岳宏衛(wèi),鄧進(jìn)麗,朱智勇,楊宏艷,王宏慶,鄭 龍,劉新英,肖功利
?
納米狹縫耦合金屬圓-矩形復(fù)合孔陣列結(jié)構(gòu)增強(qiáng)光透射
岳宏衛(wèi)1a,鄧進(jìn)麗1a,朱智勇1a,楊宏艷1b,王宏慶1a,鄭 龍1a,劉新英1a,肖功利1a,2
( 1. 桂林電子科技大學(xué) a. 信息與通信學(xué)院;b. 計(jì)算機(jī)科學(xué)與工程學(xué)院,廣西 桂林 541004;2. 廣西信息科學(xué)實(shí)驗(yàn)中心,廣西 桂林 541004 )
采用時(shí)域有限差分方法研究了納米狹縫的寬度,圓孔半徑、矩形的長(zhǎng)和寬對(duì)納米狹縫耦合金屬圓-矩形復(fù)合孔陣列結(jié)構(gòu)增強(qiáng)光透射特性的影響。研究發(fā)現(xiàn)該結(jié)構(gòu)與圓孔陣列、圓-矩形復(fù)合孔陣列兩種結(jié)構(gòu)相比較,光的透射率得到了顯著的增加,這表明本文提出的納米狹縫耦合金屬圓-矩形復(fù)合孔陣列結(jié)構(gòu)中的表面等離激元和局域表面等離激元兩種模式相互耦合起了關(guān)鍵作用。納米狹縫寬度是影響光透射的主要因素,納米狹縫寬度為55 nm時(shí),透射率達(dá)到89%,半寬度達(dá)129 nm;圓孔半徑、矩形孔的長(zhǎng)和寬、周?chē)h(huán)境介電常數(shù)等參數(shù)也影響透射率與共振峰位置:隨著圓孔半徑、矩形孔寬度的增大,透射率明顯增強(qiáng),同時(shí)共振峰藍(lán)移;隨著矩形孔長(zhǎng)度和周?chē)h(huán)境介電常數(shù)的增加,共振峰有規(guī)律的紅移。
物理光學(xué);表面等離激元;增強(qiáng)光透射;納米狹縫;納米孔陣列;時(shí)域有限差分
0 引 言
自從1998年Ebbesen等[1]首次發(fā)現(xiàn)光通過(guò)金屬亞波長(zhǎng)周期性孔陣列時(shí)的異常透射(Extraordinary Optical Transmission,EOT)現(xiàn)象以來(lái),基于金屬亞波長(zhǎng)孔陣列結(jié)構(gòu)的各種光學(xué)現(xiàn)象引起人們廣泛的關(guān)注,研究者在探索EOT現(xiàn)象物理機(jī)理[2-3]的同時(shí)還設(shè)計(jì)具有更好的增強(qiáng)光透射的金屬亞波長(zhǎng)孔陣列結(jié)構(gòu)。對(duì)于EOT現(xiàn)象的機(jī)理,Genet和Ebbesen[4]發(fā)現(xiàn)納米孔陣列的EOT現(xiàn)象源于入射光與表面等離激元(Surface Plasmon Polaritons,SPPs)的耦合:當(dāng)孔陣列的周期所對(duì)應(yīng)的倒格矢與SPPs的動(dòng)量匹配時(shí),SPPs容易被激發(fā),并通過(guò)孔穿到薄膜的另一面。最近研究發(fā)現(xiàn),由于局域表面等離激元(Localized Surface Plasmon Resonancas,LSPRs)具有克服衍射極限的能力、最小化尺寸和電場(chǎng)約束[5-6]的獨(dú)特性能,LSPRs在周期性金屬納米孔陣列結(jié)構(gòu)(包括圓形、矩形、三角形和復(fù)合孔的納米結(jié)構(gòu)[7-10])的EOT現(xiàn)象中也具有重要作用。目前,很多基于LSPRs和SPPs理論的器件(如等離激元濾波器、傳感器和波導(dǎo)[11-13]等)已經(jīng)在理論和實(shí)驗(yàn)上得到驗(yàn)證。其中,采用復(fù)合納米孔陣列結(jié)構(gòu)來(lái)提高透射率成為國(guó)內(nèi)外研究熱點(diǎn),例如,Liu J Q等[14]通過(guò)雙套圓孔排列成矩形納米孔陣列結(jié)構(gòu)在千兆赫茲范圍內(nèi)獲得高透射率;Zhang X等[10]設(shè)計(jì)的復(fù)合矩形納米孔陣列結(jié)構(gòu)通過(guò)兩種模式的LSPRs的近場(chǎng)耦合獲得高透射率,在他們的研究中,SPPs和LSPRs在增強(qiáng)光透射中都具有重要作用。然而,如何采用一種結(jié)構(gòu)使SPPs和LSPRs直接耦合來(lái)增強(qiáng)光透射的研究卻少有報(bào)道。 基于上述思路,在參考文獻(xiàn)[7]和[8]的基礎(chǔ)上,擬采用納米狹縫把圓孔和矩形孔兩種陣列連接起來(lái)構(gòu)成一種新型的納米狹縫耦合金屬圓-矩形復(fù)合孔正方形陣列結(jié)構(gòu),以實(shí)現(xiàn)一種可調(diào)諧、增強(qiáng)光透射的光譜。采用有限時(shí)域差分法(Finite Difference Time Domain, FDTD)對(duì)該結(jié)構(gòu)進(jìn)行了數(shù)值仿真。結(jié)果表明,當(dāng)使用納米狹縫耦合金屬圓-矩形復(fù)合孔陣列結(jié)構(gòu)后,透射效率得到顯著的增強(qiáng),這主要是由于圓孔陣列產(chǎn)生的SPPs和矩形孔陣列產(chǎn)生的LSPRs通過(guò)納米狹縫耦合的結(jié)果。同時(shí)模擬結(jié)果證明了該結(jié)構(gòu)的峰透射率()和共振峰位置()與納米狹縫的寬度、圓孔的半徑、矩形孔的寬度和長(zhǎng)度以及周?chē)h(huán)境介電常數(shù)有關(guān)。這些發(fā)現(xiàn)為SPP濾波器和MEMS紅外輻射源器件的設(shè)計(jì)提供理論參考。
