劉 沖,吳文成,劉曉文*,南忠仁( 環(huán)境保護(hù)部華南環(huán)境科學(xué)研究所,廣州 50655; 蘭州大學(xué)資源環(huán)境學(xué)院西部環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室/甘肅省環(huán)境污染預(yù)警與控制重點(diǎn)實(shí)驗(yàn)室,蘭州 730000)
制備條件對(duì)生物質(zhì)炭特性及修復(fù)重金屬污染農(nóng)田土壤影響研究進(jìn)展①
劉 沖1,2,吳文成1,劉曉文1*,南忠仁2
(1 環(huán)境保護(hù)部華南環(huán)境科學(xué)研究所,廣州 510655;2 蘭州大學(xué)資源環(huán)境學(xué)院西部環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室/甘肅省環(huán)境污染預(yù)警與控制重點(diǎn)實(shí)驗(yàn)室,蘭州 730000)
生物質(zhì)炭是生物質(zhì)廢棄物在限氧條件下熱解產(chǎn)生的多孔、低密度的富碳材料。前體物質(zhì)和熱解條件在很大程度上決定了生物質(zhì)炭的表面積和陽離子交換量,影響生物質(zhì)炭將重金屬污染物吸附到其表面的能力,從而影響重金屬在農(nóng)田土壤中的遷移。本文從生物質(zhì)炭的前體物質(zhì)種類及熱解條件對(duì)生物質(zhì)炭的特性、改良土壤以及修復(fù)重金屬污染農(nóng)田土壤的影響等方面進(jìn)行綜述,并提出生物質(zhì)炭修復(fù)重金屬污染農(nóng)田土壤研究的未來發(fā)展趨勢(shì)。
生物質(zhì)炭;改良;重金屬;修復(fù);固定
農(nóng)田土壤重金屬污染影響農(nóng)作物生長和農(nóng)產(chǎn)品質(zhì)量、危害人類和動(dòng)物健康,因此受到人們的廣泛關(guān)注[1-2]。曾希柏等[1]指出我國農(nóng)田土壤重金屬污染程度總體良好,大部分污染土壤屬于中、低度污染。如何在保證農(nóng)產(chǎn)品安全生產(chǎn)并改善農(nóng)業(yè)生態(tài)環(huán)境的前提下對(duì)重金屬中輕度污染農(nóng)田土壤進(jìn)行修復(fù),從而實(shí)現(xiàn)我國農(nóng)業(yè)的高效、安全和可持續(xù)發(fā)展[1]是當(dāng)前急需解決的問題之一。
20世紀(jì)中葉,亞馬遜黑土(Terra preta)的發(fā)現(xiàn)揭開了生物質(zhì)炭研究的序幕[3]。自Hilton和Yuen[4]發(fā)現(xiàn)生物黑炭對(duì)農(nóng)藥的良好吸附效果之后,關(guān)于生物質(zhì)炭對(duì)污染物質(zhì)在土壤環(huán)境中的遷移、歸趨以及生物有效性影響的研究逐漸受到關(guān)注。生物質(zhì)炭對(duì)重金屬污染土壤的修復(fù)過程不會(huì)造成二次污染,修復(fù)后的土地不會(huì)產(chǎn)生污染反彈現(xiàn)象[5]。將生物質(zhì)炭作為一種土壤改良劑施入受污染農(nóng)田土壤,不僅為農(nóng)林廢棄生物質(zhì)資源化利用提供新的思路,而且對(duì)防治農(nóng)田土壤養(yǎng)分流失、緩解農(nóng)業(yè)面源污染具有重要的現(xiàn)實(shí)意義。
國內(nèi)外學(xué)者在研究生物質(zhì)炭修復(fù)重金屬污染土壤時(shí)均采用在不同制備條件下制作的生物質(zhì)炭。然而,前體物質(zhì)的種類、熱解參數(shù)如溫度[6-10]、停留時(shí)間[11]、加熱速率[12]、保護(hù)氣流量、壓力、反應(yīng)容器、樣品前處理以及后處理等[13]均會(huì)對(duì)生物質(zhì)炭的結(jié)構(gòu)等特性產(chǎn)生影響。本文系統(tǒng)總結(jié)了制備條件對(duì)生物質(zhì)炭特性及修復(fù)重金屬污染農(nóng)田土壤的影響,提出生物質(zhì)炭修復(fù)重金屬污染農(nóng)田土壤研究的未來發(fā)展趨勢(shì),為優(yōu)化生物質(zhì)炭制備條件、提高生物質(zhì)炭修復(fù)重金屬污染農(nóng)田土壤的效果提供借鑒。
制備生物質(zhì)炭的前體物質(zhì)多來源于農(nóng)林廢棄物,包括植物組織(如秸稈和木屑等)和生物質(zhì)廢棄物等(如動(dòng)物糞便和城市污泥)[14-15]。前體物質(zhì)的種類在很大程度上決定了生物質(zhì)炭的物理化學(xué)性質(zhì),如產(chǎn)率、孔隙結(jié)構(gòu)、表面性質(zhì)、pH、養(yǎng)分含量以及重金屬的含量和組成等特性[16-21],從而影響生物質(zhì)炭在環(huán)境中的行為、功能以及歸趨,最終影響其對(duì)污染土壤中重金屬的吸附和固定作用。
生物質(zhì)主要由木質(zhì)素、纖維素、半纖維素組成,還有少量有機(jī)提取物如蛋白質(zhì)、酚類、油類等以及無機(jī)礦物組分[22]。木質(zhì)纖維類生物質(zhì)是最為主要的制備原料,其纖維素和木質(zhì)素含量較高,在20% ~ 40%;而草本類生物質(zhì)的木質(zhì)素含量較低,一般在 10% ~40%[23]。在同等熱解條件下,木質(zhì)素含量高的生物質(zhì)原料制備的生物質(zhì)炭具有更高的產(chǎn)率,如橄欖殼等[24]。生物質(zhì)炭中灰分含量取決于生物質(zhì)原料的灰分含量[25-26]。一般,相同制備條件下,草本植物制備的生物質(zhì)炭灰分含量高于木材廢棄物制備的生物質(zhì)炭,而低于動(dòng)物糞便或污泥類生物質(zhì)炭[17]。
