国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

單層網(wǎng)殼結(jié)構(gòu)非線性穩(wěn)定的隨機(jī)缺陷模態(tài)法研究*

2016-10-25 03:33魏德敏涂家明
關(guān)鍵詞:網(wǎng)殼保證率單層

魏德敏 涂家明

(華南理工大學(xué) 土木與交通學(xué)院,廣東 廣州 510640)

?

單層網(wǎng)殼結(jié)構(gòu)非線性穩(wěn)定的隨機(jī)缺陷模態(tài)法研究*

魏德敏涂家明

(華南理工大學(xué) 土木與交通學(xué)院,廣東 廣州 510640)

采用隨機(jī)缺陷模態(tài)法對(duì)凱威特-聯(lián)方型單層網(wǎng)殼進(jìn)行非線性穩(wěn)定分析,研究了隨機(jī)缺陷空間樣本數(shù)量、矢跨比等因素對(duì)網(wǎng)殼結(jié)構(gòu)穩(wěn)定極限荷載的影響,并將隨機(jī)缺陷模態(tài)法計(jì)算結(jié)果與一致缺陷模態(tài)法計(jì)算結(jié)果進(jìn)行了對(duì)比.結(jié)果表明:采用概率統(tǒng)計(jì)方法對(duì)該網(wǎng)殼進(jìn)行穩(wěn)定分析時(shí),隨機(jī)缺陷樣本數(shù)量應(yīng)不小于90;對(duì)于矢跨比較大的單層網(wǎng)殼結(jié)構(gòu),采用一致缺陷模態(tài)法計(jì)算穩(wěn)定臨界荷載的概率可靠度較低,需要采用隨機(jī)缺陷模態(tài)法加以驗(yàn)證;當(dāng)網(wǎng)殼結(jié)構(gòu)的矢跨比小于1/6時(shí),兩種初始缺陷分布方法計(jì)算出的穩(wěn)定承載力較為接近.

單層網(wǎng)殼;隨機(jī)缺陷模態(tài)法;一致缺陷模態(tài)法;非線性分析;矢跨比;穩(wěn)定極限荷載

大跨度單層網(wǎng)殼屬于缺陷敏感型結(jié)構(gòu).由于施工技術(shù)和施工質(zhì)量等原因,單層網(wǎng)殼結(jié)構(gòu)的初始幾何缺陷不可避免,并且直接影響到結(jié)構(gòu)的穩(wěn)定性.

目前常用的結(jié)構(gòu)初始幾何缺陷確定方法有一致缺陷模態(tài)法和隨機(jī)缺陷模態(tài)法.Papadopouios等[1]基于蒙特-卡洛法提出一種快速算法——隨機(jī)有限元法,并對(duì)有隨機(jī)缺陷的網(wǎng)殼結(jié)構(gòu)的屈曲荷載進(jìn)行研究.Gordini等[2-3]采用隨機(jī)缺陷法研究了桿件初始彎曲及長(zhǎng)度缺陷對(duì)雙層網(wǎng)殼結(jié)構(gòu)承載能力的影響.Bruno等[4]提出采用節(jié)點(diǎn)等效幾何缺陷法研究初始缺陷對(duì)單層網(wǎng)殼穩(wěn)定性的影響.Qi等[5]基于初始彎曲和殘余應(yīng)力的影響提出了計(jì)算網(wǎng)殼設(shè)計(jì)承載力的方法.趙海等[6]基于隨機(jī)場(chǎng)展開(kāi)法提出了高效尋求網(wǎng)殼結(jié)構(gòu)初始缺陷的最不利分布形式的方法.劉慧娟等[7]提出隨機(jī)缺陷模態(tài)迭加法來(lái)獲得單層網(wǎng)殼結(jié)構(gòu)最不利缺陷分布下的穩(wěn)定承載力.盧家森等[8]提出了使用凸集模型確定單層球面網(wǎng)殼最不利初始幾何缺陷的有效方法.此外,劉學(xué)春等[9]采用施工偏差概率法模擬弦支穹頂結(jié)構(gòu)的初始幾何缺陷;陳世英等[10]發(fā)現(xiàn)優(yōu)化尋優(yōu)結(jié)果與初始幾何缺陷分布有直接關(guān)系;蔡健等[11]提出了計(jì)算量較少的N階特征缺陷模態(tài)法計(jì)算網(wǎng)殼結(jié)構(gòu)的穩(wěn)定承載力.

