王敏娟,何冷,徐亦飛,3
(1.陜西液化天然氣投資發(fā)展有限責(zé)任公司, 陜西 楊凌 710016;2.浙江大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,浙江 杭州 310008;3.密歇根州立大學(xué)生物信息與農(nóng)業(yè)工程學(xué)院,美國(guó)密歇根州 48824-13323)
?
王敏娟1,何冷2,徐亦飛2,3
(1.陜西液化天然氣投資發(fā)展有限責(zé)任公司, 陜西 楊凌 710016;2.浙江大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,浙江 杭州 310008;3.密歇根州立大學(xué)生物信息與農(nóng)業(yè)工程學(xué)院,美國(guó)密歇根州 48824-13323)
液化天然氣(Liquefied Natural Gas, LNG)是天然氣的一種貯運(yùn)方式。近幾年液化天然氣產(chǎn)業(yè)隨著環(huán)境清潔能源需求的逐步增長(zhǎng)而發(fā)展迅速[1,2]。LNG使天然氣能實(shí)現(xiàn)遠(yuǎn)洋運(yùn)輸,把天然氣加工成LNG能有效回收邊遠(yuǎn)天然氣。在LNG產(chǎn)業(yè)中,級(jí)聯(lián)液化流程因其能耗低、配比簡(jiǎn)單、技術(shù)成熟等優(yōu)點(diǎn)逐步在行業(yè)中應(yīng)用廣泛[3,4]。
級(jí)聯(lián)式冷卻循環(huán)流程是利用冷劑常壓下沸點(diǎn)不同,逐級(jí)降低制冷溫度達(dá)到天然氣液化的目的[5-6],如圖1所示。級(jí)聯(lián)式冷卻循環(huán)流程通常由三級(jí)獨(dú)立的制冷循環(huán)組成,制冷劑分別為丙烷、乙烯、甲烷。第1級(jí)丙烷制冷循環(huán)為天然氣、乙烯和甲烷提供冷量;第2級(jí)乙烯制冷循環(huán)為天然氣和甲烷提供冷量;第3級(jí)甲烷制冷循環(huán)為天然氣提供冷量;級(jí)聯(lián)循環(huán)有4個(gè)壓縮器、3個(gè)蒸發(fā)器、4個(gè)節(jié)流閥和3個(gè)冷凝器,通過(guò)三級(jí)冷卻,天然氣的溫度逐步降低,直至液化。
原料氣(40 ℃,400 kPa)經(jīng)過(guò)凈化后,使用17 ℃循環(huán)水進(jìn)行預(yù)冷卻,然后進(jìn)入E1丙烷換熱器(-42 ℃)中冷卻。在C1中,由E1蒸發(fā)出來(lái)的丙烷氣體加壓到1 000 kPa。丙烷通過(guò)冷卻,經(jīng)由節(jié)流閥減壓到100 kPa,最后返回到E1,至此,丙烷循環(huán)完成。經(jīng)過(guò)E1,天然氣降溫到-37.5 ℃和400 kPa,繼而送入E2換熱器冷卻到-100 ℃。E2蒸發(fā)出來(lái)的乙烯氣體加壓到10 ℃,經(jīng)過(guò)E1冷卻,并返回到E2,至此,乙烯循環(huán)完成。經(jīng)過(guò)E2,天然氣冷卻到-100 ℃,然后送入E3換熱器直接冷卻到-162 ℃,通過(guò)節(jié)流閥降壓到100 kPa,輸送到LNG存儲(chǔ)罐。E3蒸發(fā)出來(lái)的甲烷氣體經(jīng)過(guò)C3增壓,在E1中冷卻,在E2中液化,回到E3,由此進(jìn)行循環(huán)。
2.1熱力學(xué)模型
在一個(gè)典型的冷卻系統(tǒng)性能分析中,性能系數(shù)(The cofficient of performance, COP)是一項(xiàng)重要的性能指標(biāo)[7]。該系數(shù)描述了產(chǎn)生一定量冷負(fù)荷所必需的輸入電源的信息。從熱力學(xué)第一定律可以得出,COP可以定義為冷負(fù)荷與級(jí)聯(lián)冷卻循環(huán)的電源輸入的比率:
(1)
(2)
(3)
(4)
(5)
(6)
表1 級(jí)聯(lián)制冷系統(tǒng)中各個(gè)組件的損率、EPC以及效率
(7)
表2 制冷劑的熱物性
表3 級(jí)聯(lián)冷卻循環(huán)中各個(gè)節(jié)點(diǎn)的仿真結(jié)果
表4 級(jí)聯(lián)制冷循環(huán)中各個(gè)組件的性能結(jié)果
表5 級(jí)聯(lián)制冷系統(tǒng)中各個(gè)循環(huán)的熱力學(xué)和性能結(jié)果
[1]李靜,李志紅,華賁.LNG冷能利用現(xiàn)狀及發(fā)展前景[J].天然氣工業(yè),2005,25(5):103-105.