不同前體物質(zhì)制備的生物質(zhì)炭的重金屬含量以及對(duì)重金屬污染土壤的修復(fù)效果存在差異。Qiu等[21]報(bào)道了12種生物質(zhì)炭重金屬含量的差異,發(fā)現(xiàn)相同熱解條件下動(dòng)物排泄物生物質(zhì)炭重金屬濃度顯著高于植物殘?bào)w生物質(zhì)炭。Yuan等[27]研究了9種生物質(zhì)炭對(duì)酸性土壤改良效果,發(fā)現(xiàn)與非豆科植物秸稈相比,豆科植物秸稈制備的生物質(zhì)炭能夠更顯著地提高土壤pH和肥力。Wang等[28]研究發(fā)現(xiàn)草本植物生物質(zhì)炭對(duì)Pb的吸附能力強(qiáng)于木本植物生物質(zhì)炭。由于生物質(zhì)炭前體物的來源廣泛,因此在生物質(zhì)炭的制備中,應(yīng)堅(jiān)持以農(nóng)林廢棄物循環(huán)利用為出發(fā)點(diǎn),尤其是植物殘?bào)w的利用。
2.1 熱解溫度
生物質(zhì)炭的基本物理性質(zhì)變化如揮發(fā)性物質(zhì)的釋放、中間體的產(chǎn)生以及中間熔化物的揮發(fā)均受溫度控制,因而溫度是影響生物質(zhì)炭制備的最主要因素[29]。生物質(zhì)在較低溫條件下熱解時(shí)蒸發(fā)出部分物理吸附水、CO2和CO,產(chǎn)生無定形炭;隨著熱解溫度的升高,揮發(fā)性物質(zhì)、高沸點(diǎn)物質(zhì)以及難降解的多芳香烴類不斷產(chǎn)生,生物質(zhì)炭中的C、N總量與H/C比值減小,芳香化程度增大[30-32],穩(wěn)定性越來越高。熱解過程中隨著溫度升高生物質(zhì)炭中的有機(jī)酸熱解并不斷生成灰分,碳酸鹽的總量和對(duì)總堿含量的貢獻(xiàn)度均隨其熱解溫度的升高而增加[6],導(dǎo)致生物質(zhì)炭的pH也隨之增大[6,33]。同時(shí),隨著熱解溫度的升高,生物質(zhì)炭的孔隙、比表面積[34-36]以及堿性基團(tuán)[37]均會(huì)隨之提高,生物質(zhì)炭表面酸性基團(tuán)、總官能團(tuán)[35-36,38]以及官能團(tuán)密度減少。
研究發(fā)現(xiàn),低溫?zé)峤庠趶U棄生物質(zhì)制備生物質(zhì)炭方面具有廣闊前景[39]。低溫(≤400℃)條件下制備的生物質(zhì)炭產(chǎn)率較大[40],微孔分布均勻、孔道規(guī)則,且對(duì)重金屬離子有更強(qiáng)的吸附能力[34]。而高溫(≥500℃)熱解生物質(zhì)炭的產(chǎn)率較低[24,41],且易導(dǎo)致生物質(zhì)炭中多環(huán)芳烴含量上升,從而使生物質(zhì)炭成為潛在的環(huán)境污染源。因此,考慮到熱解的成本、生物質(zhì)炭的產(chǎn)率以及修復(fù)效果,熱解過程中溫度一般控制在 350 ~500℃。
2.2 升溫速率
升溫速率對(duì)前體物質(zhì)的炭化過程及生物質(zhì)炭的性質(zhì)均有重要影響。升溫速率較慢時(shí)會(huì)增加生物質(zhì)熱裂解在低溫區(qū)的停留時(shí)間,促進(jìn)纖維素和木質(zhì)素的裂解反應(yīng),導(dǎo)致焦炭產(chǎn)率的增加,且能夠很好維持生物質(zhì)炭的孔性結(jié)構(gòu)。隨著升溫速率的增加,熱解反應(yīng)向高溫區(qū)推進(jìn),前體物質(zhì)的失重率不斷增加[42],生物質(zhì)炭的產(chǎn)率不斷降低。在較高的升溫速率下,生物質(zhì)炭會(huì)產(chǎn)生較多的分裂結(jié)構(gòu),生物質(zhì)炭顆粒中形成較大的孔洞且存在一些小尺寸的顆粒結(jié)構(gòu)[43]。
許細(xì)薇等[44]考察了升溫速率對(duì)油茶殼熱解的影響,發(fā)現(xiàn)原料樣品的質(zhì)量損失在水分損失階段隨著升溫速率的增大而減小,最大降解速率峰值在主熱解階段隨著升溫速率的增大,整體向高溫區(qū)偏移,主要是由于升溫速率過快,不利于生物質(zhì)內(nèi)外部的能量及時(shí)轉(zhuǎn)換,從而提高了反應(yīng)溫度;有機(jī)熱解失重約占總失重的 80%。然而,歐陽贛等[45]研究發(fā)現(xiàn)升溫速率對(duì)毛竹炭的最終產(chǎn)率基本沒有影響。
快速熱裂解通常以能源物質(zhì)(混合氣和生物油)為主導(dǎo)產(chǎn)品,生物質(zhì)炭為副產(chǎn)品[46]。慢速熱解可以生產(chǎn)更多的生物質(zhì)炭,且其中N、P、K、Na、Ca和Mg含量較高,可提高作物產(chǎn)量和土壤肥力,具有更高的農(nóng)業(yè)利用價(jià)值[47]。因此,在將生物質(zhì)炭應(yīng)用于重金屬污染農(nóng)田土壤修復(fù)時(shí),應(yīng)以慢速熱解制備生物質(zhì)炭為主。
2.3 停留時(shí)間
反應(yīng)的停留時(shí)間主要影響裂解過程中產(chǎn)生的二次揮發(fā)物在反應(yīng)爐中的停留時(shí)間。生物質(zhì)熱裂解反應(yīng)固相停留時(shí)間越短,裂解產(chǎn)生的固態(tài)產(chǎn)物比例就越小,氣相停留時(shí)間主要影響二次裂解反應(yīng)和固液氣在產(chǎn)物中的分布。短的氣相停留時(shí)間會(huì)減弱二次裂解反應(yīng)而明顯增加生物油的產(chǎn)率。故為了提高生物質(zhì)炭的產(chǎn)率,在一定程度上要提高氣相停留時(shí)間[48]。
Peng等[49]研究了反應(yīng)時(shí)間(2 ~ 8 h)對(duì)稻稈熱解生物質(zhì)炭性質(zhì)的影響,結(jié)果表明,生物質(zhì)炭的產(chǎn)率與灰分含量隨著反應(yīng)時(shí)間的延長而增加。李志合等[50]研究發(fā)現(xiàn),在生物質(zhì)快速熱解液化中,生物質(zhì)顆粒原料反應(yīng)時(shí)間越短,生物油液體產(chǎn)物所占的比例就越高,熱解所得生物質(zhì)炭所占的比例越小。然而,Zhang等[51]研究了溫度和停留時(shí)間對(duì)生物質(zhì)炭特性的影響,發(fā)現(xiàn)停留時(shí)間的變化對(duì)生物質(zhì)炭的pH及形態(tài)未產(chǎn)生顯著影響,Luo等[52]研究發(fā)現(xiàn)停留時(shí)間對(duì)生物質(zhì)炭官能團(tuán)結(jié)構(gòu)未產(chǎn)生顯著影響。