本研究分別采用隨機(jī)缺陷模態(tài)法和一致缺陷模態(tài)法對(duì)大跨度單層網(wǎng)殼結(jié)構(gòu)進(jìn)行非線性穩(wěn)定分析,研究了隨機(jī)缺陷樣本數(shù)量、矢跨比等因素對(duì)網(wǎng)殼結(jié)構(gòu)穩(wěn)定極限荷載的影響,給出所需最少空間樣本數(shù)目,并對(duì)兩種方法的計(jì)算結(jié)果進(jìn)行了對(duì)比分析.

1 隨機(jī)缺陷模態(tài)法

隨機(jī)缺陷模態(tài)法假定:結(jié)構(gòu)每個(gè)節(jié)點(diǎn)的安裝偏差均符合二倍均方差范圍內(nèi)的正態(tài)概率密度函數(shù)[12],即每個(gè)節(jié)點(diǎn)安裝偏差隨機(jī)變量為RX/2,其中X服從標(biāo)準(zhǔn)正態(tài)分布,R為節(jié)點(diǎn)最大安裝偏差;各節(jié)點(diǎn)位置偏差隨機(jī)變量是相互獨(dú)立的.

由此可知,每一個(gè)樣本空間點(diǎn)對(duì)應(yīng)一種可能的初始幾何缺陷分布模式(樣本),可以計(jì)算出一個(gè)相應(yīng)的穩(wěn)定極限荷載值(樣本值).因此由n個(gè)初始幾何缺陷樣本可以得到n個(gè)穩(wěn)定極限荷載樣本值.

隨機(jī)缺陷模態(tài)法主要計(jì)算步驟如下:

步驟1確定最大安裝偏差R,調(diào)用高斯隨機(jī)分布函數(shù)生成坐標(biāo)偏差,引入坐標(biāo)偏差修改完善結(jié)構(gòu)的節(jié)點(diǎn)坐標(biāo),形成初始幾何缺陷分布形式,通過(guò)非線性屈曲分析,得到穩(wěn)定極限荷載值,形成樣本空間的一個(gè)樣本值;

步驟2根據(jù)預(yù)先確定的樣本空間數(shù)目n,重復(fù)步驟1進(jìn)行非線性屈曲分析,得到n個(gè)極限荷載值,即樣本空間的n個(gè)樣本值;

步驟3運(yùn)用概率與數(shù)理統(tǒng)計(jì)知識(shí)對(duì)樣本值進(jìn)行分布檢驗(yàn),確定結(jié)構(gòu)最終的穩(wěn)定極限荷載值.

2 工程算例

文中以跨度L=70 m,高度H=10 m,矢跨比H/L=1/7的凱威特_聯(lián)方型單層球面網(wǎng)殼為算例.網(wǎng)殼總頻數(shù)為9,而聯(lián)方與凱威特的頻數(shù)比為6∶3,凱威特肋環(huán)與斜桿分別采用φ278 mm×7 mm和φ226 mm×6 mm的圓鋼管,聯(lián)方斜桿和環(huán)桿分別采用φ252 mm×7 mm和φ206 mm×6 mm的圓鋼管.鋼材的彈性模量為E=206 GPa,泊松比ν=0.3,密度ρ=7 850 kg/m3.材料為理想彈塑性,滿足Von Mises屈服準(zhǔn)則,其屈服強(qiáng)度σ0=235 N/mm2.網(wǎng)殼結(jié)構(gòu)的永久荷載和活荷載均為0.5 kN/m2,活載滿跨布置,方向豎直向下.網(wǎng)殼與下部結(jié)構(gòu)的連接為鉸接.

網(wǎng)殼結(jié)構(gòu)的有限元分析模型如圖1所示.每根桿件劃分為3個(gè)BEAM188單元[13].非線性方程求解方法為弧長(zhǎng)法,收斂準(zhǔn)則為力的收斂準(zhǔn)則,以下所有非線性分析都做同樣處理.

