鄒亮 伍珈樂(lè) 劉濤 趙彤 張黎
摘 要:提出了一種兼顧技術(shù)性和經(jīng)濟(jì)性的大電網(wǎng)永磁偏置型故障限流器(Permanent-magnet-biased Saturation based Fault Current Limiter, PMFCL)優(yōu)化配置算法.介紹了PMFCL限流機(jī)理,定義了短路電流裕量作為挑選超標(biāo)節(jié)點(diǎn)的標(biāo)準(zhǔn).將節(jié)點(diǎn)自阻抗作為節(jié)點(diǎn)短路電流水平的衡量指標(biāo),基于節(jié)點(diǎn)自阻抗增量,構(gòu)建了兼顧全局限流效果與經(jīng)濟(jì)性的PMFCL優(yōu)化配置評(píng)價(jià)函數(shù).綜合考慮了PMFCL啟動(dòng)條件和節(jié)點(diǎn)自阻抗對(duì)支路阻抗參數(shù)的靈敏度指標(biāo)以縮小尋優(yōu)空間,提出了PMFCL在大電網(wǎng)中配置優(yōu)化算法.將該算法應(yīng)用于IEEE 39節(jié)點(diǎn)標(biāo)準(zhǔn)算例,調(diào)用Matlab遺傳算法函數(shù)完成仿真.結(jié)果表明,與不計(jì)及靈敏度相比,該算法尋優(yōu)效率較高;所得最優(yōu)配置方案能夠使所有節(jié)點(diǎn)短路電流滿足限流要求并保留一定裕量,對(duì)超標(biāo)越嚴(yán)重的節(jié)點(diǎn)限流效果較好,驗(yàn)證了該算法的可行性及有效性.
關(guān)鍵詞:永磁偏置型故障限流器;大電網(wǎng);優(yōu)化配置;技術(shù)經(jīng)濟(jì)性;評(píng)價(jià)函數(shù);靈敏度指標(biāo);遺傳算法
中圖分類號(hào):TM51 文獻(xiàn)標(biāo)識(shí)碼:A
Abstract: An algorithm for optimally allocating Permanent-magnet-biased Saturation based Fault Current Limiter (PMFCL) in large power grid was presented. The current-limiting mechanism of PMFCLs was briefly introduced. Short-circuit current margin was defined and can be used as the criteria of over-standard bus selection. Bus self-impedance was regarded as the measurement index of short circuit level. On account of the increment of bus self-impedance, an optimal allocation evaluation function with consideration of the overall current-limiting effect and economy was built. It is proposed that the starting condition of PMFCLs and the sensitivity index of bus self-impedance with respect to the branch impedance can be utilized to greatly decrease the searching space. Finally, the algorithm for optimally allocating PMFCLs was concluded on the basis of evaluation function and sensitivity index. Simulation of IEEE 39-bus system was completed by using the proposed optimal allocation algorithm and genetic algorithm function of Matlab. The result suggests that the process of optimal allocation has relatively higher efficiency when compared with the method, in which sensitivity is not considered, the short current of over-standard substations is restrained successfully and some abundant values are reserved. Furthermore, the effect of current limiting is better when the current exceeds the standard one more seriously. It verifies the feasibility and effectiveness of the proposed optimal allocation algorithm.
Key words:Permanent-magnet-biased Saturation based Fault Current Limiter; large power gird; optimal allocation; technology and economy; evaluation function; sensitivity index; genetic algorithms
隨著我國(guó)電網(wǎng)互聯(lián)程度的不斷提高和特高壓建設(shè)的逐步推進(jìn),網(wǎng)架結(jié)構(gòu)日益增強(qiáng),短路電流超標(biāo)愈發(fā)嚴(yán)重,如何經(jīng)濟(jì)有效地限制短路電流水平,已成為電力系統(tǒng)規(guī)劃和運(yùn)行維護(hù)亟待解決的問(wèn)題[1-5].