同一熱解溫度下,隨熱解時(shí)間的增加(1 ~ 2 h),生物質(zhì)原料的熱解程度增加,生物質(zhì)炭產(chǎn)率降低,熱解時(shí)間再繼續(xù)延長時(shí),生物質(zhì)炭的產(chǎn)率則基本沒有變化。還有研究發(fā)現(xiàn),隨熱解時(shí)間的增加,生物質(zhì)炭的比表面積(SBET)先增加后減小。在恒定熱解溫度和升溫速率等條件下,反應(yīng)時(shí)間的延長會(huì)增加生物質(zhì)炭的產(chǎn)量,對(duì)生物質(zhì)炭的灰分含量及元素組成也有一定影響[42]。因此,在將生物質(zhì)炭應(yīng)用于農(nóng)田土壤重金屬修復(fù)時(shí),制備生物質(zhì)炭應(yīng)適當(dāng)延長熱解時(shí)間,以達(dá)到最佳修復(fù)效果與最大生物質(zhì)炭產(chǎn)率。
2.4 裂解壓力
裂解壓力能夠通過影響氣相停留時(shí)間而影響生物質(zhì)熱裂解產(chǎn)物產(chǎn)量的分布以及顆粒大小和形狀[53]。當(dāng)裂解壓力較低時(shí),揮發(fā)物迅速從顆粒表面離開,限制了二次裂解的發(fā)生,從而增加了生物油產(chǎn)量[54]。生物質(zhì)的熱裂解速率隨裂解壓力的增加有明顯的提高,反應(yīng)也更激烈,而且揮發(fā)組分的停留時(shí)間增加,二次裂解較大,從而導(dǎo)致生物質(zhì)炭的產(chǎn)率增加[55]。
Mahinpey等[55]利用管式反應(yīng)器研究了裂解壓力(10 ~ 40 psi)對(duì)小麥秸稈生物質(zhì)炭產(chǎn)率的影響,結(jié)果表明,隨著壓力的增加,小麥秸稈生物質(zhì)炭表面逐漸形成多孔結(jié)構(gòu),生物質(zhì)炭的產(chǎn)率不斷提高。
2.5 保護(hù)氣氛
載氣(如N2、He等)可以使熱解反應(yīng)器處于限氧或者厭氧的環(huán)境,其通過熱解反應(yīng)器的速率會(huì)影響揮發(fā)性物質(zhì)在生物質(zhì)炭中擴(kuò)散[56]。高 N2速率下,生物質(zhì)炭中揮發(fā)性物質(zhì)含量更少,穩(wěn)定 C含量更高[57]。隨著氣體流量的增加,生物油產(chǎn)率增大,不可冷凝氣體產(chǎn)率變化不明顯,生物質(zhì)炭產(chǎn)率下降[58]。
Luo等[52]考察了熱解氣氛(有氧、限氧、氮?dú)猓?duì)生物質(zhì)炭理化性質(zhì)的影響,結(jié)果表明,在有氧條件下,生物質(zhì)炭的產(chǎn)量隨著熱解溫度與停留時(shí)間的增加而顯著提高,而N2保護(hù)下停留時(shí)間對(duì)生物質(zhì)炭的產(chǎn)量影響較小。
表1 施用生物質(zhì)炭對(duì)土壤中重金屬生物有效性的影響Table1 Effects of biochars amendment on bioavailabilities of heavy metals in soil
3.1 生物質(zhì)炭對(duì)重金屬在土壤中遷移的影響
生物質(zhì)炭由于其堿性、表面官能團(tuán)等能夠提高土壤的pH、增加土壤表面的活性吸附位點(diǎn),使土壤對(duì)重金屬離子的吸附能力增強(qiáng)。生物質(zhì)炭表面帶有大量的負(fù)電荷,金屬離子能與生物質(zhì)炭的表面電荷產(chǎn)生靜電作用,從而影響其在土壤中的遷移轉(zhuǎn)化。生物質(zhì)炭的施用能降低污染土壤中重金屬的遷移率,從而降低了重金屬被作物吸收的風(fēng)險(xiǎn)。
馬建偉等[59]將竹炭施入Cd污染土壤12天后發(fā)現(xiàn),可交換態(tài) Cd含量可降低 79.6%。Beesley等[60]施用硬木生物質(zhì)炭可使土壤孔隙水中Cd、Zn含量分別降低10倍與30倍;Debela等[61]發(fā)現(xiàn)木質(zhì)生物質(zhì)炭可使Cd、Zn浸出減少90% 以上。然而,Mackie等[62]將750℃生產(chǎn)的硬木生物質(zhì)炭施入Cu污染土壤后并未對(duì)土壤可交換態(tài)Cu含量以及植物組織Cu含量產(chǎn)生影響。
由于生物質(zhì)炭的特性由前體物質(zhì)與制備條件等決定,某種特定的生物質(zhì)炭并不能普遍適用于不同污染類型的土壤修復(fù)。因此,在將生物質(zhì)炭用于重金屬污染土壤修復(fù)時(shí),應(yīng)充分考慮土壤的污染類型以及生物質(zhì)炭的制備前體與制備條件等。
3.2 生物質(zhì)炭對(duì)重金屬生物有效性的影響
外源重金屬進(jìn)入土壤后,通過溶解、沉淀、凝聚、絡(luò)合吸附等各種物理化學(xué)反應(yīng)而迅速向其他形態(tài)轉(zhuǎn)化,在一定條件下這種轉(zhuǎn)化處于動(dòng)態(tài)平衡之中。同時(shí),土壤類型、土壤組分與性質(zhì)、污染狀況等因素都會(huì)影響重金屬在土壤中的溶解度和移動(dòng)性[63],從而影響其化學(xué)形態(tài)。形態(tài)能夠決定土壤中重金屬對(duì)環(huán)境影響的生態(tài)毒理學(xué)意義[64]。土壤中重金屬不同的存在形態(tài)處于不同的能量狀態(tài),其在土壤中的遷移性不同,有不同的遷移率和生物利用率,從而表現(xiàn)出不同的生物活性與毒性[65-66]。
Sarwar等[67]將生物有效性定義為某種化學(xué)物質(zhì)中可被受體細(xì)胞(植物、微生物等)吸收利用的一部分。土壤中可被植物吸收的重金屬稱之為有效態(tài)重金屬,為植物可吸收利用的主要形態(tài)[68],故而在研究作物吸收累積重金屬時(shí)應(yīng)主要考慮有效態(tài)重金屬含量。生物質(zhì)炭施入重金屬污染土壤后主要通過靜電吸附、沉淀、表面絡(luò)合或者協(xié)同作用[69]影響重金屬形態(tài)及其生物有效性。
