萬(wàn) 勇,陳國(guó)宇,馮良鋒,劉桂雄,黃喬蔚
(1.廣州能源檢測(cè)研究院,廣東 廣州 510170;2.華南理工大學(xué)機(jī)械與汽車(chē)工程學(xué)院,廣東 廣州 510640)
CFD流動(dòng)調(diào)整器性能評(píng)價(jià)方法研究
萬(wàn)勇1,陳國(guó)宇2,馮良鋒1,劉桂雄2,黃喬蔚2
(1.廣州能源檢測(cè)研究院,廣東 廣州 510170;2.華南理工大學(xué)機(jī)械與汽車(chē)工程學(xué)院,廣東 廣州 510640)
針對(duì)當(dāng)前流動(dòng)調(diào)整器性能評(píng)價(jià)依賴(lài)于具體管道系統(tǒng),無(wú)法及時(shí)反饋、改進(jìn)調(diào)整器結(jié)構(gòu)等問(wèn)題,提出一種基于CFD仿真技術(shù)的流動(dòng)調(diào)整器性能評(píng)價(jià)方法。首先,建立流動(dòng)調(diào)整器評(píng)價(jià)方法坐標(biāo)系,并求解出各采樣點(diǎn)坐標(biāo);然后,推導(dǎo)管道截面流速場(chǎng)充分發(fā)展性的判斷依據(jù),進(jìn)而得出流動(dòng)調(diào)整器整流效果評(píng)價(jià)指標(biāo);最后,采用CFD仿真技術(shù)對(duì)柵格式流動(dòng)調(diào)整器進(jìn)行驗(yàn)證實(shí)驗(yàn)。結(jié)果表明:提出的評(píng)價(jià)方法能快速、有效地對(duì)柵格式調(diào)整器下游流場(chǎng)充分發(fā)展性進(jìn)行評(píng)判,有助于分析不同雷諾數(shù)下調(diào)整器性能的變化規(guī)律,并驗(yàn)證當(dāng)5.84×106≤Re≤5.84×108,柵格式調(diào)整器下游不規(guī)則流場(chǎng)達(dá)到充分發(fā)展所需最少直管長(zhǎng)度僅為不帶調(diào)整器的0.5~0.6倍,對(duì)加速流動(dòng)調(diào)整器設(shè)計(jì)、推動(dòng)流體能源監(jiān)測(cè)具有參考價(jià)值。
流動(dòng)調(diào)整器;評(píng)價(jià)方法;CFD仿真技術(shù);流速場(chǎng)
流動(dòng)調(diào)整器是加速不規(guī)則流場(chǎng)穩(wěn)定、消除漩渦等非正常流動(dòng)對(duì)流體影響的重要器件,在流體能源計(jì)量與監(jiān)控、流量監(jiān)測(cè)系統(tǒng)、流量傳感器等領(lǐng)域廣泛應(yīng)用[1]。常見(jiàn)的流動(dòng)調(diào)整器包括管束式、柵格式、孔板式等[2],由于調(diào)整器的形狀結(jié)構(gòu)、安裝方式直接影響調(diào)整器的工作性能,因而工程應(yīng)用中的調(diào)整器經(jīng)常需針對(duì)特定的場(chǎng)合進(jìn)行設(shè)計(jì),因此造成流動(dòng)調(diào)整器結(jié)構(gòu)及性能參差不齊,此外,不合理的形狀結(jié)構(gòu)、不規(guī)范的安裝方式會(huì)導(dǎo)致調(diào)整器下游流場(chǎng)紊亂,達(dá)不到整流效果[3],故如何快速、有效地對(duì)整流效果進(jìn)行評(píng)價(jià)是提高調(diào)整器設(shè)計(jì)效率、保證調(diào)整器工作性能的重要保障。當(dāng)前流動(dòng)調(diào)整器性能的評(píng)價(jià)需將調(diào)整器安裝進(jìn)管道并根據(jù)其下游流量計(jì)等器件的性能間接實(shí)現(xiàn),該方法依賴(lài)于具體管道系統(tǒng)及流量計(jì),操作繁瑣、成本高,既無(wú)法在設(shè)計(jì)階段及時(shí)反饋、改進(jìn)調(diào)整器結(jié)構(gòu),也不能為合理選取流量傳感器安裝位置提供參考信息[4-6]。近年來(lái),計(jì)算流體力學(xué)(computational fluid dynamics,CFD)技術(shù)被廣泛應(yīng)用于流量監(jiān)測(cè)領(lǐng)域,但研究較集中在不同溫度、壓力、流量工況及彎管、閥門(mén)等擾流件影響下的流量計(jì)流場(chǎng)適應(yīng)性分析[7-9],或者用于研究換能器、反射板等流量計(jì)自身結(jié)構(gòu)對(duì)流場(chǎng)的影響[10-11],而單獨(dú)通過(guò)CFD技術(shù)實(shí)現(xiàn)對(duì)流動(dòng)調(diào)整器性能進(jìn)行評(píng)價(jià)的研究較少[12-14]。