OH-
(4)
2.2Co2+添加濃度的影響
在pH=3.0,環(huán)丙沙星初始濃度20 mg/L,H2O2添加濃度為8 mmol/L,超聲功率152 W,反應(yīng)溫度25 ℃時,考察了Co2+添加濃度在25.8~96.8 mmol/L范圍內(nèi),Co2+催化US/H2O2體系降解環(huán)丙沙星的影響(見圖3)。
圖3 Co2+添加濃度對環(huán)丙沙星降解效果的影響Fig.3 Effect of Co2+ concentration on ciprofloxacin degradation efficiency
圖3表明,Co2+添加濃度分別為25.8、38.7、64.5、96.8 mmol/L時,環(huán)丙沙星的降解率隨體系中Co2+濃度的增大而提高,180 min后,降解率由49.73 %增大到82.24 %;與光、電催化降解環(huán)丙沙星一致,均符合假一級動力學(xué)反應(yīng),反應(yīng)速率常數(shù)k從3.87×10-3min-1相應(yīng)增大到9.76×10-3min-1[1,16]。 Co2+濃度增大,體系中產(chǎn)生更多催化活性位,同一時間內(nèi),Co2+與H2O2接觸機會增多,催化H2O2產(chǎn)生更多·OH,環(huán)丙沙星的去除效果增強[10]。但隨著Co2+濃度升高,處理成本必然升高。此外,類似于Fenton反應(yīng),體系中過量的Co2+在酸性環(huán)境下能夠捕獲·OH[見式(5)][17-18]。因此選擇催化劑投加量時,應(yīng)結(jié)合降解效果和處理成本綜合考慮。本實驗后面選擇Co2+添加濃度為64.5 mmol/L。
Co2++ ·OH+ H+→Co3++H2O
(5)
2.3H2O2添加濃度的影響
在pH=3.0,環(huán)丙沙星初始濃度為20 mg/L,Co2+添加濃度為64.5 mmol/L,超聲功率152 W,溫度25 ℃,考察H2O2添加濃度在4.0~32.0 mmol/L范圍內(nèi),Co2+催化US/H2O2降解環(huán)丙沙星的影響(見圖4)。
圖4 H2O2添加濃度對環(huán)丙沙星降解效果的影響Fig.4 Effect of H2O2 adding concentration on ciprofloxacin degradation efficiency
圖4表明,H2O2添加濃度在4.0~32.0 mmol/L范圍內(nèi),環(huán)丙沙星的降解率緩慢升高,反應(yīng)180 min,降解率由69.85%增加至76.05%;對應(yīng)的假一級反應(yīng)動力學(xué)常數(shù)k分別為6.47×10-3、10.53×10-3、7.60×10-3和8.12×10-3min-1。H2O2添加濃度為8 mmol/L時,反應(yīng)速率常數(shù)最大。
H2O2濃度的增加促進(jìn)了反應(yīng)進(jìn)行,但增幅較緩。Co2+催化H2O2存在最佳比例。另一方面,H2O2濃度的增加可能導(dǎo)致體系中過多的H2O2捕獲·OH,產(chǎn)生氧化性較弱的HO2·(見式(6)、(7)),從而降低對目標(biāo)物的氧化能力[19-20]。
H2O2+ ·OH→H2O+HO2·
(6)
HO2·+·OH→H2O+O2
(7)
2.4反應(yīng)溫度的影響
pH=3.0,Co2+添加濃度為64.5 mmol/L,H2O2添加量為8 mmol/L,超聲功率152 W,環(huán)丙沙星初始濃度20 mg/L時,分別考察了溫度15 ℃、25 ℃、35 ℃、45 ℃時, Co2+催化US/H2O2體系降解環(huán)丙沙星的影響(見圖5)。
圖5 反應(yīng)體系溫度對環(huán)丙沙星超聲降解效果的影響Fig.5 Effect of the temperature on ciprofloxacin degradation efficiency
圖5表明,溫度分別為15 ℃、25 ℃、35 ℃以及45 ℃時,反應(yīng)180 min,環(huán)丙沙星降解率隨著溫度升高而上升,分別為43.74%、71.23%、91.08%以及99.22%。這可能是因為空化泡崩潰瞬間,高的蒸汽壓將空化泡崩潰產(chǎn)生的能量轉(zhuǎn)移到周圍液相環(huán)境,溫度升高,蒸汽壓加大,轉(zhuǎn)移到液相環(huán)境的能量越大,產(chǎn)生·OH的量也越大[21]。另一方面,基于·OH氧化的高級氧化技術(shù)是吸熱反應(yīng),溫度升高有利于反應(yīng)的進(jìn)行??紤]到該技術(shù)實際應(yīng)用的成本問題,優(yōu)先選擇在室溫(25℃)下進(jìn)行實驗。