近年來(lái),由永磁體、軟磁鐵芯及交流銅繞組構(gòu)成的永磁偏置型故障限流器(Permanent-magnet-biased Saturation based Fault Current Limiter, PMFCL)受到越來(lái)越多的關(guān)注[6].作為一種短路電流超標(biāo)的有效解決方案,PMFCL集檢測(cè)、轉(zhuǎn)換和限流于一體,具有無(wú)需附加電源即可實(shí)現(xiàn)自動(dòng)投入與復(fù)位,啟動(dòng)迅速,結(jié)構(gòu)簡(jiǎn)單可靠,成本低等優(yōu)勢(shì),既不存在超導(dǎo)型限流器中超導(dǎo)體恢復(fù)和散熱等問(wèn)題,也不存在電力電子型限流器中觸發(fā)控制復(fù)雜等問(wèn)題,是一種經(jīng)濟(jì)實(shí)用且性能可靠的新型故障限流技術(shù)[7-9].
由于大電網(wǎng)支路數(shù)多,結(jié)構(gòu)復(fù)雜,當(dāng)其中存在較多短路電流超標(biāo)節(jié)點(diǎn)且其位置分布較廣泛時(shí),僅憑工程經(jīng)驗(yàn)選擇PMFCL的布點(diǎn)和容量絕非易事.因此,如何在綜合考慮技術(shù)性(即對(duì)所有節(jié)點(diǎn)短路電流的整體限流效果)和經(jīng)濟(jì)性(即PMFCL投資成本和PMFCL安裝臺(tái)數(shù))的基礎(chǔ)上,實(shí)現(xiàn)PMFCL在大電網(wǎng)中的優(yōu)化配置,是PMFCL實(shí)現(xiàn)工程應(yīng)用亟待解決的問(wèn)題.
文獻(xiàn)[10]依據(jù)電流限制因子來(lái)確定限流器的限流阻抗,但其使用的是枚舉法,隨著電網(wǎng)規(guī)模擴(kuò)大,計(jì)算量將變得非常大;文獻(xiàn)[11]使用遞階遺傳算法與微種群遺傳算法相結(jié)合的方法對(duì)限流器進(jìn)行布點(diǎn)配置,但需對(duì)全網(wǎng)所有支路編碼,對(duì)大電網(wǎng)而言,其尋優(yōu)空間和計(jì)算量相當(dāng)大.為解決這一難題,文獻(xiàn)[12-15]通過(guò)建立合理的判據(jù)設(shè)法減少候選支路數(shù).其中,文獻(xiàn)[12]定義了基于節(jié)點(diǎn)故障電流變化量的靈敏度矩陣來(lái)減小搜索空間;文獻(xiàn)[13]采用了節(jié)點(diǎn)自阻抗對(duì)支路阻抗參數(shù)的靈敏度指標(biāo);文獻(xiàn)[14]提出了基于節(jié)點(diǎn)短路電流變化率的指標(biāo),使得不同節(jié)點(diǎn)間的靈敏度能夠相互比較;文獻(xiàn)[15]分別計(jì)算了對(duì)應(yīng)于3種限流措施的節(jié)點(diǎn)自阻抗靈敏度加權(quán)和,并以此來(lái)避免尋優(yōu)過(guò)程遭遇維數(shù)災(zāi)難.
上述靈敏度指標(biāo)均能取得較好的效果,但在限流器優(yōu)化配置問(wèn)題中,除尋優(yōu)空間外,優(yōu)化計(jì)算的目標(biāo)函數(shù)也是影響布點(diǎn)及容量?jī)?yōu)化結(jié)果的重要因素.文獻(xiàn)[12-13]均將優(yōu)化目標(biāo)設(shè)定為同時(shí)實(shí)現(xiàn)限流器安裝臺(tái)數(shù)及限流阻抗最小化,但這兩個(gè)目標(biāo)實(shí)質(zhì)上僅考慮了限流器優(yōu)化配置的經(jīng)濟(jì)性;文獻(xiàn)[14]基于限流器安裝成本及容量成本建立了成本評(píng)價(jià)子函數(shù),基于自阻抗靈敏度加權(quán)和建立了限流效果評(píng)價(jià)子函數(shù);文獻(xiàn)[15]除考慮投資成本外,為保證限流措施不破壞電網(wǎng)聯(lián)系完整性,還將短路電流裕量最小作為優(yōu)化目標(biāo);文獻(xiàn)[16]為完善傳統(tǒng)限流器配置經(jīng)濟(jì)性指標(biāo),將全網(wǎng)損耗增量、裝設(shè)臺(tái)數(shù)和限流阻抗值作為了優(yōu)化目標(biāo).