本文提出一種基于CFD仿真技術(shù)的流動(dòng)調(diào)整器性能評(píng)價(jià)方法,通過(guò)CFD仿真技術(shù)實(shí)現(xiàn)在設(shè)計(jì)階段對(duì)流動(dòng)調(diào)整器性能進(jìn)行測(cè)評(píng),并能依據(jù)仿真結(jié)構(gòu)及時(shí)反饋優(yōu)化調(diào)整器設(shè)計(jì)以及為流量傳感器安裝位置提供指導(dǎo)信息。
流動(dòng)調(diào)整器整流目的是獲得與相同工況下直管道內(nèi)一致的充分發(fā)展的流場(chǎng),故調(diào)整器下游流場(chǎng)的充分發(fā)展與否直接體現(xiàn)了調(diào)整器性能。首先通過(guò)CAD軟件建立流域模型,并利用ICEM軟件進(jìn)行網(wǎng)格劃分,然后根據(jù)不同實(shí)驗(yàn)組的邊界條件分組對(duì)純直管、帶調(diào)整器雙扭彎管、不帶調(diào)整器雙扭彎管進(jìn)行數(shù)值模擬,接著提取仿真結(jié)果中采樣點(diǎn)的流速,并計(jì)算采樣點(diǎn)流速相對(duì)誤差,進(jìn)而判斷截面流場(chǎng)是否達(dá)到充分發(fā)展,最后得出評(píng)價(jià)流動(dòng)調(diào)整器的指標(biāo)。
1.1采樣點(diǎn)坐標(biāo)建立
圖1為流動(dòng)調(diào)整器評(píng)價(jià)方法坐標(biāo)系,圖中O-XY面為調(diào)整器下端面,O點(diǎn)為截面中心。在距離O-XY面zi(zi>0)的截面αi內(nèi)建立平面隨動(dòng)極坐標(biāo)系,并在截面αi中取NO(αi)個(gè)φj=d(j,αi)的圓,其中0<j≤NO(αi),0≤d(j,αi)<Dpipe,且d(j,αi)≠d(j+1,αi),Dpipe為管道直徑。在φj=d(j,αi)的圓上均布NP(φj,αi)個(gè)采樣點(diǎn),則在平面隨動(dòng)極坐標(biāo)系中采樣點(diǎn)P(k,φj,αi)的坐標(biāo)為,其中在坐標(biāo)系O-XYZ中采樣點(diǎn)P(k,φj,αi)坐標(biāo)(x,y,z)為
圖1 流動(dòng)調(diào)整器評(píng)價(jià)方法坐標(biāo)系
在截面αi內(nèi)采樣點(diǎn)總數(shù)為
1.2截面流速場(chǎng)充分發(fā)展性判斷
流動(dòng)調(diào)整器下游流場(chǎng)是否達(dá)到充分發(fā)展,由流場(chǎng)內(nèi)流速分布規(guī)律體現(xiàn)。通過(guò)將調(diào)整器下游流場(chǎng)與相同壓力、溫度下的純直管道內(nèi)流場(chǎng)進(jìn)行比較,可快速、有效地判斷調(diào)整器下游流場(chǎng)的充分發(fā)展性。
若采樣點(diǎn)P(k,φj,αi)流速為ν(k,φj,αi),相同工況下純直管道同一位置處的流速為ν0(k,φj,αi),則采樣點(diǎn)P(k,φj,αi)流速的相對(duì)誤差為
考慮到CFD仿真存在系統(tǒng)誤差,若截面αi內(nèi)所有采樣點(diǎn)流速相對(duì)誤差均滿(mǎn)足ε(k,φj,αi)≤0.05,則可認(rèn)為截面αi處流場(chǎng)已達(dá)到充分發(fā)展。
1.3評(píng)價(jià)指標(biāo)
要體現(xiàn)流動(dòng)調(diào)整器整流效果,需求解出調(diào)整器下游流場(chǎng)最快達(dá)到充分發(fā)展所需的管道長(zhǎng)度。對(duì)截面αi、αi+1,若滿(mǎn)足:
則截面αi+1為流場(chǎng)最快達(dá)到充分發(fā)展的截面,且zi+1為調(diào)整器下游流場(chǎng)達(dá)到充分發(fā)展所需最少直管長(zhǎng)度,即流動(dòng)調(diào)整器整流效果評(píng)價(jià)指標(biāo),zi+1越小,表明調(diào)整器整流效果越好,流場(chǎng)充分發(fā)展越快;若zi+1相同時(shí),則(k,φj,αi+1)越小,調(diào)整器性能越優(yōu)。式(3)中Δz為截面距離準(zhǔn)確度,本文取Δz=0.1mm。