圖1 網(wǎng)殼結(jié)構(gòu)計(jì)算模型

選取初始幾何缺陷的空間樣本數(shù)n=200,按照文獻(xiàn)[14]的要求,網(wǎng)殼結(jié)構(gòu)最大初始缺陷值為R=L/300,由非線性有限元分析得到的結(jié)構(gòu)穩(wěn)定極限荷載Pcr如圖2所示.

圖2 網(wǎng)殼結(jié)構(gòu)的穩(wěn)定極限荷載

由圖2和相應(yīng)計(jì)算結(jié)果可知,該網(wǎng)殼結(jié)構(gòu)的穩(wěn)定極限荷載Pcr的最大值為5.133 kN/m2,最小值為3.585 kN/m2.如無(wú)特別說(shuō)明,后文中Pcr單位為kN/m2.

圖3給出200個(gè)樣本值的分布直方圖.由圖3可以看出,這些樣本值呈中間高兩邊低,接近于正態(tài)分布.以下利用概率密度函數(shù)f(x)對(duì)樣本值進(jìn)行χ2優(yōu)度檢驗(yàn):

(1)

式中,3.584

圖3 穩(wěn)定極限荷載分布直方圖

由極大似然估計(jì)法可得:

(2)

(3)

取n=200,由式(2)和(3)可得上述200個(gè)樣本均值和方差μ=4.493 9,σ2=0.082 7,將μ、σ2代入式(1)可得X的概率密度函數(shù)的表達(dá)式為

(4)

(3.584

將樣本值X的可能取值區(qū)間(3.584,5.300)分為10個(gè)小區(qū)間,取事件Aj為第j個(gè)區(qū)間(j=1,2,…,10),得到表1所示χ2檢驗(yàn)計(jì)算結(jié)果.表中χ2優(yōu)度檢驗(yàn)時(shí)小于5的分組就近合并,fj為落入?yún)^(qū)間Aj的樣本值個(gè)數(shù),pj為公式(4)在區(qū)間Aj上的積分概率.

表1 優(yōu)度檢驗(yàn)計(jì)算結(jié)果

由表1可得:

χ2=208.32-200=8.32.

在顯著水平0.1情況下[15],由表1知分組數(shù)k=8,未知量r=2,則:

(5)

隨機(jī)變量不同情況下,最終穩(wěn)定極限荷載值及其保證率如表2所示.表中取實(shí)際保證率φ′=Ni/200,Ni為樣本值不小于Pcr,200的樣本數(shù)目.

表2最終穩(wěn)定極限荷載值及其保證率

Table2Finalvalueofstableultimateloadsanditsguaranteerate

β?(β)/%?'/%Pcr,200/(kN·m-2)184.1383.504.20631.64595.0092.504.0208297.7296.503.9187399.8799.503.6311

一般情況下實(shí)際統(tǒng)計(jì)的保證率小于理論計(jì)算的保證率.從表2可知,隨機(jī)變量β取值越大,所得最終穩(wěn)定極限荷載的保證率理論值也越大,且保證率的理論值與實(shí)際值越接近.因此,在工程實(shí)際中一般取β≥2.文中取β=3時(shí),所計(jì)算的200個(gè)樣本值xi中只有1個(gè)低于最終穩(wěn)定極限荷載,失效概率為0.5%.

3 參數(shù)分析

3.1矢跨比對(duì)穩(wěn)定極限荷載計(jì)算結(jié)果的影響

不改變桿件截面尺寸和組成形式,不同矢跨比情況下的單層網(wǎng)殼結(jié)構(gòu)非線性穩(wěn)定性的隨機(jī)缺陷模態(tài)法分析結(jié)果如表3所示,樣本數(shù)n取200,最大初始缺陷分別為L(zhǎng)/300.表中Pcr,0和Pcr,200分別為完善和有隨機(jī)幾何缺陷單層網(wǎng)殼結(jié)構(gòu)的穩(wěn)定極限荷載.均值下降和終值下降分別指μ和Pcr,200相對(duì)于Pcr,0的下降值.