本文針對(duì)PMFCL全網(wǎng)配置優(yōu)化問(wèn)題,定義了短路電流裕量,將節(jié)點(diǎn)自阻抗作為節(jié)點(diǎn)短路電流水平的衡量指標(biāo),基于節(jié)點(diǎn)自阻抗增量,構(gòu)建了兼顧整體限流效果與經(jīng)濟(jì)性的PMFCL優(yōu)化配置評(píng)價(jià)函數(shù),提出了依據(jù)PMFCL啟動(dòng)條件和節(jié)點(diǎn)自阻抗變化量對(duì)支路阻抗參數(shù)的靈敏度指標(biāo)來(lái)縮小尋優(yōu)空間的方法,并以上述函數(shù)及方法為基礎(chǔ),提出了一種適用于大電網(wǎng)的PMFCL優(yōu)化配置算法.最后,采用IEEE 39節(jié)點(diǎn)標(biāo)準(zhǔn)算例進(jìn)行計(jì)算分析,驗(yàn)證了該算法在提高尋優(yōu)速度、實(shí)現(xiàn)PMFCL在大電網(wǎng)中優(yōu)化配置方面的有效性及合理性.
1 PMFCL限流機(jī)理
在多種不同拓?fù)浣Y(jié)構(gòu)的PMFCL中,直線式PMFCL具有簡(jiǎn)潔經(jīng)濟(jì)、永磁體偏置能力強(qiáng)、結(jié)構(gòu)參數(shù)易于調(diào)整等優(yōu)點(diǎn),因此本文選擇直線式PMFCL作為研究對(duì)象,其拓?fù)浣Y(jié)構(gòu)如圖1所示[17].
當(dāng)系統(tǒng)正常運(yùn)行時(shí),流過(guò)交流繞組的負(fù)荷電流較小,其產(chǎn)生的交變磁場(chǎng)不足以抵消永磁體的偏置磁場(chǎng),因此軟磁鐵芯在偏置磁場(chǎng)作用下始終處于深度飽和狀態(tài),PMFCL對(duì)外等效阻抗接近于零,對(duì)系統(tǒng)影響可以忽略.短路故障發(fā)生后,繞組電流激增,其產(chǎn)生的交變磁場(chǎng)足以抵消永磁體的偏置磁場(chǎng),PMFCL某一組鐵芯的工作點(diǎn)將退出飽和區(qū)域,轉(zhuǎn)移至線性區(qū)域,使繞組對(duì)外等效為高阻抗,達(dá)到限流目的.如果短路電流進(jìn)一步增加至某一特定值時(shí),會(huì)使鐵芯進(jìn)入反向飽和區(qū)域,導(dǎo)致PMFCL失去限流能力[6-7].
2 PMFCL優(yōu)化配置數(shù)學(xué)模型
2.1 PMFCL優(yōu)化配置的評(píng)價(jià)函數(shù)
由式(1)易知,忽略接地阻抗時(shí),短路電流與節(jié)點(diǎn)自阻抗大小成反比.因此,可將節(jié)點(diǎn)自阻抗作為節(jié)點(diǎn)短路電流水平的衡量指標(biāo),即認(rèn)為故障發(fā)生時(shí),快速投入的PMFCL可等效為通過(guò)提高節(jié)點(diǎn)自阻抗以限流.考慮到對(duì)系統(tǒng)中的不同節(jié)點(diǎn),其自阻抗的增加程度不同,相應(yīng)短路電流的下降程度也不同,而PMFCL優(yōu)化配置是選擇最優(yōu)最少的支路作為PMFCL的安裝位置,即用最小容量的限流阻抗,使所有節(jié)點(diǎn)的短路電流均在安全裕量要求范圍以內(nèi).所以,短路電流超標(biāo)越嚴(yán)重的節(jié)點(diǎn),自阻抗增加的幅度應(yīng)越大.
