羅洪光
(湖南工程學(xué)院 建筑工程學(xué)院,湘潭 411104)
?
波紋腹板H型鋼梁剪切屈曲承載力計(jì)算
羅洪光
(湖南工程學(xué)院 建筑工程學(xué)院,湘潭 411104)
針對(duì)現(xiàn)行中國(guó)規(guī)程,提出一種考慮相關(guān)屈曲的波紋腹板H型鋼梁剪切屈曲極限承載力計(jì)算方法.與其他計(jì)算方法相比,此方法計(jì)算結(jié)果與試驗(yàn)值吻合較好.可為同行設(shè)計(jì)研究提供參考.
波紋腹板;鋼梁;剪切屈曲;屈曲強(qiáng)度;相關(guān)屈曲
波紋腹板H型鋼由于具有合理的受力性能和優(yōu)越的經(jīng)濟(jì)性,得到廣泛的應(yīng)用[1].波紋腹板H型鋼梁剪力主要由波紋腹板承擔(dān),剪切屈曲是導(dǎo)致波紋腹板破壞的主要原因[2].波紋腹板H型鋼梁的剪切屈曲極限承載力的計(jì)算較復(fù)雜,尚需深入研究[3].波紋腹板有三種剪切屈曲模式:局部剪切屈曲、整體剪切屈曲、相關(guān)剪切屈曲.局部剪切屈曲僅限于單個(gè)平板內(nèi).整體剪切屈曲涉及多個(gè)平板,呈對(duì)角線擴(kuò)展到整個(gè)腹板高度.相關(guān)剪切屈曲是由局部剪切屈曲和整體剪切屈曲之間的相互作用造成的,相關(guān)剪切屈曲的發(fā)展限于少數(shù)幾個(gè)平板內(nèi)[4-6].相關(guān)剪切屈曲既有局部剪切屈曲的特點(diǎn),也包含整體剪切屈曲的特點(diǎn)[6].現(xiàn)行中國(guó)規(guī)程[7]不涉及相關(guān)屈曲.本文針對(duì)中國(guó)規(guī)程[7]設(shè)計(jì)曲線,引入相關(guān)屈曲,提出關(guān)于波紋腹板H型鋼梁剪切屈曲極限承載力一種新的計(jì)算方法.
對(duì)于波紋腹板H型鋼梁抗剪承載力,中國(guó)規(guī)程提出了考慮屈曲影響的局部屈曲和整體屈曲折減系數(shù)χ,如式(1)和式(2)所示.
χ=1.15/(0.9+λ)≤1.0
(1)
χ=0.68/λ0.65≤1.0
(2)
式(1)和式(2)中,通用寬厚比λ計(jì)算式為:
(3)
鋼梁極限抗剪承載力τ=χτy
(4)
式(4)中χ取式(1)和式(2)計(jì)算值的較小值.
(5)
從式(5)可見,彈性相關(guān)剪切屈曲承載力小于彈性局部剪切屈曲和彈性整體剪切屈曲承載力.
Richard Sause等[3](以下簡(jiǎn)稱Richard Sause法)推薦采用下式用于波紋腹板H型鋼梁相關(guān)屈曲折減系數(shù)χ計(jì)算:
(6)
式(6)中,λI,3計(jì)算如下:
將式(6)折減系數(shù)χ計(jì)算值代入式(4),得到鋼梁極限抗剪承載力τ.
HassaneinmF等[9](以下簡(jiǎn)稱HassaneinmF法)則建議以λI,0.6代替式(6)中的λI,3進(jìn)行計(jì)算:
(7)
式(1)具有足夠的安全性和準(zhǔn)確性[7],為考慮相關(guān)屈曲對(duì)波紋腹板H型鋼梁抗剪承載力的影響,本文將Richard Sause法中的λI,3代入式(1),式(1)折減系數(shù)χ計(jì)算值代入式(4),得到鋼梁極限抗剪承載力τ(以下簡(jiǎn)稱本文方法).由式(5)可見,相關(guān)屈曲計(jì)算值與局部屈曲計(jì)算值、整體屈曲計(jì)算值均有關(guān),本文方法能綜合反映三種屈曲模式對(duì)波紋腹板H型鋼梁剪切屈曲承載力的影響.
圖1 本文方法設(shè)計(jì)曲線與試驗(yàn)對(duì)比
由圖1可見,設(shè)計(jì)曲線走向與試驗(yàn)值分布走向吻合較好,大部分試驗(yàn)值均位于設(shè)計(jì)曲線之上,個(gè)別位于設(shè)計(jì)曲線之下的試驗(yàn)值都很接近設(shè)計(jì)曲線,本文方法設(shè)計(jì)曲線具有一定的安全儲(chǔ)備.
為對(duì)各種計(jì)算方法進(jìn)行比較,針對(duì)上述109個(gè)試驗(yàn)數(shù)據(jù),分別運(yùn)用本文方法、中國(guó)規(guī)程、Richard Sause法和HassaneinmF法進(jìn)行計(jì)算,得到剪切屈曲承載力計(jì)算值τ,τ與試驗(yàn)值τt比值計(jì)算分布如圖2和表1所示.