1 結(jié)構(gòu)設(shè)計(jì)與數(shù)值模擬
本文設(shè)計(jì)的納米狹縫耦合金屬圓-矩形復(fù)合孔陣列結(jié)構(gòu)三維示意圖如圖1(a)所示,金屬薄膜為金,厚度為50 nm,納米狹縫、圓孔和矩形孔中的電介質(zhì)均為空氣,其介電常數(shù)=1。該結(jié)構(gòu)的單周期在截面上的示意圖如圖1(b)所示,在和方向上均呈周期排列,周期為400 nm,且固定不變;圓孔的半徑為,矩形孔的長(zhǎng)和寬分別為和,納米狹縫的寬為,周?chē)h(huán)境介電常數(shù)為;圓孔和矩形孔的中心距離為75 nm,且固定不變。高斯光束的入射方向?yàn)?,即垂直入射;電?chǎng)沿軸方向;入射光波長(zhǎng)范圍為400 nm~1 800 nm。
透射率表示光透過(guò)金屬孔陣列的效率,其定義為
2 結(jié)果與討論
為了深入研究該結(jié)構(gòu)增強(qiáng)光透射特性,本文系統(tǒng)討論了、、、以及對(duì)增強(qiáng)光透射的影響。圖3(a)為保持=40 nm,=100 nm,=25 nm不變,不同時(shí)透射率與波長(zhǎng)的關(guān)系圖。隨著以5 nm為步長(zhǎng)從20 nm增加到35 nm,逐漸增大,有微少藍(lán)移現(xiàn)象,同時(shí)半寬度從92 nm增加到113 nm。
這是因?yàn)殡S著的增大,圓孔與矩形孔之間納米狹縫的長(zhǎng)度減小,使得圓孔陣列產(chǎn)生的SPPs與矩形孔陣列產(chǎn)生的LSPRs通過(guò)納米狹縫相互耦合作用加強(qiáng),進(jìn)而使得增大和藍(lán)移。圖3(b)為保持=40 nm,=25 nm,=30 nm不變,不同時(shí)透射率與波長(zhǎng)的關(guān)系圖,隨著以10 nm為步長(zhǎng)從100 nm增加到130nm,沒(méi)有明顯的改變,有規(guī)律的紅移,且半寬度保持110 nm不變。這主要可能是因?yàn)榧{米狹縫的長(zhǎng)度不隨的變化而變化,且高斯光束的電場(chǎng)沿方向,SPPs和LSPRs主要沿方向傳播,的變化不影響它們的共振條件,所以圓孔陣列產(chǎn)生的SPPs與矩形孔陣列產(chǎn)生的LSPRs通過(guò)納米狹縫耦合作用保持不變,因此,在這種條件下,該結(jié)構(gòu)的保持不變。圖3(c)為保持=100 nm,=30 nm,=25 nm不變,不同時(shí)透射率與波長(zhǎng)的關(guān)系圖。隨著以10 nm為步長(zhǎng)從20 nm增加到50 nm,從79%增加到82%,半寬度從110 nm增加到120 nm,從1 114 nm線性藍(lán)移到943 nm。圖3(d)為與的關(guān)系圖。這是因?yàn)殡S著的增大,納米狹縫的長(zhǎng)度減小,使得圓孔陣列產(chǎn)生的SPPs與矩形孔陣列產(chǎn)生的LSPRs通過(guò)納米狹縫相互耦合作用加強(qiáng),進(jìn)而使得增大和藍(lán)移。
式(3)表明了該結(jié)構(gòu)對(duì)不同介電環(huán)境具有較高的光學(xué)靈敏性,因此該結(jié)構(gòu)也可應(yīng)用于高性能SPP傳感器的設(shè)計(jì)[17]。
3 結(jié) 論
本文采用FDTD法從理論上系統(tǒng)探討了、、、等幾何尺寸參數(shù)和材料參數(shù)對(duì)納米狹縫耦合金屬圓-矩形復(fù)合孔陣列結(jié)構(gòu)增強(qiáng)光透射特性的影響。主要研究結(jié)果如下:1) 該結(jié)構(gòu)相比較于單一圓孔陣列和圓-矩形復(fù)合孔陣列兩種結(jié)構(gòu)而言,展現(xiàn)出了較好的增強(qiáng)光透射特性,其達(dá)到82%,與單一圓孔陣列和圓-矩形復(fù)合孔陣列兩種結(jié)構(gòu)相比,分別為67%和52%,這主要是由于圓孔陣列產(chǎn)生的SPPs和矩形孔陣列產(chǎn)生的LSPRs通過(guò)納米狹縫的耦合作用使得光透射增強(qiáng);2) 通過(guò)改變、和,可以調(diào)節(jié)的大小,當(dāng)=55 nm時(shí),達(dá)到89%,同時(shí),隨著、或的增大,有規(guī)律的藍(lán)移,隨著的增大,有規(guī)律的紅移;3) 通過(guò)改變,隨著不斷增大時(shí),有規(guī)律的紅移,最大半寬度達(dá)129 nm。這些發(fā)現(xiàn)可為利用該結(jié)構(gòu)的增強(qiáng)光透射特性設(shè)計(jì)SPP濾波器和MEMS紅外輻射源器件提供理論參考。