2.5pH值的影響
在Co2+、H2O2添加濃度分別為64.5 mmol/L、 8 mmol/L,環(huán)丙沙星初始濃度20 mg/L,超聲功率152 W,溫度25 ℃時,分別考察了反應(yīng)液初始pH值分別為3.02、4.96、6.98和10.02 時Co2+催化US/H2O2體系降解環(huán)丙沙星的影響(見圖6)。
圖6 pH值對環(huán)丙沙星超聲降解效果的影響Fig.6 Effect of the pH value on ciprofloxacin degradation efficiency
圖6表明, pH分別為3.02、4.96時,180 min,環(huán)丙沙星的降解率分別為71.23%、40.71%,調(diào)節(jié)至6.98和10.02時,降解率大幅降低。由此說明,酸性環(huán)境有利于反應(yīng)進(jìn)行,隨著反應(yīng)液初始pH值升高,環(huán)丙沙星降解率逐步降低,中性或堿性條件下,Co2+生成紅褐色的Co(OH)2沉淀,失去催化活性。Chen[18]采用Co2+/H2O2體系降解溴鄰苯三酚紅時,最適pH 值為4.00,與本研究結(jié)果一致;而Yusuf[21]在Co2+/US/H2O2體系下降解堿性紅29時,反應(yīng)最適宜pH值為6.70。
環(huán)丙沙星為兩性離子,酸式電離常數(shù)(pKa)分別為6.15和8.66[3],當(dāng)pH<6.15或pH>8.66時,環(huán)丙沙星主要以陽離子或陰離子形式存在于溶液中,pH值在6.15~8.66之間以兩性離子或中性分子形態(tài)存在。一般情況下,兩性離子更容易擴散到空化泡界面發(fā)生自由基氧化反應(yīng)得以降解。而該體系與Fenton反應(yīng)類似,在pH值為3.0左右時,降解效果最好[22-23]。
2.6環(huán)丙沙星的產(chǎn)物分析
在pH=3.0,環(huán)丙沙星初始濃度為20 mg/L,H2O2添加濃度為8 mmol/L,Co2+添加濃度為64.5 mmol/L,超聲功率152 W,反應(yīng)溫度25 ℃時,環(huán)丙沙星降解產(chǎn)物的HPLC圖譜隨時間的變化情況如圖7所示。
圖7 Co2+/US/H2O2降解環(huán)丙沙星的HPLC譜圖變化Fig.7 HPLC spectrum change of ciprofloxacin degradation by Co2+/US/H2O2 system
課題組前期考察了CCl4增強超聲降解環(huán)丙沙星的效果及路徑研究,環(huán)丙沙星氧化降解的主要活性物種是·OH,主要機理與Co2+催化US/H2O2降解環(huán)丙沙星一致[24]。環(huán)丙沙星結(jié)構(gòu)中哌嗪環(huán)最容易受到·OH進(jìn)攻而裂解,在電Fenton、TiO2光催化、高鐵酸鹽氧化、蟲漆酶氧化等高級氧化反應(yīng)降解環(huán)丙沙星過程中均有發(fā)生[25-28]。喹喏酮結(jié)構(gòu)較難裂解,其斷裂程度與·OH自由基濃度有直接關(guān)系[29],多羥基取代是其中較容易發(fā)生的反應(yīng)[1]。結(jié)合環(huán)丙沙星自身結(jié)構(gòu)及各產(chǎn)物保留時間,初步推斷Co2+催化US/H2O2降解環(huán)丙沙星的產(chǎn)物和降解路徑分別如表1、圖8所示。
表1 環(huán)丙沙星超聲降解過程中可能的中間產(chǎn)物
圖8 Co2+/US/H2O2體系降解環(huán)丙沙星可能的路徑Fig.8 Proposed pathway for ciprofloxacin degradation by Co2+/US/H2O2 system