Bian等[70]研究發(fā)現(xiàn)小麥秸稈生物質(zhì)炭添加量為40 t/hm2時(shí),水稻籽粒Cd含量降低了20% ~ 90%。Yuan等[71]發(fā)現(xiàn)熱解過程減小了污泥生物質(zhì)炭中Pb、Zn、Ni、Cd、As、Cu和Cr的浸出毒性,同時(shí)降低了微量元素Mn、Fe、Zn和Cu的生物有效性。
1) 在將生物質(zhì)炭施入農(nóng)田土壤前應(yīng)對(duì)重金屬污染特征進(jìn)行充分研究,要堅(jiān)持因地制宜、在保障食品安全前提下治理修復(fù)成本最小的原則。就地選取最佳材料以及制備條件,以最低成本取得最佳修復(fù)效果。比如重金屬輕中度污染的農(nóng)田土壤可施加低溫慢速熱解制備的生物質(zhì)炭[76]。
2) 由于土壤中的吸附點(diǎn)位可能會(huì)被有機(jī)質(zhì)或其他污染物占據(jù),因此在將生物質(zhì)炭應(yīng)用于大田試驗(yàn)之前,應(yīng)充分了解生物質(zhì)炭固定重金屬的能力及其隨時(shí)間變化的情況。同時(shí),生物質(zhì)炭在土壤中對(duì)重金屬的長期作用效果還有待進(jìn)一步的試驗(yàn)研究,從而系統(tǒng)評(píng)價(jià)生物質(zhì)炭對(duì)土壤重金屬污染的長期影響。
3) 生物質(zhì)炭對(duì)重金屬修復(fù)的研究大都集中在某種或某類前體物制備的生物質(zhì)炭,而針對(duì)多種重金屬并存的復(fù)合污染的土壤,很難找出一種鈍化劑能夠降低所有重金屬離子的生物活性。因此,應(yīng)注重開發(fā)各種形式的生物質(zhì)炭復(fù)合材料,如各種生物質(zhì)炭復(fù)合或生物質(zhì)炭與其他吸附劑復(fù)合。比如生物質(zhì)炭和肥料混施或復(fù)合施用時(shí),生物質(zhì)炭延長肥料養(yǎng)分的釋放期[77-79],降低養(yǎng)分損失[80],減少化肥施用量[81],反之肥料消除了生物質(zhì)炭養(yǎng)分不足的缺陷。
[1] 曾希柏, 徐建明, 黃巧云, 等. 中國農(nóng)田重金屬問題的若干思考[J]. 土壤學(xué)報(bào), 2013, 50(1): 186-194
[2] Robson T C, Braungardt C B, Rieuwerts J, et al. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering[J]. Environmental Pollution, 2014,184: 283-289
[3] Kleiner K. The bright prospect of biochar[J]. Nature Reports Climate Change, 2009: 72-74
[4] Hilton H W, Yuen Q H. Soil adsorption of herbicides,adsorption of serveral pre-emergence herbicides by Hawaiian sugar cane soils[J]. Journal of Agricultural and Food Chemistry, 1963, 11(3): 230-234
[5] 戴靜, 劉陽生. 生物炭的性質(zhì)及其在土壤環(huán)境中應(yīng)用的研究進(jìn)展[J]. 土壤通報(bào), 2013, 44(6): 1 520-1 525
[6] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource technology, 2011, 102(3):3 488-3 497
[7] Cantrell K B, Hunt P G, Uchimiya M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource technology, 2012, 107: 419-428
[8] Wang P, Zhan S, Yu H, et al. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue)[J]. Bioresource technology, 2010, 101(9): 3 236-3 241
[9] Keiluweit M, Nico P S, Johnson M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010,44(4): 1 247-1 253
[10] 侯建偉, 索全義, 梁桓, 等. 炭化溫度對(duì)沙蒿生物炭形貌特征和化學(xué)性質(zhì)的影響[J]. 土壤, 2014, 46(5): 814-818
[11] Peng X, Ye L L, Wang C H, et al. Temperature-and duration-dependent rice straw-derived biochar:Characteristics and its effects on soil properties of an Ultisol in southern China[J]. Soil and Tillage Research,2011, 112(2): 159-166
[12] Haykiri-Acma H, Yaman S, Kucukbayrak S. Effect of heating rate on the pyrolysis yields of rapeseed[J]. Renewable Energy, 2006, 31(6): 803-810
[13] Downie A. Biochar production and use: Environmental risks and rewards[D]. Sydney: University of New South Wales, 2011