考慮到斷路器的遮斷容量和可靠動(dòng)作所需的安全裕量,除了短路電流超過(guò)斷路器遮斷容量的節(jié)點(diǎn)外,接近遮斷容量而不滿足安全裕量的節(jié)點(diǎn)同樣視為短路電流超標(biāo)節(jié)點(diǎn).定義短路電流裕量如下:
PMFCL安裝位置對(duì)各節(jié)點(diǎn)的自阻抗值影響很大.在確定最優(yōu)安裝位置之前,可先依據(jù)靈敏度指標(biāo),從能使PMFCL可靠啟動(dòng)的眾多支路中,選擇出適量的較優(yōu)安裝支路,以減小后續(xù)優(yōu)化計(jì)算的搜索空間和計(jì)算時(shí)間.靈敏度越高的支路對(duì)節(jié)點(diǎn)自阻抗影響越大,也就越適宜作為PMFCL的安裝位置.但需要指出的是,靈敏度最大的支路不一定就是最優(yōu)安裝位置,因?yàn)閮?yōu)化配置的目標(biāo)是整體限流效果最優(yōu),而不是局部最優(yōu),安裝位置的確定需要綜合考慮所有超標(biāo)節(jié)點(diǎn)的限流效果.不過(guò),PMFCL的最優(yōu)安裝位置通常包含在由靈敏度所確定的候選支路中,這通過(guò)后續(xù)的算例可以證明.
2.3 PMFCL優(yōu)化配置算法流程
在優(yōu)化計(jì)算過(guò)程中,PMFCL的安裝數(shù)量是整型離散變量,其安裝地點(diǎn)可以用輸電線路的狀態(tài)來(lái)表示,采用二進(jìn)制來(lái)描述輸電線路安裝和不安裝PMFCL兩種狀態(tài),故同樣可視為整型離散變量,因此,PMFCL的優(yōu)化配置實(shí)際上可歸結(jié)為一大規(guī)模整型離散優(yōu)化的數(shù)學(xué)問(wèn)題.本文以直線式PMFCL為例進(jìn)行分析,PMFCL優(yōu)化配置算法流程如圖2所示.
3 算例仿真
3.1 方案設(shè)計(jì)
為了驗(yàn)證上述PMFCL優(yōu)化配置數(shù)學(xué)模型的有效性和可行性,本節(jié)使用IEEE 39節(jié)點(diǎn)標(biāo)準(zhǔn)算例進(jìn)行計(jì)算分析.系統(tǒng)網(wǎng)架結(jié)構(gòu)如圖3所示,其中負(fù)荷采用恒定阻抗模型.
設(shè)定斷路器的額定遮斷容量為30 kA,短路電流裕量小于15%,即短路電流大于25.5 kA的節(jié)點(diǎn)作為超標(biāo)節(jié)點(diǎn).將PMFCL的安裝數(shù)量、安裝位置和單臺(tái)的限流電抗值作為參變量,全局限流效果作為目標(biāo)函數(shù),所有節(jié)點(diǎn)的短路電流裕量大于15%作為評(píng)價(jià)函數(shù)f的約束條件,目的是要搜尋到最經(jīng)濟(jì)、最有效地滿足限流約束條件的最優(yōu)解.最后調(diào)用Matlab工具箱中的遺傳算法函數(shù)完成優(yōu)化計(jì)算.