表3不同矢跨比下單層網(wǎng)殼結(jié)構(gòu)非線性穩(wěn)定性分析結(jié)果

Table 3Results of nonlinear stability analysis of the single layer reticulated shell under different rise span ratios

H/LPcr,0/(kN·mm-2)μσPcr,200/(kN·mm-2)均值下降/%終值下降/%1/59.58747.47060.39616.282215.9134.471/67.91835.69660.29944.798515.7739.401/76.59444.49390.28763.631119.2044.941/85.72763.58890.25072.836820.9650.47

從表3可知,考慮初始幾何缺陷后,單層網(wǎng)殼結(jié)構(gòu)的穩(wěn)定極限荷載相對(duì)于完善結(jié)構(gòu)有較大幅度的下降,最大下降率達(dá)到50.47%;隨著矢跨比的減小,網(wǎng)殼結(jié)構(gòu)穩(wěn)定極限荷載終值下降的幅度有所增大.因此初始幾何缺陷對(duì)小矢跨比單層網(wǎng)殼結(jié)構(gòu)穩(wěn)定性的影響較大.

3.2樣本數(shù)量對(duì)穩(wěn)定極限荷載計(jì)算結(jié)果的影響

圖4 μn關(guān)系曲線

圖4可知,對(duì)于不同矢跨比的單層網(wǎng)殼,都呈現(xiàn)樣本均值μ隨著n的增大逐漸趨于穩(wěn)定的規(guī)律;在n≥70時(shí),矢跨比為1/5和1/7的單層網(wǎng)殼的μ值趨于穩(wěn)定;在n≥100時(shí),矢跨比為1/8的單層網(wǎng)殼的μ值才趨于穩(wěn)定.說(shuō)明小矢跨比的單層網(wǎng)殼對(duì)于隨機(jī)幾何初始缺陷更為敏感,數(shù)值也更難趨于穩(wěn)定.

(6)

相鄰組的變化率用δ′表示.

考慮篇幅限制,表4給出了矢跨比為1/7的單層網(wǎng)殼樣本數(shù)n=50,60,70,80,90,100,110,120,130,140,150的計(jì)算結(jié)果,其中k和r為每個(gè)樣本進(jìn)行優(yōu)度檢驗(yàn)的分組數(shù)和未知量.從表4的計(jì)算結(jié)果可以看出,當(dāng)樣本數(shù)n≥80時(shí),相鄰組穩(wěn)定極限荷載的變化率均小于1%.Pcr,n與Pcr,200的相對(duì)誤差δ隨著樣本數(shù)的增大先增大后減小,當(dāng)樣本數(shù)n>60時(shí),相對(duì)誤差δ均小于5%.

表4矢跨比為1/7的網(wǎng)殼的部分計(jì)算結(jié)果

Table 4Some computational results of the shell with rise-span ratio being 1/7

nμσχ2χ20.1(k-r-1)Pcrδ'/%δ/%504.4680.3313.866.253.474-1.694.32604.4740.3533.014.613.4161.635.91704.4860.3384.174.613.4731.344.36804.4990.3263.957.783.5200.093.06904.4850.3212.616.253.5230.712.971004.4890.3144.126.253.5490.762.271104.4950.3076.997.783.5760.681.531204.5030.3014.846.253.600-0.110.851304.4930.2994.876.253.5960.400.961404.4950.2955.676.253.610-0.030.571504.4890.2936.159.243.6090.440.60

不同矢跨比的單層網(wǎng)殼結(jié)構(gòu)δ和δ′隨n的變化情況如圖5和圖6所示.

圖5 不同矢跨比網(wǎng)殼的δ變化曲線

Fig.5δvariation curves of the shells with different rise-span ratios

圖6 不同矢跨比網(wǎng)殼的δ′變化曲線

Fig.6δ′ variation curves of the shells with different rise-span ratios

4 與一致缺陷模態(tài)法結(jié)果對(duì)比

一致缺陷模態(tài)法認(rèn)為網(wǎng)殼結(jié)構(gòu)的最低階屈曲模態(tài)對(duì)應(yīng)勢(shì)能最小狀態(tài),當(dāng)結(jié)構(gòu)的缺陷分布形式與最低階屈曲模態(tài)吻合時(shí),最容易發(fā)生屈曲.因此我國(guó)相關(guān)規(guī)程建議采用一致缺陷模態(tài)法進(jìn)行網(wǎng)殼穩(wěn)定性分析[14].