參考文獻(xiàn):
[1] Ebbesen T W,Lezec H J,Ghaemi H F,. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature(S0028-0836),1998,391(6668):667-669.
[2] HAO Feng,Nordlander P,Sonnefraud Y,. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities:implications for nanoscale optical sensing [J]. ACS Nano(S1936-0851),2009,3(3):643-652.
[3] Parsons J,Hendry E,Burrows C P,. Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays [J]. Physical Review B(S1098-0121),2009,79(7):073412.
[4] Lovera P,Jones D,Corbett B,. Polarization tunable transmission through plasmonic arrays of elliptical nanopores [J]. Optics Express(S1094-4087),2012,20(23):25325-25332.
[5] LIU Guiqiang,LIU Zhengqi,HUANG Kuan,. Narrowband light total antireflection and absorption in metal film–array structures by plasmonic near-field coupling [J]. Plasmonics(S1557-1955),2014,9(1):17-25.
[6] Enoch S,Quidant R,Badenes G. Optical sensing based on plasmon coupling in nanoparticle arrays [J]. Optics express(S1094-4087),2004,12(15):3422-3427.
[7] Janipour M,Pakizeh T,Hodjat-Kashani F. Optical interaction of a pair of nanoholes in Au film via surface plasmon polaritons [J]. IEEE Photonics Journal(S1943-0655),2014,6(3):1-13.
[8] 楊文旭,宋鴻飛,雷建國(guó). 金屬納米孔陣列透射增強(qiáng)的數(shù)值研究 [J]. 激光與光電子學(xué)進(jìn)展,2014,51(3):189-194.
YANG Wenxu,SONG Hongfei,LEI Jianguo. Numerical study on transmission enhancement of metallic nano hole array [J]. Laser & Optoelectronics Progress,2014,51(3):189-194.
[9] 楊宏艷,肖功利. 金孔陣列-電介質(zhì)與金-電介質(zhì)孔陣列的強(qiáng)透射特性 [J]. 光學(xué)學(xué)報(bào),2013,32(11):312-316.
YANG Hongyan,XIAO Gongli. Extraordinary Transmission Properties of Gold Aperture Array-Dielectric and Gold-Dielectric Aperture Array [J]. Acta Optica Sinica,2013,32(11):312-316.
[10] ZHANG Xiangnan,LIU Guiqiang,LIU Zhengqi,. Effects of Compound Rectangular Subwavelength Hole Arrays on Enhancing Optical Transmission [J]. IEEE Photonics Journal(S1943-0655),2015,7(1):1-8.