參考使PMFCL可靠啟動(dòng)的支路電流為正常負(fù)荷電流的2~5倍這一條件,在本算例中設(shè)定PMFCL的啟動(dòng)電流為5 kA,即三相短路故障下電流大于5 kA的支路才有可能裝設(shè)PMFCL,從這些支路中依據(jù)靈敏度指標(biāo)選取較優(yōu)候選支路.
3.2 較優(yōu)候選支路的選取
依據(jù)本文總結(jié)的PMFCL優(yōu)化配置算法流程,首先通過(guò)計(jì)算挑選出系統(tǒng)中需限流的超標(biāo)節(jié)點(diǎn),如表1所示,各節(jié)點(diǎn)按超標(biāo)程度的遞減順序排列.其中,θ小于零表示該節(jié)點(diǎn)的短路電流已超過(guò)斷路器的額定遮斷容量,斷路器無(wú)法正常開(kāi)斷短路電流.
各短路電流超標(biāo)節(jié)點(diǎn)分別發(fā)生三相短路故障時(shí),滿足PMFCL啟動(dòng)條件的支路共有20條(重復(fù)支路算作1條).依據(jù)式(7)計(jì)算靈敏度值,針對(duì)各超標(biāo)節(jié)點(diǎn),從滿足PMFCL啟動(dòng)條件的支路中,選取靈敏度最大的前3條作為較優(yōu)候選支路,如表2所示,表中各支路按照靈敏度由大到小的順序排列,共有13條不同支路,與滿足啟動(dòng)條件的20條支路相比,優(yōu)化計(jì)算搜索空間進(jìn)一步縮小.
由表3和表4可知:1)不計(jì)及靈敏度和計(jì)及靈敏度2種情況下,得到的最優(yōu)配置方案均在5-6,16-19和16-21三條支路中各安裝1臺(tái)PMFCL,且PMFCL限流電抗值和限流效果非常接近,而后者的計(jì)算時(shí)間明顯減少.此外,最優(yōu)安裝支路均包含在靈敏度指標(biāo)得到的較優(yōu)候選支路中.因此,通過(guò)節(jié)點(diǎn)自阻抗對(duì)支路阻抗參數(shù)的靈敏度指標(biāo)來(lái)縮小尋優(yōu)空間、提高計(jì)算效率的方法是可行的.2)所得的最優(yōu)配置方案,不僅使所有超標(biāo)節(jié)點(diǎn)短路電流達(dá)到了限流要求,并留有一定裕量,而且對(duì)超標(biāo)越嚴(yán)重的節(jié)點(diǎn),其短路電流下降幅度越大,限流效果越好.結(jié)合表2數(shù)據(jù)可知,對(duì)超標(biāo)節(jié)點(diǎn)4,14,3和17而言,其靈敏度最大的支路均未被選為最優(yōu)裝設(shè)支路,說(shuō)明以該評(píng)價(jià)函數(shù)作為目標(biāo)函數(shù)的尋優(yōu)過(guò)程,考慮的是整體限流效果,而非局部,由此證明了評(píng)價(jià)函數(shù)的有效性.
進(jìn)一步考慮系統(tǒng)發(fā)生短路故障的情況,并觸發(fā)配置方案中的PMFCL動(dòng)作,對(duì)投入限流阻抗限流時(shí)的暫態(tài)穩(wěn)定性進(jìn)行了仿真分析,結(jié)果表明該配置方案不會(huì)破壞系統(tǒng)暫態(tài)穩(wěn)定性,從而驗(yàn)證了本文提出的PMFCL優(yōu)化配置算法的合理性及可行性.將該算法應(yīng)用于大電網(wǎng),不僅尋優(yōu)速度較快,且所得配置方案能夠兼顧經(jīng)濟(jì)性與全局限流效果.