4.1一致缺陷法計(jì)算結(jié)果

一致缺陷模態(tài)法得到的穩(wěn)定極限荷載Pcr,1以及基于隨機(jī)缺陷模態(tài)法計(jì)算結(jié)果的概率保證率φ如表5所示.

由表5可知,當(dāng)矢跨比H/L<1/5時(shí),一致缺陷法得到的穩(wěn)定極限荷載概率保證率較高,且隨著矢跨比的減小而增大.矢跨比H/L=1/5單層網(wǎng)殼結(jié)構(gòu)的穩(wěn)定極限荷載的概率保證率僅為59.54%.因此采用最低階屈曲模態(tài)作為初始幾何缺陷分布形式計(jì)算大矢跨比網(wǎng)殼的穩(wěn)定極限荷載要慎重[17].

表5一致缺陷模態(tài)法分析結(jié)果及保證率

Table 5Analysis results by use of consistent mode imperfection method and their guarantee rate

H/LPcr,1?/%1/57.375059.541/64.846899.771/73.530999.961/82.828599.88

4.2兩種方法計(jì)算結(jié)果對(duì)比

一致缺陷模態(tài)法和隨機(jī)缺陷模態(tài)法穩(wěn)定極限荷載的計(jì)算結(jié)果如圖7所示.

圖7 兩種方法計(jì)算結(jié)果的對(duì)比

由圖7可知,穩(wěn)定極限荷載隨著矢跨比的減小而降低,完善結(jié)構(gòu)的穩(wěn)定極限荷載大于有初始缺陷的結(jié)構(gòu).矢跨比≥1/6,兩種缺陷分布模態(tài)法計(jì)算得到的穩(wěn)定極限荷載差別隨著矢跨比的增大而增大.當(dāng)單層網(wǎng)殼的矢跨比≤1/6時(shí),兩種缺陷分布方法的計(jì)算結(jié)果基本吻合,因此,初始幾何缺陷分布形式對(duì)小矢跨比單層網(wǎng)殼結(jié)構(gòu)的穩(wěn)定極限荷載影響較小,可用一致缺陷法計(jì)算.

對(duì)于矢跨比大于1/6的單層網(wǎng)殼結(jié)構(gòu),用隨機(jī)缺陷模態(tài)法可以得到較為可靠的穩(wěn)定承載力.為此,建議對(duì)于大矢跨比網(wǎng)殼結(jié)構(gòu)采用兩種缺陷分布模態(tài)法進(jìn)行穩(wěn)定計(jì)算.

5 結(jié)語(yǔ)

以凱威特_聯(lián)方單層球面網(wǎng)殼結(jié)構(gòu)為例,采用隨機(jī)缺陷模態(tài)法進(jìn)行了非線性穩(wěn)定分析,并與一致缺陷模態(tài)法計(jì)算結(jié)果進(jìn)行對(duì)比分析,得出以下主要結(jié)論:

(1)隨機(jī)缺陷模態(tài)法取空間樣本數(shù)目n≥90計(jì)算得到的網(wǎng)殼結(jié)構(gòu)穩(wěn)定極限荷載精度和概率保證率較高.

(2)對(duì)于大矢跨比單層網(wǎng)殼結(jié)構(gòu),采用一致缺陷模態(tài)法所得穩(wěn)定極限荷載有可能不是最小值,應(yīng)采用隨機(jī)缺陷模態(tài)法加以驗(yàn)證.

(3)當(dāng)單層網(wǎng)殼結(jié)構(gòu)的矢跨比小于或等于1/6時(shí),兩種初始缺陷分布方法計(jì)算出的穩(wěn)定極限荷載接近.

[1]PAPADOPOUIOS V,PAPADRAKAKIS M.A computationally efficient method for the buckling analysis of shells with stochastic imperfections [J].Computational Mechanics,2009,43 (5):688-700.