[11] HE Rongjing,ZHOU Xiuli,F(xiàn)U Yongqi,. Near-field optical experimental investigation of gold nanohole array [J]. Plasmonics(S1557-1955),2011,6(1):171-176.
[12] LIU Zhimin,LI Hongjian,ZHAN Shiping,. PIT-like effect in asymmetric and symmetric C-shaped metamaterials [J]. Optical Materials(S0925-3467),2013,35(5):948-953.
[13] LIU Zhengqi,LIU Guiqiang,ZHOU Haiqing,. Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays [J]. Nanotechnology(S0957-4484),2013,24(15):155203.
[14] LIU Jianqiang,HE Mengdong,ZHAI Xiang,. Tailoring optical transmission via the arrangement of compound subwavelength hole arrays [J]. Optics Express(S1094-4087),2009,17(3):1859-1864.
[15] JIA Peipei,YANG Jun. Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing [J]. Applied Physics Letters(S0003-6951),2013,102(24):243107.
[16] LIU Jianping,WANG Lingling,SUN Bin,. Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity [J]. Optics & Laser Technology(S0030-3992),2015,69:71-76.
[17] JIA Peipei,JIANG Hao,Sabarinathan J,. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance [J]. Nanotechnology(S0957-4484),2013,24(19):195501.
[18] 肖功利,姚翔,紀(jì)新明,等. 二維金屬亞波長(zhǎng)孔陣列的強(qiáng)透射特性研究進(jìn)展 [J]. 半導(dǎo)體光電,2009,30(2):161-167.
XIAO Gongli,YAO Xiang,JI Xinming,. Progresses on Extraordinary Transmission Characteristics of Two-dimensional Metallic Subwavelength Hole Arrays [J]. Semiconductor Optoelectronics,2009,30(2):161-167.
[19] ZHANG Xiangnan,LIU Guiqiang,LIU Zhengqi,. Near-field plasmon effects in extraordinary optical transmission through periodic triangular hole arrays [J]. Optical Engineering(S0091-3286),2014,53(10):107108-107115.
Extraordinary Optic Transmission of Metallic Circle-rectangular Compound Hole Array with Nano-slit Coupling
YUE Hongwei1a,DENG Jinli1a,ZHU Zhiyong1a,YANG Hongyan1b,WANG Hongqing1a,ZHENG Long1a,LIU Xinying1a,XIAO Gongli1a,2
(1. a. School of Information and Communication; b. School of Computer Science and Engineering,Guilin University of Electronic Technology, Guilin 541004, Guangxi, China;2. Guangxi Experiment Center of Information Science, Guilin 541004, Guangxi, China )
The effects of the radius of the circle, the length and width of the rectangular and the width of the nano-slit on extraordinary optic transmission of metallic circle -rectangular compound hole array with nano-slit coupling are investigated using the finite-difference time-domain method. The results show that, compared to circle hole array and circle-rectangular compound hole array, the transmittance of the optical transmission for the structure is significantly increased, which suggests that coupling effect of surface pasmon polartion and localized surface plasmon by nano-slit is the key role. The main factor that affects the optic transmission is the width of the nano-slit, and the transmittance is 89% and the full width at half maximum is 129 nm when the width of the nano-slit is 55 nm; the parameters such as the radius of the circle, the width of the rectangular and the dielectric constant of the surrounding environment, are also the factors that affect the transmission and the position of the resonance peak with the increase of the radius of the circle and the width of the rectangular, the transmission intensity is obviously enhanced, and the blue shift of the resonance peak. The red shift of the resonance peak is accompanied with the increase of the dielectric constant of the surrounding environment and the length of the rectangular.
physical optics; surface plasmon polaritons; traordinary optical transmission; nano-slit; nanohole array; finite-difference time-domain method
1003-501X(2016)08-0007-06
O436
A
10.3969/j.issn.1003-501X.2016.08.002
2015-10-14;
2015-12-23
國(guó)家自然科學(xué)基金項(xiàng)目(11264009,61465004);廣西自然科學(xué)基金項(xiàng)目(2013GXNSFAA019338);桂林電子科技大學(xué)研究生教育創(chuàng)新計(jì)劃資助項(xiàng)目(YJCXS201514)
岳宏衛(wèi)(1967-),男(漢族),廣西賀州人。博士,副教授,主要從事超導(dǎo)電子學(xué)器件與毫米波源和微納器件方面的研究。E-mail:guetyhw@163.com。
肖功利(1975-),男(漢族),湖南衡陽(yáng)人。博士,副教授,主要從事納米光電子器件方面的研究。E-mail:xgl.hy @126.com。