4 結(jié) 論
本文以理論分析和建模仿真為技術(shù)手段,針對(duì)PMFCL全網(wǎng)配置優(yōu)化問(wèn)題,提出了一種適用于大電網(wǎng)的PMFCL優(yōu)化配置算法,該算法兼顧了PMFCL布點(diǎn)配置及容量選擇的技術(shù)經(jīng)濟(jì)性.將該算法應(yīng)用于IEEE 39節(jié)點(diǎn)標(biāo)準(zhǔn)算例中,同時(shí)對(duì)PMFCL裝設(shè)臺(tái)數(shù)、裝設(shè)位置及限流電抗3個(gè)參變量進(jìn)行優(yōu)化.結(jié)果表明,使用該算法從使PMFCL可靠啟動(dòng)的支路中挑選出較優(yōu)裝設(shè)支路,確實(shí)能減少計(jì)算時(shí)間,縮小尋優(yōu)空間;該算法以整體限流效果為目標(biāo)進(jìn)行尋優(yōu),所得PMFCL最優(yōu)配置方案能夠使所有節(jié)點(diǎn)的短路電流水平滿足限流要求,超標(biāo)越嚴(yán)重的節(jié)點(diǎn)限流效果更優(yōu),且保證了相同限流效果下投入最少的限流電抗;采用短路電流裕量作為挑選超標(biāo)節(jié)點(diǎn)的標(biāo)準(zhǔn),使該方案在滿足限流要求的情況下留有一定裕量,具有更高的可靠性.
參考文獻(xiàn)
[1] ZHANG X,MING L.Using the fault current limiter with spark gap to reduce short-circuit currents[J]. IEEE Trans on Power Delivery, 2008, 23(1): 506-507.
[2] 劉樹(shù)勇,孔昭興,張來(lái).天津電網(wǎng)220 kV短路電流限制措施[J].電力系統(tǒng)控制與保護(hù),2009,37(21):103-107.
LIU Shu-yong, KONG Zhao-xing, ZHANG Lai. Application of measures of limiting 220 kV short circuit currents in Tianjin power grid[J]. Power System Protection and Control, 2009, 37(21): 103-107.(In Chinese)
[3] STEMMLE M, MEUMANN C, MERSCHEL F. Analysis of unsymmetrical faults in high voltage power systems with superconducting fault current limiters[J]. IEEE Trans on Applied Superconductivity, 2007, 17(2): 2347-2350.
[4] 韓戈,韓柳,吳琳.各種限制電網(wǎng)短路電流措施的應(yīng)用與發(fā)展[J].電力系統(tǒng)保護(hù)與控制,2010,38(l):141-144.
HAN Ge,HAN Liu,WU lin.Application and development of methods on limiting power grids short-circuit current[J]. Power System Protection and Control, 2010, 38(l): 141-144. (In Chinese)
[5] 劉凱,陳紅坤,林軍,等.故障限流器在電力系統(tǒng)中應(yīng)用研究現(xiàn)狀[J].電力系統(tǒng)保護(hù)與控制,2010,38(7):147-151.
LIU Kai, CHEN Hong-kun, LIN Jun, et al. Study situation of applications of fault current limiter in power system[J]. Power System Protection and Control,2010, 38(7): 147-151. (In Chinese)
[6] 鄒亮,李慶民,劉洪順,等.永磁飽和型故障限流器的高壓大容量化分析[J].高電壓技術(shù),2009,35(10):2568-2574.
ZOU Liang, LI Qing-min, LIU Hong-shun, et al. Feasibility analysis on developing high voltage and large capacity permanent-magnet-biased fault current limiter[J]. High Voltage Engineering, 2009, 35(10): 2568-2574. (In Chinese)
[7] ZOU Liang, LIU Hong-shun, LI Qing-min, et al. Analysis and simulation of the PMFCL based on coupled field-circuit modeling methodology[C]//Proceedings of the International Conference on High Voltage Engineering and Application.Chongqing:IEEE, 2008: 498-502.
[8] SANTA T, CHKRABORTY A K, ROY D, et al. Analysis of passive magnetic fault current limiter using wavelet transform[C]//International Conference on Power Systems (ICPS 09).Kharagpur, India: IEEE, 2009:1-6.