2.1仿真系統(tǒng)結(jié)構(gòu)
圖2為仿真系統(tǒng)結(jié)構(gòu)圖。雙扭彎管與流動(dòng)調(diào)整器間隔5 Dpipe,同時(shí)雙扭彎管上游設(shè)置10 Dpipe直管,流動(dòng)調(diào)整器下游設(shè)置100Dpipe直管。實(shí)驗(yàn)采用柵格式AMCA流動(dòng)調(diào)整器,圖3為流動(dòng)調(diào)整器結(jié)構(gòu)形狀,其中管道直徑Dpipe=50mm,調(diào)整器長(zhǎng)度lAMCA=0.45Dpipe= 22.5mm,柵格寬度為0.075Dpipe=3.75mm。
圖2 仿真系統(tǒng)結(jié)構(gòu)圖
圖3 流動(dòng)調(diào)整器結(jié)構(gòu)形狀
2.2仿真條件
仿真實(shí)驗(yàn)運(yùn)行壓力P=0.6MPa,溫度T=300 K,流體介質(zhì)為水,水的密度ρ水=996.799 kg/m3,動(dòng)力粘度μ水=8.54×10-4kg/(m·s),入口流速νinlet∈[0.1,0.5,1,3,5,8,10]m/s,則雷諾數(shù)分別為Re∈[5.84×106,2.92×107,5.84×107,1.75×108,2.92×108,4.67×108,5.84×108]。由于Re均大于2400,故實(shí)驗(yàn)采用k-ε模型。每一個(gè)Re對(duì)應(yīng)一組實(shí)驗(yàn),相同的工況分別在純直管、帶調(diào)整器雙扭彎管、不帶調(diào)整器雙扭彎管進(jìn)行實(shí)驗(yàn)。
表1為仿真實(shí)驗(yàn)結(jié)果,以Re為橫坐標(biāo),最小直管長(zhǎng)度z為縱坐標(biāo),得到AMCA性能對(duì)比分析圖(見(jiàn)圖4)??梢钥闯觯?)在實(shí)驗(yàn)的任一Re下,帶有AMCA調(diào)整器的最小直管長(zhǎng)度zAMCA均遠(yuǎn)小于不帶調(diào)整器的z′,表明AMCA調(diào)整器大大加速了調(diào)整器下游流場(chǎng)的充分發(fā)展,體現(xiàn)出本文的評(píng)價(jià)方法可有效反映調(diào)整器在實(shí)驗(yàn)中的整流效果;2)不管帶不帶調(diào)整器,隨著Re的增大,兩組實(shí)驗(yàn)的最小直管長(zhǎng)度z均分別呈現(xiàn)對(duì)數(shù)函數(shù)式增長(zhǎng),當(dāng)Re<2×108時(shí),z增長(zhǎng)速率較大,當(dāng)Re>2×108時(shí),z增速較緩慢,這也是本文評(píng)價(jià)方法反映出的調(diào)整器性能隨雷諾數(shù)變化的規(guī)律;3)經(jīng)過(guò)進(jìn)一步計(jì)算發(fā)現(xiàn),在雷諾數(shù)為5.84×106≤Re≤5.84×108,zAMCA基本為0.5z′~0.6z′。
表1 仿真實(shí)驗(yàn)結(jié)果
圖4 AMCA性能對(duì)比分析圖
本文提出一種基于CFD仿真技術(shù)的流動(dòng)調(diào)整器評(píng)價(jià)方法,并研究了該方法在AMCA柵格式流動(dòng)調(diào)整器上的應(yīng)用。仿真分析表明本文所提出評(píng)價(jià)方法能快速、有效地對(duì)柵格式調(diào)整器下游流場(chǎng)充分發(fā)展性進(jìn)行評(píng)判,有助于分析不同雷諾數(shù)下調(diào)整器性能的變化規(guī)律,并驗(yàn)證5.84×106≤Re≤5.84×108時(shí)AMCA調(diào)整器下游不規(guī)則流場(chǎng)達(dá)到充分發(fā)展所需最小直管長(zhǎng)度為不帶調(diào)整器的0.5~0.6倍,為加速流動(dòng)調(diào)整器設(shè)計(jì)、推動(dòng)流體能源監(jiān)測(cè)提供參考。
[1]Measurement of gas by multipath ultrasonic meters: AGA XQ9801:2000[S].American Gas Association,2007.