[2]Ji C, Liu X Y, Xu X Y, et al. A Review of LNG Applied and Security[C] Researches; Trans Tech Publ proceedings of the Advanced Materials Research, 2014.
[3]MA M, YU J, WANG X. Performance evaluation and optimal configuration analysis of a CO2/NH3cascade refrigeration system with falling film evaporator-condenser[J]. Energy Conversion and Management, 2014,79(2):24-31.
[4]楊文,曹學(xué)文,孫麗,等.天然氣液化技術(shù)研究現(xiàn)狀及進(jìn)展[J].天然氣化工:C1化學(xué)與化工,2015,40(3):88-93.
[5]Pereira, Clementino, Domingos Lequisiga. Technical evaluation of C3-MR and cascade cycle on natural gas liquefaction process[J]. International Journal of Chemical Engineering and Applications, 2014,5(6):451-459.
[6]Kikkawa, Yoshitugi, Moritaka Nakamura, et al. Development of liquefaction process for natural gas[J]. Journal of Chemical Engineering of Japan, 1997,30(4):625-630.
[7]Chang, Ho-Myung, et al. An efficient multi-stage Brayton-JT cycle for liquefaction of natural gas[J]. Cryogenics, 2011,51(6):278-286.
[8]Morosuk T, Tsatsaronis G, Schult M. Conventional and advanced exergetic analyses: theory and application[J]. Arabian Journal for Science and Engineering, 2013,38(2):395-404.
[9]賀紅明,林文勝.基于LNG冷能的發(fā)電技術(shù)[J].低溫與超導(dǎo),2007,34(6):432-436.
[10]Ust Y, Akkaya A, Safa A. Analysis of a vapour compression refrigeration system via exergetic performance coefficient criterion[J]. Journal of the Energy Institute, 2011,84(2):66-72.
An Exergetic Analysis of Cascade Natural Gas Liquefaction Processes
WANG Ming-juan, HE Leng2, XU Yi-fei2,3
(1.Shaanxi Provincial Natural Gas co., ltd , Yangling 710016, China;2.College of Computer science, Zhejiang University, Hangzhou 310008,China;3.Department of Biosystems & Agricultural Engineering, Michigan State University, Michigan 48824-13323, USA.)
Liquefied Natural Gas (LNG) is the fastest growing energy carrier in the world dueto its low environmental impact, flexibility in the market and reserves capacity. In the present study, the cascade liquefaction process has achieved great concern because of its low energy consumption, the ratio of simple and mature technology. However, in the whole liquefaction process, some components still produce much energy assumption. Therefore, to reduce the energy consumption rate of natural gas liquefaction process, it is necessary to analyze its energy consumption of the entire cascade cooling process. Compared with the traditional the cofficient of performance (COP), exergetic analysis can find out the potenial section and maximum irreversibilities as much as possible. In this study, the principal aim is to investigate the theoretical performance of thenatural gas liquefaction process that was modeled based on the exergetic performance coefficient (EPC). Through simulation, results show thatno matter each component or the whole system, maximum irreversibilities occurred in propane cycle.
liquefied natural gas; exergetic analysis; cascade refrigeration cycle
2015-06-02
王敏娟(1990—),女,碩士研究生,主要從事液化天然氣控制方面的科研工作,E-mail:jenymw@foxmail.com。
TE646
A