[9] KNOTT J C, MOSCROP J W. Increasing energy efficiency of saturated-core fault current limiters with permanent magnets[J]. IEEE Transactions on Magnetics,2013,49(7): 4132-4136.
[10]NAGATA M, TANAKA K, TANIGUCHI H. FCL location selection in large scale power system[J].IEEE Trans on Applied Superconductivity, 2001,11(1): 2489-2494.
[11]HONGESOMBUT K, MITANI Y, TSUJI K. Optimal location assignment and design of superconducting fault current limiters applied to loop power systems[J].IEEE Trans on Applied Superconductivity,2003,13(2): 1828-1831.
[12]TENG J H, LU C N. Optimum fault current limiter placement with search space reduction technique[J]. IET Generation Transmission & Distribution,2010,4(4): 485-494.
[13]胡文旺,衛(wèi)志農(nóng),孫國(guó)強(qiáng),等.基于靈敏度法的超導(dǎo)故障限流器的優(yōu)化配置[J].電力系統(tǒng)自動(dòng)化,2012,36(22):62-67.
HU Wen-wang, WEI Zhi-nong, SUN Guo-qiang, et al. Optimal allocation of superconducting fault current limiters based on sensitivity method[J].Automation of Electric Power Systems,2012, 36(22): 62-67. (In Chinese)
[14]陳博超,魏亮亮,雷洋,等.基于免疫算法的高溫超導(dǎo)故障限流器Pareto多目標(biāo)優(yōu)化配置[J].電網(wǎng)技術(shù),2015,39(5):1343-1350.
CHEN Bo-chao, WEI Liang-liang, LEI Yang, et al. Immune algorithm based pareto multi-objective optimal allocation of high temperature superconductor-fault current limiters[J]. Power System Technology, 2015, 39(5) :1343-1350. (In Chinese)
[15]楊冬,周勤勇,劉玉田.基于靈敏度分析的限流方案優(yōu)化決策方法[J].電力自動(dòng)化設(shè)備,2015,35(5): 111-117.
YANG Dong, ZHOU Qin-yong, LIU Yu-tian. Short circuit current limiting strategy optimization based on sensitivity analysis[J]. Electric Power Automation Equipment, 2015, 35(5): 111-117. (In Chinese)
[16]許逵,孫婷,韓松,等.考慮運(yùn)行損耗的故障限流器布點(diǎn)優(yōu)化和容量選擇[J].電力系統(tǒng)保護(hù)與控制,2015,43(5):21-26.
XU Kui, SUN Ting, HAN Song, et al. Optimal sitting and parameter selection for fault current limiter constrained with power losses[J]. Power System Protection and Control, 2015, 43(5) :21-26. (In Chinese)
[17]鄒亮,李慶民,劉洪順.大容量永磁飽和型故障限流器參數(shù)設(shè)計(jì)與優(yōu)化[J].中國(guó)電機(jī)工程學(xué)報(bào),2011,31(9):105-112.
ZOU Liang, LI Qing-min, LIU Hong-shun. Parameter design and optimization methodology for large capacity applications of permanent-magnet-biased saturation based fault current limiter[J]. Proceedings of the CSEE,2011,31(9): 105-112. (In Chinese)
[18]應(yīng)林志,王建全,陳迅,等.廣東電網(wǎng)超高壓短路限流器優(yōu)化配置方案[J].電力系統(tǒng)自動(dòng)化,2012,36(4): 96-100.
YING Lin-zhi,WANG Jian-quan,CHEN Xun,et al.An optimal configuration scheme for ultra-high voltage short-circuit current limiter in Guangdong power gird[J].Automation of Electric Power Systems, 2012, 36(4): 96-100. (In Chinese)
[19]陳珩.電力系統(tǒng)穩(wěn)態(tài)分析[M].3版.北京:中國(guó)電力出版社,2007:111-123.
CHEN Yan. Steady state analysis of power system[M]. 3rd ed.Beijing: China Electric Power Press, 2007:111-123. (In Chinese)