在本實驗HPLC條件下環(huán)丙沙星保留時間tR=8.95 min,圖7表明,隨著反應(yīng)進(jìn)行tR=8.95 min的峰值逐漸減小,說明環(huán)丙沙星得到降解,同時出現(xiàn)保留時間分別為6.59 min、7.49 min和9.60 min的產(chǎn)物峰(tR=5.15 min為H2O2的吸收峰)。環(huán)丙沙星降解的一條途徑是哌嗪環(huán)裂解,另一條則有可能是芳香環(huán)羥基化。環(huán)丙沙星結(jié)構(gòu)中哌嗪環(huán)受到O和·OH的進(jìn)攻后,開環(huán)脫去-C2H2O產(chǎn)生6.59 min的產(chǎn)物(P.1);·OH進(jìn)一步作用于哌嗪環(huán)后會完全脫烷基,9.60 min(P.3)的產(chǎn)物則應(yīng)該是哌嗪環(huán)完全脫烷基后的產(chǎn)物。7.49 min(P.2)則有可能是芳香環(huán)羥基化的產(chǎn)物,取代反應(yīng)可能發(fā)生在喹諾酮結(jié)構(gòu)的兩個位置[24]。
Co2+能夠有效催化超聲/H2O2體系降解環(huán)丙沙星,且降解過程符合假一級反應(yīng)動力學(xué)。Co2+濃度在25.8~96.8 mmol/L范圍內(nèi)時,添加濃度增大,環(huán)丙沙星的去除率升高。H2O2添加濃度在4.0~32.0 mmol/L范圍內(nèi)時,環(huán)丙沙星降解率隨著添加濃度的增大而升高。
環(huán)丙沙星降解受反應(yīng)體系溫度影響較大,溫度在15 ℃~45 ℃內(nèi),降解率隨溫度的升高而上升。
pH值的變化影響環(huán)丙沙星、Co2+的形態(tài),進(jìn)而影響環(huán)丙沙星的降解效果,中性或堿性條件下,體系中的Co2+生成紅褐色的Co(OH)2沉淀,失去催化活性,環(huán)丙沙星降解率降低。
環(huán)丙沙星降解過程中主要生成三種中間產(chǎn)物,推斷其降解的一條途徑是哌嗪環(huán)部分徹底裂解,另一條則有可能是喹諾酮結(jié)構(gòu)芳香環(huán)羥基化。
[1]YAHYA M S, OTURAN N, EL KACEMI K, et al. Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-fenton process: Kinetics and oxidation products[J].Chemosphere,2014(117):447-454.
[2]PAUL T, DODD M C, STRATHMANN T J. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity[J]. Water Research, 2010, 44(10): 3121-3132.
[3]郭洪光,高乃云,張永吉,等.水中環(huán)丙沙星的UV及UV/H2O2光化學(xué)降解[J].沈陽工業(yè)大學(xué)學(xué)報, 2011, 33(4): 468-475.
GUO Hongguang, GAO Naiyun, ZHANG Yongji, et al. UV and UV/H2O2photochemical degradation of ciprofloxacin in aqueous solution[J]. Journal of Shenyang University of Technology, 2011, 33(4): 468-475.
[4]TONG Lei,LI Ping,WANG Yanxin,et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS [J]. Chemosphere,2009,74(8):1090-1097.
[5]RODRIGUEZ-MOZAZ S,CHAMORRO S,MARTI E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river[J]. Water Research, 2015, 69(1):234-242.
[6]LIANG Zhijie, ZHAOB Zhiwei, SUN Tianyi, et al. Adsorption of quinolone antibiotics in spherical mesoporous silica:Effects of the retained template and its alkyl chain length[J]. Journal of Hazardous Materials, 2016,305(15):8-14.
