陳昌萍 李良中 胡海濤 錢長照 洪力
摘 要:以壓電層合微梁為研究對象,基于連續(xù)介質(zhì)力學理論和Euler-Bernoulli梁理論,在考慮其尺寸效應和損傷效應的情況下,推導了具損傷壓電層合微梁的非線性動力控制方程.采用伽遼金法和龍格庫塔法進行求解,分析了多種參數(shù)對微梁結(jié)構(gòu)坍塌特性的影響.結(jié)果表明,考慮幾何非線性項使得損傷微梁具有更高的坍塌閾值電壓;控制電壓、微梁長度等參數(shù)的變化均對損傷微梁的坍塌閾值電壓造成影響.最后,采用有限元軟件進行仿真模擬計算,驗證了理論計算結(jié)果的合理性.本文所得結(jié)論對微機電系統(tǒng)壓電層合微梁結(jié)構(gòu)的設計具有理論指導意義.
關鍵詞:壓電效應;層合微梁;損傷效應;尺寸效應;坍塌
中圖分類號:O345 文獻標識碼:A
Abstract:The nonlinear pull-in behavior of piezoelectric laminated micro-beam was studied with consideration of the size effect and damage effect. Based on the theories of continuum mechanics and Euler-Bernoulli beam hypothesis, the nonlinear governing equation of piezoelectric laminated micro-beam with damage was established and solved in Galerkin method and Runge-Kutta method. The influence of various parameters on the pull-in voltage of the micro-beam was discussed, and the results have shown that the geometry nonlinearity can improve the value of critical pull-in voltage of the micro-beam; the changes of governing voltage, micro-beam length and other parameters have influences on the critical pull-in voltage of the micro-beam. Besides,the FEM software was used to carry out the check-up calculations, and the results were compared with the theoretical results. The findings of this research can offer guidance to the design of micro-structures.
Key words: miezoelectric effect; laminated micro-beam; damage effect; size effect; pull-in
MEMS作為智能化和集成化的微型系統(tǒng)在物理、生物、機械等多個行業(yè)中廣泛運用.MEMS具有多種結(jié)構(gòu)形式,其中壓電微結(jié)構(gòu)由于壓電特性在MEMS結(jié)構(gòu)中具有重要地位.一種主要的壓電梁式微結(jié)構(gòu)形式就是將壓電片通過粘結(jié)劑粘結(jié)在彈性基體而形成層合壓電微梁.層合壓電微梁可作為執(zhí)行器和傳感器兩種功能結(jié)構(gòu)[1],研究層合壓電微梁在電場中的力學特性具有重要的意義.
近年來國內(nèi)外已有許多學者對梁式微結(jié)構(gòu)在電場中的靜動力特性進行研究.Pamidighantam等[2]基于Euler-Bernoulli梁理論研究了兩端固支和懸臂結(jié)構(gòu)形式壓電微梁的靜、動力學特性,并得到了微梁結(jié)構(gòu)的靜力坍塌閾值電壓.Younis和Nayfeh[3]研究了電場作用下梁式微結(jié)構(gòu)諧振器的響應特性.Chaterjee和Pohit[4]分析了幾何非線性對微梁結(jié)構(gòu)臨界坍塌電壓的影響.徐琳[5]在忽略邊緣效應影響的情況下分別研究了平行板式微梁結(jié)構(gòu)的坍塌行為和扭轉(zhuǎn)式微執(zhí)行器的坍塌行為.對于壓電式微梁的研究,Yin等[6]采用修正偶應力理論研究了尺度效應對壓電微梁的臨界坍塌電壓的影響.Azizi等[7]研究了上下兩側(cè)附有壓電層對微梁靜動力穩(wěn)定性的影響.Vahdat等[8]研究了熱彈性阻尼對上下表面附有壓電層微梁結(jié)構(gòu)的動力學特性的影響.陳昌萍等[9]通過引入?yún)?shù)剝離數(shù)研究了壓電粘彈性微梁的粘附特征.Xiao等[10]建立壓電層合微梁的尺寸效應通用模型,并使用修正偶應力理論和漢密爾頓原理分析了層合壓電微梁的坍塌現(xiàn)象.以上所述的研究中,研究對象大多選取理想的、無缺陷的微梁結(jié)構(gòu),而對以具損傷微梁結(jié)構(gòu)為對象的研究成果很少見.本文在考慮尺寸效應的情況下,研究具損傷層合壓電微梁在電場作用中的坍塌特性,并討論幾何參數(shù)、控制電壓等對臨界坍塌電壓的影響.