[2]ERDAL A.A numerical investigation of different parameters that affect the performance of a flow conditioner[J]. Flow Measurement and Instrumentation,1998,8(2):93-102.
[3]AHMADIA.Experimental study of a new flow conditioner on disturbed flow in orifice plate metering[J]. Journal of Fluids Engineering,2009,131(5):051104.
[4]RIVERAPF,REALR C,MIRANDA T R,et al. Bifurcated SEN with fluid flow conditioners[J].Mathematical Problems in Engineering,2014:809526.
[5]XING L,YEUNG H,SHEN J,et al.A new flow conditioner for mitigating severe slugging in pipeline/riser system[J].International Journal of Multiphase Flow,2013(51):65-72.
[6]GORDEEV S,GR?SCHEL F,HEINZEL V,et al.Numerical study of the flow conditioner for the IFMIF liquid lithium target[J].Fusion Engineering and Design,2014,89(7):1751-1757.
[7]ZHENG D,ZHANG P,ZHANG T,et al.A method based on a novel flow pattern model for the flow adaptabilitystudyof ultrasonic flowmeter[J].Flow Measurement and Instrumentation,2013(29):25-31.
[8]MANDARDE,KOUAMéD,BATTAULTR,et al. Methodology for developing a high-precision ultrasound flow meter and fluid velocity profile reconstruction[J]. Ultrasonics,F(xiàn)erroelectrics and Frequency Control IEEE Transactions,2008,55(1):161-172.
[9]ZHAO H,PENG L,STEPHANE S A,et al.CFD aided investigation of multipath ultrasonic gas flow meter performance under complex flow profile[J].Sensors Journal,2014,14(3):897-907.
[10]ZHENG D,ZHANG P,XU T.Study of acoustic transducerprotrusionandrecesseffectsonul trasonic flowmeter measurementby numerical simulation[J].Flow Measurement and Instrumentation,2011,22(5):488-493.
[11]鄭丹丹,張朋勇,徐天室.超聲流量計(jì)探頭安裝位置對(duì)測(cè)量影響數(shù)值仿真研究[J].機(jī)械工程學(xué)報(bào),2011(12):13-18.
[12]黃僑蔚.帶流動(dòng)調(diào)整器U型聲道超聲波流量計(jì)流場(chǎng)特性仿真及優(yōu)化[D].廣州:華南理工大學(xué),2013.
[13]劉桂雄,黃僑蔚.基于CFD技術(shù)的流動(dòng)調(diào)整器整流效果評(píng)判方法:CN102750426A[P].2012-10-24.
[14]FRATTOLILLO A,MASSAROTTI N.Flow conditioners efficiency a comparison based on numerical approach[J]. Flow Measurement and Instrumentation,2002,13(1):1-11.
(編輯:李剛)
Research on performance evaluation method for CFD-based flow conditioner
WAN Yong1,CHEN Guoyu2,F(xiàn)ENG Liangfeng1,LIU Guixiong2,HUANG Qiaowei2
(1.Guangzhou Energy Inspection and Research Institute,Guangzhou 510170,China;2.School of Mechanical&Automotive Engineering,South China University of Technology,Guangzhou 510640,China)
As evaluation of the performance of flow conditioner mostly depends on the specific pipeline system,feedback cannot be provided in a timely way for the purpose of structure design improvement.As such an CFD-based evaluation method for flow conditioner is suggested.First,the evaluation coordinates for flow conditioner is established and the coordinate values of each sampling point are solved out.Next,the basis for determining the development stage of velocity distribution of pipe cross-section is derived,by which the evaluation indexes of flow conditioner rectifier performance are obtained.At last,CFD simulation technology is applied for verifying grid format flow conditioner.The results showed that,the proposed evaluation method is effective in evaluating the grid format flow conditioner’s performance quickly,helpful to analyze the function of flow conditioner’s performance on Reynolds numbers.Where 5.84×106≤Re≤5.84×108,the required straight pipe for velocity distribution downstream a grid format flow conditioner achieving full development is only 0.5-0.6 times by those without conditioner.It is of great significance to improve the flow conditioner design and to promote fluid energy monitoring.
flowconditioner;evaluationmethod;simulationtechniqueofcomputationalfluid dynamics;velocity field
A
1674-5124(2016)06-0033-04
10.11857/j.issn.1674-5124.2016.06.008
2015-11-10;
2015-12-27
廣州市質(zhì)監(jiān)局設(shè)備專(zhuān)項(xiàng)(2011SB028);廣州市質(zhì)監(jiān)局科技計(jì)劃項(xiàng)目(2015KJ05)
萬(wàn)勇(1975-),男,吉林德惠市人,高級(jí)工程師,主要從事流量容量計(jì)量、能源測(cè)試、節(jié)能技術(shù)研究。