[7]EATTA-KASSINOS D, VASQUEZ M I, KUMMERER K. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes-degradation, elucidation of byproducts and assessment of their biological potency[J]. Chemosphere, 2011, 85(5):693-709.
[8]SONG Yali, LI Jitai. Degradation of C.I. Direct Black 168 from aqueous solution by fly ash/H2O2combining ultrasound[J]. Ultrasonics Sonochemistry, 2009,16(4):440-444.
[9]WU Changlong, LINDEN K G. Phototransformation of selected organophorus pesticides: Roles of hydroxyl and carbonate radicals[J]. Water Research, 2010, 44(12): 3385-3594.
[10]ORELLANA-GARCIA F, ALVAREZ M A, LOPEZ-RAMON M V, et al. Effect of HO·, SO4·and CO3·/HCO3· radicals on the photodegradation of the herbicide amitrole by UV radiation in aqueous solution[J]. Chemical Engineering Journal, 2015,267(1): 182-190.
[11]魏紅, 李娟, 李克斌, 等. 左氧氟沙星的超聲/H2O2聯(lián)合降解研究[J]. 中國環(huán)境科學(xué), 2013, 33(2): 257-262.
WEI Hong, LI Juan, LI Kebin, et al.Degradation of levofloxacin by sonolysis-assisted H2O2in aqueous solution[J]. China Environmental Sciences, 2013, 33(2): 257-262.
[12]WEI Hong, HU Da, SU Jie, et al. Intensification of levofloxacin sono-degradation in a US/H2O2system with Fe3O4magnetic nanoparticles[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 296-302.
[13]LING S K, WANG Shaobin, PENG Yuelian. Oxidative degradation of dyes in water using Co2+/H2O2and Co2+/peroxymonosulfate[J]. Journal of Hazardous Materials, 2010,178(1-3): 385-389.
[14]BAGAL M V, GOGATE P R. Sonochemical degradation of alachor in the presence of process intensifying additives[J]. Separation and Purification Technology, 2012,90:92-100.
[15]SHEYDAEI M, KHATAEE A. Sonocatalytic decolorization of textile wastewater using synthesized γ-FeOOH nanoparticles[J]. Ultrasonic Sonochemistry, 2015,27:616-622.
[16]EL-KEMARY M, EL-SHAMY H, EL-MEHASSEB I, et al. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles[J].Journal of Luminescence,2010,130(12):2327-2331.
[17]CHEN Feng, LI Yan, CAI Wandong, et al. Preparation and sono-Fenton performance of 4A-zeolite supported α-Fe2O3[J]. Journal of Hazardous Materials, 2010,177(1-3):743-749.
[18]CHEN Junshui, LIU Meichuan, ZHANG Jidong, et al. Electrochemical degradation of bromopyrogallol red in presence of cobaltions[J]. Chemosphere, 2003,53(9): 1131-1136.
[19]ZHANG Hui, FU Hao, ZHANG Daobin. Degradation of C.I.Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process[J]. Journal of Hazardous Materials, 2009,172(2-3):654-660.
[20]ZHANG Kejia, GAO Naiyun, DENG Yang, et al. Degradation of bisphenol-A using ultrasonic irradiation assisted by low-concentration hydrogen peroxide[J]. Journal of Environmental Sciences,2011,23(1):31-36.
[21]YAVUZ Y, KOPARAL A S, ARTIK A, et al. Degradation of C.I.Basic Red 29 solution by combined ultrasound and Co2+-H2O2system[J]. Desalination, 2009,249(2):828-831.
[22]沈小華, 買文寧, 蘇濤. Fenton試劑處理抗生素厭氧處理出水的試驗研究[J]. 水處理技術(shù), 2010,36(4):79-81.
SHEN Xiaohua, MAI Wenning, SU Tao. Experimental study on treatment anaerobic effluent of antibiotics production wastewater by Fenton[J]. Technology Water Treatment, 2010,36(4):79-81.