1 基本方程
2 結(jié)果與討論
在本文算例中,選取微梁長度L=100 μm,壓電層厚度hp=0.5 μm,基體層厚度hb=3 μm,梁寬度b=15 μm,懸臂梁與固定電極初始間距d=1 μm.
使用龍格庫塔法求解無量綱常微分動力控制方程(12),得到幾何非線性對微梁撓度的影響如圖2所示.從圖2中可知,隨著負載電壓的增加,微梁撓度隨之增大,并當電壓值超過臨界坍塌電壓以后,微梁的撓度變化不再穩(wěn)定,并發(fā)生坍塌;幾何非線性對壓電微梁撓度變化趨勢沒有顯著影響,但是可以減緩微梁的撓度變化趨勢,使微梁臨界坍塌電壓增大.
3 有限元仿真計算
為了與理論計算結(jié)果進行對比分析,本文采用有限元軟件ANSYS對懸臂壓電層合微梁在靜電場中的坍塌行為進行計算.在有限元計算中采用與數(shù)值分析中一致的微梁參數(shù),并采用方程(6)和(7)中的等效彈性模量來考慮微梁尺寸效應和損傷的影響.微梁的有限元模型如圖6所示,在壓電層與靜電層的接觸面添加界面,通過界面在不同的分析場中傳遞載荷.對懸臂梁固定端的節(jié)點進行完全約束,真空介質(zhì)層約束下端z方向自由度.為了避免加載過程電壓沖擊對坍塌的影響,采用斜坡負載方式對微梁施加電壓.在求解過程中開啟網(wǎng)格變形控制,保證單元的變形與結(jié)構(gòu)場的變形同步.圖7顯示了V=40 V時微梁的撓度云圖.微梁的右側(cè)撓度最大,與固定極板接觸的空氣間隙變形小,真空介電層下端撓度為零,與理論相符合.
在其他條件均不變的情況下,記錄不同負載電壓下微梁自由端的撓度值可得出層合壓電微梁的撓度與電壓關系的曲線如圖8所示.由圖8可知,隨著負載電壓的增大,微梁的撓度同樣增大,當負載電壓接近坍塌臨界電壓時,微梁撓度會迅速增加使微梁與電極貼合.仿真結(jié)果與數(shù)值計算結(jié)果一致.
微梁長度和損傷變量對微梁撓度和臨界坍塌電壓的影響分析結(jié)果分別如圖9和圖10所示.當長度增加時微梁撓度變大,臨界坍塌電壓變小,損傷變量增大時微梁撓度也變大.仿真結(jié)果和數(shù)值分析結(jié)果一致.
數(shù)值計算和有限元分析2種方法獲得的臨界坍塌電壓結(jié)果如圖11所示,并在表1中將具體數(shù)據(jù)進行比較.從圖11和表1中可以看出,在相同電壓條件下ANSYS進行有限元計算得出的臨界坍塌電壓較低,與使用榮格庫塔法得出的臨界坍塌電壓相差7.8%,表明了計算結(jié)果的合理性.
4 結(jié) 論
本文通過數(shù)值計算和有限元仿真兩種方法對具損傷的懸臂壓電微梁在電場作用下非線性坍塌行為進行研究,討論了幾何非線性、控制電壓等參數(shù)對微梁坍塌行為的影響.研究結(jié)果表明,考慮幾何非線性使微梁具有更高的坍塌閾值電壓;控制電壓和微梁長度增大可導致微梁坍塌閾值電壓明顯降低.材料損傷變量在一定范圍內(nèi)增大會使微梁撓度和臨界坍塌電壓發(fā)生降低.因此,壓電微梁結(jié)構(gòu)在使用過程中產(chǎn)生輕微損傷,可以通過改變控制電壓使其繼續(xù)滿足工作要求,從而延長壓電微梁結(jié)構(gòu)的使用壽命.