[14] Mohan D, Pittman C U, Bricka M, et al. Sorption of arsenic,cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J]. Journal of Colloid and Interface Science, 2007, 310(1): 57-73
[15] Uchimiya M, Cantrell K B, Hunt P G, et al. Retention of heavy metals in a Typic Kandiudult amended with different manure-based biochars[J]. Journal of environmental quality,2012, 41(4): 1 138-1 149
[16] ?z?imen D, Ersoy-Meri?boyu A. A study on the carbonization of grapeseed and chestnut shell[J]. Fuel Processing Technology, 2008, 89(11): 1 041-1 046
[17] Novak J M, Lima I, Xing B, et al. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand[J]. Annals of Environmental Science, 2009, 3(1): 195-206
[18] Mukherjee A, Zimmerman A R, Harris W. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 2011, 163(3): 247-255
[19] DiBlasi C, Signorelli G, Di Russo C, et al. Product distribution from pyrolysis of wood and agricultural residues[J]. Industrial & Engineering Chemistry Research,1999, 38(6): 2 216-2 224
[20] 李瑞月, 陳德, 李戀卿, 等. 不同作物秸稈生物炭對(duì)溶液中 Pb2+, Cd2+的吸附[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2015,34(5): 1 001-1 008
[21] Qiu M Y, Sun K, Jin J, et al. Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars: The effect of feedstock, temperature, minerals, and properties[J]. Environmental Pollution, 2015, 206: 298-305
[22] Mohan D, Upittman C, Steele P H. Pyrolysis of wood/ biomass for bio-oil: A critical review[J]. Energy Fuels,2006, 20(3): 848-889
[23] Christian D G. Biomass for renewable energy, fuels, and chemicals[J]. Journal of Environmental Quality, 2000, 29(2): 662-663
[24] Demirbas A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues[J]. Journal of Analytical & Applied Pyrolysis, 2004, 72(2):243-248
[25] Brewer C E, Unger R, Schmidt-Rohr K, et al. Criteria to select biochars for field studies based on biochar chemical properties[J]. Bioenergy Research, 2011, 4(4): 312-323
[26] Abdullah H, Wu H. Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions[J]. Energy & Fuels, 2009, 23(8): 4 174-4 181
[27] Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil Use & Management, 2011, 27(1):110-115
[28] Wang S, Gao B, Zimmerman A R, et al. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass[J]. Chemosphere, 2015, 134: 257-262 [29] Lua A C, Yang T, Guo J. Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells[J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(2): 279-287
[30] 陸海楠, 胡學(xué)玉, 劉紅偉. 不同裂解條件對(duì)生物炭穩(wěn)定性的影響[J]. 環(huán)境科學(xué)與技術(shù), 2013, 36(8): 11-14
[31] Tsai W T, Liu S C, Chen H R, et al. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment[J]. Chemosphere, 2012,89(2): 198-203