[23]GIRI A S, GOLDER A K. Ciprofloxacin degradation from aqueous solution by Fenton oxidation: reaction kinetics and degradation mechanisms[J].RSC Advances, 2014,4(13):6738-6745.[24]魏紅, 楊虹, 李克斌, 等. CCL4增強超聲降解環(huán)丙沙星的效果及路徑解析[J]. 高?;瘜W(xué)工程學(xué)報, 2015,29(3):703-708.
WEI Hong, YANG Hong, LI Keibin, et al. The enhanced effect of ciprofloxacin sonochemical degradation by adding CCl4and its degradation pathways[J]. Journal of Chemical Engineering, 2015,29(3):703-708.
[25]AN Taicheng, YANG Hai, LI Guiying, et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water[J]. Applied Catalysis B:Environmental, 2010,94(3-4): 288-294.
[26]ZHOU Zhengwei, JIANG Jiaqian. Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI)[J]. Chemosphere, 2015,119: S95-S100.
[27]SUTAR R S, RATHOD V K. Ultrasound assisted Laccase catalyzed degradation of Ciprofloxacin hydrochloride[J]. Journal of Industrial and Engineering Chemistry, 2015,31:276-282.
[28]MAHDI-AHMED M, CHIRON S. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater[J]. Journal of Hazardous Materials, 2014,265:41-46.
[29]ZHANG Xinxin, LI Ruiping, JIA Manke, et al. Degradation of ciprofloxacin in aqueous bismuth oxybromide (BIOBr) suspensions under visible liaht irradiation: A direct hole oxidation pathway[J].Chemical Engineering Journal, 2015,(274):290-297.
[30]XIAO Xiao, ZENG Xia, LEMLEY A T. Species-dependent degradation of ciprofloxacin in a membrane anodic Fenton system[J]. Journal of Agricultural and Food Chemistry, 2010, 58(18): 10169-10175.
(責(zé)任編輯王衛(wèi)勛,王緒迪)
Degradation of ciprofloxacin aqueous solution by combined Co2+and US/H2O2system
CHENG Xiaoli1, WEI Hong1, LI Wenying1, LI Kebin2
(1.Key Laboratory of Northwest Water Resources,Environment and Ecology,Ministry of Education;Xi’an University of Technology, Xi’an 710048, China; 2.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Education,School of Chemistry and Material Science,Northwest University,Xi’an 710069,China)
The aim of this study was to determine the effectiveness of catalysis of Co2+based on US/H2O2system to remove ciprofloxacin.Some main influenceing factors such as Co2+, H2O2concentration, reaction temperature and initial pH were investigated.Results showed that, Co2+had a significant synergetic effect on oxidation of ciprofloxacin,which is followed pseudo-first order kinetics.The degradation rate of ciprofloxacin increased with the increase of H2O2and Co2+concentration within the 4.0~32.0 mmol/L and 25.8~96.8 mmol/L range respectively; the degradation rate of target compound increased with the reaction temperature heating up at 15 ℃~45 ℃;When the initial pH value is 3.0, the best catalytic effect of ciprofloxacin was gained. Inhibition experiments indicating that the degradation of ciprofloxacin by Co2+catalyze was mainly oxidizing by ·OH.According to HPLC spectrum, three kinds of products are mainly generated in the process of Co2+/US/H2O2degradation of ciprofloxacin,which was identified through two ways.
Co2+; US/H2O2; ciprofloxacin; hydroxyl radical; first-order kinetics
10.19322/j.cnki.issn.1006-4710.2016.03.020
2015-11-05
國家自然科學(xué)基金資助項目(51409211);陜西省教育廳科學(xué)研究計劃資助項目(2013JK0881);陜西省教育廳重點實驗室資助項目(13JS067);陜西省水利科技資助項目(2013slkj-07);西安理工大學(xué)創(chuàng)新基金資助項目(106211302);環(huán)境工程國家重點學(xué)科培育學(xué)科資助項目(106-x12045)
程小莉,女,碩士生,研究方向為水體有機污染治理。E-mail:xiaoli260@126.com
魏紅,女,教授, 研究方向為有機污染治理及水資源保護(hù)。E-mail:weihong0921@163.com
X131.2
A
1006-4710(2016)03-0364-06