[2]ROUDSARI M T,GORDINI M.Random imperfection effect on reliability of space structures with different supports [J].Structural Engineering and Mechanics,2015,55 (3):461-472.

[3]SHEIDAII M R,GORDINI M.Effect of random distribution of member length imperfection on collapse behavior and reliability of flat double-layer grid space structures [J].Advances in Structural Engineering,2015,18 (9):1475-1483.

[4]BRUNO L,SASSONE M,VENUTI F.Effects of the equiva-lent geometric nodal imperfections on the stability of single layer grid shells [J].Engineering Structures,2016,112 (1):184-199.

[5]QI Lin,ZHANG Xian-min,HUO Hai-feng.Design bearing capacity of the initial imperfect lattice shell [J].Advances in Structural Engineering,2016,19 (1):14-22.

[6]趙海,徐亞洲,白國(guó)良.隨機(jī)缺陷場(chǎng)對(duì)網(wǎng)殼結(jié)構(gòu)性能影響的研究 [J].空間結(jié)構(gòu),2011,17(4):24-26.

ZHAO Hai,XU Ya-zhou,BAI Guo-liang.Influence of stochastic imperfection field on performance of latticed shell structures [J].Spatial Structures,2011,17(4):24-26.

[7]劉慧娟,羅永峰,楊綠峰,等.單層網(wǎng)殼結(jié)構(gòu)穩(wěn)定性分析的隨機(jī)缺陷模態(tài)迭加法 [J].同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,40(9):1295-1299.

LIU Hui-juan,LUO Yong-feng,YANG Lv-feng,et al.Stochastic imperfection mode superposition method for stabi-lity analysis of single-layer lattice domes [J].Journal of Tongji University(Natual Science),2012,40(9):1295-1299.

[8]盧家森,張其林.球面網(wǎng)殼最不利幾何缺陷的凸集和概率模型 [J].工程力學(xué),2013,30(7):100-104.

LU Jia-sen,ZHANG Qi-lin.Convex and probabilistic mo-dels of uncertainties in initial geometric imperfections of latticed shells [J].Engineering Mechanics,2013,30(7):100-104.

[9]劉學(xué)春,張愛(ài)林.基于隨機(jī)缺陷理論的大跨度預(yù)應(yīng)力弦支穹頂結(jié)構(gòu)非線性整體穩(wěn)定分析 [J].北京工業(yè)大學(xué)學(xué)報(bào),2013,39(8):1201-1205.

LIU Xue-chun,ZHANG Ai-lin.Integral stability analysis of large-span prestressed suspend-dome based on defect probabilistic theory [J].Journal of Beijing University of Technology,2013,39(8):1201-1205.

[10]陳世英,張素娟,李青,等.初始幾何缺陷對(duì)網(wǎng)殼截面優(yōu)化結(jié)果影響研究 [J].力學(xué)與實(shí)踐,2015,37(6):709-712.

CHEN Shi-ying,ZHANG Su-juan,LI Qing,et al.The influence of initial geometric imperfection on the section optimization result of reticulated shell [J].Mechanics in Engineering,2015,37(6):709-712.

[11]蔡健,賀盛,姜正榮,等.單層網(wǎng)殼結(jié)構(gòu)穩(wěn)定性分析方法研究 [J].工程力學(xué),2015,32(7):103-110.

CAI Jian,HE Sheng,JIANG Zheng-rong,et al.Investigation on stability analysis method of single layer latticed shells [J].Engineering Mechanics,2015,32(7):103-110.

[12]唐敢,黎德琳,趙才其,等.空間結(jié)構(gòu)初始幾何缺陷分布規(guī)律的實(shí)測(cè)數(shù)據(jù)及統(tǒng)計(jì)參數(shù) [J].建筑結(jié)構(gòu),2008,38(2):74-78.

TANG Gan,LI De-lin,ZHAO Cai-qi,et al.Statistical regulation and parameter study on initial geometrical imperfections of spatial structures based on measured data [J].Building Structure,2008,38(2):74-78.

[13]范峰,曹正罡,馬會(huì)環(huán),等.網(wǎng)殼結(jié)構(gòu)彈塑性穩(wěn)定性[M].北京:科學(xué)出版社,2015.