[32] Krull E S, Baldock J A, Skjemstad J O, et al. Characteristics of biochar: Organo-chemical properties[M]//Lehmann J, Joseph S. Biochar for environmental management: Science and technology. London: Earthscan, 2009: 53-65
[33] 兗少鋒. 雷竹葉生物炭制備及其對(duì)微囊藻毒素MCLR吸附作用[D]. 杭州: 浙江大學(xué), 2014
[34] 安增莉, 侯艷偉, 蔡超, 等. 水稻秸稈生物炭對(duì)Pb(Ⅱ)的吸附特性[J]. 環(huán)境化學(xué), 2011, 30(11): 1 851-1 857
[35] 王震宇, 劉國成, Monica Xing, 等. 不同熱解溫度生物炭對(duì)Cd(Ⅱ)的吸附特性[J]. 環(huán)境科學(xué), 2014, 35(12):4 735-4 744
[36] 趙世翔, 姬強(qiáng), 李忠徽, 等. 熱解溫度對(duì)生物質(zhì)炭性質(zhì)及其在土壤中礦化的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2015, 46(6):183-192
[37] 趙牧秋, 金凡莉, 孫照煒, 等. 制炭條件對(duì)生物炭堿性基團(tuán)含量及酸性土壤改良效果的影響[J]. 水土保持學(xué)報(bào),2014, 28(4): 299-303
[38] Chen Z M, Xiao X, Chen B L, et al. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures[J]. Environmental Science & Technology, 2015, 49(1): 309-317
[39] Liu Z, Han G. Production of solid fuel biochar from waste biomass by low temperature pyrolysis[J]. Fuel, 2015,158:159-165
[40] 陳玲桂. 生物炭輸入對(duì)農(nóng)田土壤重金屬遷移的影響研究[D]. 杭州: 浙江大學(xué)環(huán)境與資源學(xué)院, 2013
[41] Brownsort P A. Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits[D]. Edinburgh: University of Edinburgh, 2009
[42] 王茹, 侯書林, 趙立欣, 等. 生物質(zhì)熱解炭化的關(guān)鍵影響因素分析[J]. 可再生能源, 2013, 31(6): 90-95
[43] Haykiri-Acma H, Yaman S. Effect of the heating rate on the morphology of the pyrolytic char from hazelnut shell[J]. International Journal of Green Energy, 2009, 6(5): 508-511
[44] 許細(xì)薇, 蔣恩臣, 王明峰, 等. 油茶殼熱解特性及動(dòng)力學(xué)分析[J]. 中國電機(jī)工程學(xué)報(bào), 2012, 32(8):118-123
[45] 歐陽贛, 單勝道, 羅錫平, 等. 毛竹催化熱解動(dòng)力學(xué)研究[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào), 2012, 29(5): 680-685
[46] 高海英. 一種生物炭基氮肥的特征及其對(duì)土壤作物的效應(yīng)研究[D]. 陜西楊凌: 西北農(nóng)林科技大學(xué), 2012
[47] Mohanty P, Nanda S, Pant K K, et al. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood:Effects of heating rate[J]. Journal of Analytical & Applied Pyrolysis, 2013, 104(11): 485-493
[48] 徐義亮. 生物碳的制備熱動(dòng)力學(xué)特性及其對(duì)鎘的吸附性能和機(jī)理[D]. 杭州: 浙江大學(xué), 2013
[49] Peng X, Ye L L, Wang C H, et al. Temperature- and duration-dependent rice straw-derived biochar:Characteristics and its effects on soil properties of an Ultisol in southern China[J]. Soil & Tillage Research, 2011,112(2): 159-166
[50] 李志合, 易維明, 高巧春, 等. 固體熱載體加熱生物質(zhì)的閃速熱解特性[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2012, 43(8): 116-120
[51] Jie Z, Jia L, Liu R. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate[J]. Bioresource Technology, 2015,176: 288-291
[52] Luo L, Xu C, Chen Z, et al. Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types[J]. Bioresource Technology, 2015: 83-89
[53] Cetin E, Moghtaderi B, Gupta R, et al. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004, 83(16): 2 139-2 150