參考文獻
[1] YI X, DUAN H L. Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors [J]. Journal of the Mechanics and Physics of Solids, 2009, 57( 8): 1254-1266.
[2] PAMIDIGHANTAM S, PUERS R, BAERT K, et al. Pull-in coltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free conditions[J].Journal of Micromechanics and Microengineering,2002,12(4):456-468.
[3] YOUNIS M I, NAYFEH A H. A study of the nonlinear response of a resonant microbeam to an electric actuation[J]. Nonlinear Dynamics,2003,31(1):91-117.
[4] CHATERJEE S P, POHIT G.A large deflection model for the Pull-in analysis of electrostatically actuated micro-cantilever beams[J].Journal of Sound and Vibration,2009, 322(4/5): 969-986.
[5] 徐琳. 靜電微執(zhí)行器的Pull-in特性分析[D].南京:南京郵電大學光電工程學院,2012.
XU Lin.Pull-in characteristic analysis of electrostatic micro-actuators[D].Nanjing:School of Optoelectronic Engineering,Nanjing University of Posts and Telecommunications,2012.(In Chinese)
[6] YIN L, QIAN Q, WANG Y S, et al. Size effect on the static behavior of electrostaticlly actuated microbeams [J]. Acta Mechanics Sinica,2011,27(3):445-451.
[7] AZIZI S, REZAZADEH G, GHAZAVI M-R, et al. Stabiliz- ing the Pull-in instability of an electro-statically actuated microbeam using piezoelectric actuation[J].Applied Mathematical Modelling,2011,35(10):4796-4815.
[8] VAHDAT A S, REZAZADEH G, AHMADI G. Thermoelastic damping in a micro-beam resonator tunable with piezoelectric layers[J].Acta Mechanica Solida Sinica,2012, 25(1): 73-81.
[9] 陳昌萍, 李受堅. 壓電粘彈性微梁的粘附分析[J].湖南大學學報:自然科學版,2013,40(11):58-63.
CHEN Chang-ping,LI Shou-jian.Adhesion analysis of a piezoelectric viscoelastic microbeam[J].Journal of Hunan University:Natural Sciences,2013,40(11):58-63. (In Chinese)
[10]XIAO Y, WANG B L, ZHOU S J. Pull-in voltage analysis of electrostatically actuated MEMS with piezoelectric layers: a size-dependent model[J].Mechanics Research Communications,2015,66(4):7-14.
[11]DYM C L, SHAMES I H. Solid mechanics: a variational approach[M].Beijing: China Railway Publishing House, 1984:88-105.
[12]MITCHELL J A, REDDY J N. A refined hybrid plate theory for composite laminates with piezoelectric laminae [J]. International Journal of Solids and Structures,1995,32(16):2345-2367.
[13]NAYFEH A H, YOUNIS M I. A study of nonlinear response of a resonant microbeam to an electric actuation [J]. Nonlinear Dynamics, 2003, 31: 91-117.
[14]DRAGON A,MROZ Z.A continuum model for plastic-brittle behaviour of rock and concrete[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1979,17:121-137.
[15]李兆霞. 損傷力學及其運用[M].北京:科學出版社, 2002:16-24.
LI Zhao-xia.Damage mechanics and applications[M]. Beijing: Science Press,2002:16-24.(In Chinese)
[16]李良中.具損傷微納米結(jié)構(gòu)的非線性動力學分析[D].長沙:湖南大學機械與運載工程學院,2014.
LI Liang-zhong.Nonlinear dynamic analysis of micro-structure with damage[D].Changsha:College of Mechanical and Vehicle Engineering,Hunan University,2014.(In Chinese)