[14]JGJ 7—2010,空間網(wǎng)格結(jié)構(gòu)技術(shù)規(guī)程 [S].

[15]亓民勇,董金新.基于卡方擬合優(yōu)度檢驗(yàn)的序列等概性測(cè)試組 [J].計(jì)算機(jī)工程與設(shè)計(jì),2012,33(5):1758-1759.

QI Min-yong,DONG Jin-xin.Test suit for sequence equal probability based on chi square goodness of fit test [J].Computer Engineering and Design,2012,33(5):1758-1759.

[16]唐敢,郭小明,練蘭英,等.網(wǎng)殼結(jié)構(gòu)穩(wěn)定性分析的改進(jìn)隨機(jī)缺陷法智能控制 [J].南京航空航天大學(xué)學(xué)報(bào),2012,44(3):410-414.

TANG Gan,GUO Xiao-ming,LIAN Lan-ying,et al.Intelligent control of advanced stochastic imperfections me-thod for stability analysis of lattice shells [J].Journal of Nanjing University of Aeronautics & Astronautics,2012,44(3):410-414.

[17]魏德敏,張科龍,姜正榮.某大跨單層球面網(wǎng)殼結(jié)構(gòu)的非線性屈曲研究 [J].空間結(jié)構(gòu),2014,20(1):41-44.

WEI De-min,ZHANG Ke-long,JIANG Zheng-rong.Research of nonlinear buckling for one large-span single-layer spherical latticed shell [J].Spatial Structures,2014,20(1):41-44.

Supported by the Open Subject of the State Key Laboratory of Subtropical Building Science(2012ZC23)

A Probe into Nonlinear Stability of Single-Layer Reticulated Shells by Means of Random Imperfection Modal Method

WEIDe-minTUJia-ming

(School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China)

The nonlinear stability of Kiewitt-Lamella single-layer reticulated shells is analyzed by means of random imperfection modal method,and the stable ultimate load of the reticulated shell structure,which is affected by both the spatial sample number of random defect and the rise-span ratio,is investigated. Then,a comparison of calculated results is made between random imperfection modal method and consistent imperfection modal method. The results show that (1) the spatial sample number of random defect should be not less than 90 for the stability analysis of structures via statistical method; (2) for the reticulated shell structure with large rise-span ratio,the probabilistic reliability to calculate the critical load via consistent imperfection modal method is rather low,so that it is nece-ssary to verify the critical load with the help of random imperfection modal method; and (3) when the rise-span ratio of a single-layer reticulated shell is less than 1/6,the calculated stable bearing capacities obtained by the two above-mentioned initial defect distribution methods are nearly equal.

single-layer reticulated shell; random imperfection modal method; consistent imperfection modal me-thod; nonlinear analysis; rise-span ratio; stable ultimate load

1000-565X(2016)07-0083-07

2015-12-07

亞熱帶建筑科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(2012ZC23)

魏德敏(1955-),女,教授,主要從事大跨空間結(jié)構(gòu)方面的研究.E-mail:dmwei@scut.edu.cn

TU 393.3doi: 10.3969/j.issn.1000-565X.2016.07.013

猜你喜歡
網(wǎng)殼保證率單層
二維四角TiC單層片上的析氫反應(yīng)研究
基于CFD模擬的球面網(wǎng)殼風(fēng)壓分布分析
基于PLC控制的立式單層包帶機(jī)的應(yīng)用
深圳:研發(fā)出單層多晶石墨烯可控?cái)嗔鸭夹g(shù)
新型網(wǎng)殼結(jié)構(gòu)整體穩(wěn)定性能分析
膠東地區(qū)跨流域調(diào)水優(yōu)化配置研究
綜合利用水庫(kù)興利調(diào)節(jié)計(jì)算的幾種方法
有效積溫?cái)?shù)值在玉米選育生產(chǎn)上的修訂與應(yīng)用
用水保證率內(nèi)涵、計(jì)算及應(yīng)用探討
地震動(dòng)斜入射對(duì)樁-土-網(wǎng)殼結(jié)構(gòu)地震響應(yīng)影響