[54] Cetin E, Gupta R, Moghtaderi B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity[J]. Fuel, 2005, 84(10):1 328-1 334
[55] Mahinpey N, Murugan P, Mani T, et al. Analysis of bio-oil,biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor[J]. Energy Fuels, 2009, 23(5):2 736-2 742
[56] Antal M J, Gr?nli M. The art, science, and technology of charcoal production[J]. Ind. Eng. Chem. Res., 2003, 53(1):8-9
[57] Lua A C, Yang T, Guo J. Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells[J]. Journal of Analytical & Applied Pyrolysis, 2004, 72: 279-287
[58] 王鵬起, 常建民, 杜洪雙, 等. 落葉松樹皮噴動(dòng)循環(huán)流化床快速熱解的影響因素[J]. 林業(yè)科學(xué), 2009, 45(10):126-129
[59] 馬建偉, 王慧, 羅啟仕, 等. 電動(dòng)力學(xué)-新型竹炭聯(lián)合作用下土壤鎘的遷移吸附及其機(jī)理[J]. 環(huán)境科學(xué), 2007,28(8): 1 829-1 834
[60] Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility,bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Pollution, 2010, 158(6): 2 282-2 287
[61] Debela F, Thring R W, Arocena J M. Immobilization of heavy metals by co-pyrolysis of contaminated soil with woody biomass[J]. Water, Air, & Soil Pollution, 2012,223(3): 1 161-1 170
[62] Mackie K A, Marhan S, Ditterich F, et al. The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard[J]. Agriculture, Ecosystems & Environment, 2015,201: 58-69
[63] 侯青葉, 楊忠芳, 楊曉燕, 等. 成都平原區(qū)水稻土成土剖面 Cd形態(tài)分布特征及影響因素研究[J]. 地學(xué)前緣,2008, 15(5): 36-46
[64] Wang S, Nan Z, Liu X, et al. Availability and speciation of Cu, Zn, and Pb added to irrigated desert soil[J]. Polish Journal of Environmental Studies, 2010, 19(4): 865-869
[65] 劉清, 王子健, 湯鴻霄. 重金屬形態(tài)與生物毒性及生物有效性關(guān)系的研究進(jìn)展[J]. 環(huán)境科學(xué), 1996, 17(1): 89-92
[66] Xian X. Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants[J]. Plant and Soil, 1989, 113(2): 257-264
[67] Sarwar N, Malhi S S, Zia M H, et al. Role of mineral nutrition in minimizing cadmium accumulation by plants[J]. Journal of the Science of Food and Agriculture, 2010, 90(6):925-937
[68] Wang P, Qu E, Li Z, et al. Fractions and availability of nickel in loessial soil amended with sewage or sewage sludge[J]. Journal of Environmental Quality, 1997, 26(3):795-801
[69] Tang J, Zhu W, Kookana R, et al. Characteristics of biochar and its application in remediation of contaminated soil[J]. Journal of Bioscience and Bioengineering, 2013, 116(6):653-659
[70] Bian R, Chen D, Liu X, et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment[J]. Ecological Engineering, 2013, 58: 378-383
[71] Yuan H, Lu T, Huang H, et al. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge[J]. Journal of Analytical & Applied Pyrolysis, 2015, 20: 284-289
[72] Lu K, Yang X, Shen J, et al. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola[J]. Agriculture, Ecosystems & Environment, 2014, 191: 124-132