圖2 各方法剪切屈曲承載力計(jì)算值τ與試驗(yàn)值τt比值分布
由圖2和表1可見,HassaneinmF法比較保守,HassaneinmF法和Richard Sause法計(jì)算值離散度較大.四種設(shè)計(jì)計(jì)算方法中,本文方法、中國(guó)規(guī)程計(jì)算結(jié)果與試驗(yàn)值符合較好.由于考慮了相關(guān)屈曲,本文方法和中國(guó)規(guī)程相比,總體上偏于安全.需指出的是,109個(gè)試件中,僅6個(gè)試件符合中國(guó)規(guī)程波形要求,眾多不滿足中國(guó)規(guī)程波形要求的試件的中國(guó)規(guī)程計(jì)算值與試驗(yàn)結(jié)果相近,反映出中國(guó)規(guī)程波形要求偏于嚴(yán)格,可能影響計(jì)算式的適用范圍.
表1 各方法剪切屈曲承載力計(jì)算值τ與試驗(yàn)值τt比值對(duì)比
本文方法與Richard Sause法區(qū)別主要為折減系數(shù)χ取值不同,也即式(1)和式(6)所示.
以文獻(xiàn)[3]中編號(hào)為V122421A試件為例,τy=358mPa,將文獻(xiàn)[3]所提供的該試件λI,3=1.2代入式(1)得
χ=1.15/(0.9+λ)=1.15/(0.9+1.2)=0.548
把χ=0.548代入式(4)得鋼梁極限抗剪承載力
τ=χτy=0.548×358=196MPa
鋼梁極限抗剪承載力試驗(yàn)值τe=210MPa
本文方法計(jì)算值約為試驗(yàn)值93.3%,二者比較接近.此外,該試件滿足中國(guó)規(guī)程波形要求,中國(guó)規(guī)程計(jì)算值與本文方法計(jì)算值接近相等.
在綜合已有研究成果基礎(chǔ)上,本文提出了一種可考慮相關(guān)屈曲的波紋腹板H型鋼梁剪切屈曲極限承載力計(jì)算方法.本文方法計(jì)算值與試驗(yàn)數(shù)據(jù)吻合較好.與現(xiàn)行中國(guó)規(guī)程相比,由于本文方法只包含一條設(shè)計(jì)曲線,方便設(shè)計(jì)計(jì)算,并且安全儲(chǔ)備較高.本文方法可為相關(guān)工程設(shè)計(jì)人員及規(guī)范的修訂提供參考.
[1] B.K?vesdi,B.braun,.Kuhlmann,L.Dunai.Patch Loading Resistance of Girders with Corrugated Webs [J].Journal of Constructional Steel Research,2010,66 : 1445-1454.
[2] Jihomoon,Jongwon Yi,Byung H.Choi,Hak-Eun Lee.Shear Strength and Design of Trapezoidally Corrugated Steel Webs [J].Journal of Constructional Steel Research,2009,65: 1198-1205.
[3] Richard Sause,Thomas N.Braxtan.Shear Strength of Trapezoidal Corrugated Steel Webs [J].Journal of Constructional Steel Research,2011,67: 223-236.
[4]m.E.A.-H.Eldib.Shear Buckling Strength and Design of Curved Corrugated Steel Webs for Bridges [J].Journal of Constructional Steel Research,2009,65: 2129-2139.
[5] Nie Jian-guo,Li Zhu,Taomu-xuan,Liang Tang.Shear Strength of Trapezoidal Corrugated Steel Webs [J].Journal of Constructional Steel Research,2013,85: 105-115.
[6] HassaneinmF,kharoob OF.Behavior of Bridge Girders with Corrugated Webs: (I) Real Boundary Condition at the Juncture of the Web and Flanges [J].Engineering Structures,2013,57: 554-564.
[7] 中國(guó)工程建設(shè)協(xié)會(huì)標(biāo)準(zhǔn).波紋腹板鋼結(jié)構(gòu)技術(shù)規(guī)程(CECS 291:2011) [S].北京: 中國(guó)計(jì)劃出版社,2011.
[8] JONGWON YI,HEUNGBAE GIL,kWANGSOO YOUM,HAKEUN LEE.Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs [J].Engineering Structures,2008,30: 1659-1666.
[9] HASSANEINmF,kHAROOB OF.Behavior of Bridge Girders with Corrugated Webs: (II) Shear Strength and Design [J].Engineering Structures,2013,57: 544-553.
Computation of Ultimate Shear Buckling Strength of H-beams with Corrugated Webs
LUO Hong-guang
(School of Civil Engineering and Architecture,Hunan Institute of Engineering,Xiangtan 411104,China)
Aiming at the current Chinese code,a new interactive shear buckling strength formula is developed,which is for the computation of ultimate bearing capacity of H-beams with corrugated webs.The new formula is shown to bemore accurate than previous formulas by the comparison of a number of experiments.The formula can give reference to the research and design.
corrugated webs; steel beams; shear buckling; buckling strength; interactive buckling
2015-11-13基金項(xiàng)目:湖南省高等學(xué)校重點(diǎn)科學(xué)研究項(xiàng)目(15A045);湖南工程學(xué)院人才科研啟動(dòng)基金(15061).作者簡(jiǎn)介:羅洪光(1974-),男,博士,副教授,研究方向:鋼結(jié)構(gòu).
TU391
A
1671-119X(2016)02-0080-03