[73] Puga A P, Abreu C A, Melo L C A, et al. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium[J]. Journal of Environmental Management, 2015, 159: 86-93
[74] Fellet G, Marmiroli M, Marchiol L. Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar[J]. Science of the Total Environment, 2014, 468: 598-608
[75] Khan S, Waqas M, Ding F, et al. The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.)[J]. Journal of Hazardous Materials, 2015, 300:243-253
[76] 劉國成. 生物炭對(duì)水體和土壤環(huán)境中重金屬鉛的固持[D]. 青島: 中國海洋大學(xué), 2014
[77] Khan M A, Kim K W, Mingzhi W, et al. Nutrientimpregnated charcoal: an environmentally friendly slowrelease fertilizer[J]. The Environmentalist, 2008, 28(3):231-235
[78] 俞映 倞, 薛利紅, 楊林章, 等. 生物炭添加對(duì)酸化土壤中小白菜氮素利用的影響[J]. 土壤學(xué)報(bào), 2015, 52(4):759-767
[79] 張偉明, 管學(xué)超, 黃玉威, 等. 生物炭與化學(xué)肥料互作的大豆生物學(xué)效應(yīng)[J]. 作物學(xué)報(bào), 2015, 41(1): 109-122?
[80] Laird D, Fleming P, Wang B, et al. Biochar impact on nutrient leaching from a Midwestern agricultural soil[J]. Geoderma, 2010, 158(3): 436-442
[81] 康日峰, 張乃明, 史靜, 等. 生物炭基肥料對(duì)小麥生長、養(yǎng)分吸收及土壤肥力的影響[J]. 中國土壤與肥料,2014(6): 33-38
Influence of Production Conditions on Characteristics of Biochar and Remediation of Heavy Metals in Agriculture Soil: A Review
LIU Chong1,2, WU Wencheng1, LIU Xiaowen1*, NAN Zhongren2
(1 South China Institute of Environmental Science, MEP, Guangzhou 510655, China; 2 Key Laboratory of Western China's Environmental System (Ministry of Education), Gansu Key Laboratory for Environmental Pollution Prediction and Control,College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China)
Biochars are carbon-rich and low-density materials which are pyrolyzed under limited oxygen atmosphere. The surface areas and cation exchange capacities are largely determined by precursor species and pyrolysis conditions, which influence biochars adsorption capability of heavy metals onto the surface, reducing the migration of contaminants in agricultural soils. We reviewed the effects of precursor species and pyrolysis conditions on characteristics, amelioration of soil and its immobilization on heavy metals in the soil. Furthermore, the future research direction in the remediation of heavy metals by biochar in agriculture soil was proposed.
Biochar; Amelioration; Heavy metals; Remediation; Immobilization
X171.5
10.13758/j.cnki.tr.2016.04.003
國家自然科學(xué)基金項(xiàng)目(51178209;91025015;41501337)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(lzujbky-2015-138;lzujbky-2015-214)資助。
(liuxiaowen@scies.org)
劉沖(1990—),男, 陜西寶雞人,碩士研究生,研究方向?yàn)榄h(huán)境污染機(jī)理與控制修復(fù)。E-mail: 18394187118@163.com