国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類分數(shù)階復雜網(wǎng)絡混沌系統(tǒng)的投影同步*

2016-09-21 03:05:00毛北行李慶賓
動力學與控制學報 2016年4期
關鍵詞:網(wǎng)絡系統(tǒng)時滯投影

毛北行 李慶賓

(鄭州航空工業(yè)管理學院理學院, 鄭州 450015)

?

一類分數(shù)階復雜網(wǎng)絡混沌系統(tǒng)的投影同步*

毛北行?李慶賓

(鄭州航空工業(yè)管理學院理學院, 鄭州450015)

根據(jù)分數(shù)階系統(tǒng)的相關理論研究了一類分數(shù)階復雜網(wǎng)絡混沌系統(tǒng)的投影同步問題,給出了分數(shù)階復雜網(wǎng)絡以及分數(shù)階時滯復雜網(wǎng)絡系統(tǒng)實現(xiàn)投影同步的充分性條件,仿真結(jié)果表明了方法的正確性.

投影同步,分數(shù)階系統(tǒng),復雜網(wǎng)絡

引言

定義1[14]:Caputo分數(shù)階導數(shù)定義為:

n-1<α

1 分數(shù)階復雜網(wǎng)絡系統(tǒng)的投影同步

考慮如下一類分數(shù)階復雜網(wǎng)絡系統(tǒng):

ui(t)(i=1,2,…,N),

(1)

A為適當維數(shù)的常數(shù)矩陣,ui為控制輸入,Γ是網(wǎng)絡的內(nèi)部耦合矩陣,C=(cij)N×N是外部耦合矩陣,滿足cij=0,(i≠j),cij≥0(i≠j),對角線元素定義為:

(2)

假設1:復雜網(wǎng)絡的孤立節(jié)點的解滿足:

Dtqs(t)=As(t)+f(s(t))

(3)

s(t)可以是一個穩(wěn)定點,或者周期解,也可以是混沌軌跡.

定義1: 對給定的分數(shù)階系統(tǒng)(1),若存在一個非零矩陣Λ,使得

假設2:非線性函數(shù)滿足條件:

‖f(xi(t))-Λf(s(t))‖≤li‖xi(t)-Λs(t)‖,其中l(wèi)i為大于零的常數(shù).

定義系統(tǒng)誤差為:

ei(t)=xi(t)-Λs(t), (i=1,2,…,N),

則有:

Dtqei(t)=Aei(t)+f(xi(t))-Λf(s(t))+

引理1[15]:對于一般的分數(shù)階自治非線性微分方程Dtαx(t)=f(x(t)),當系統(tǒng)的階數(shù)0<α≤1時,如果存在實對稱正定矩陣P,使得J(x(t))=xT(t)PDtαx(t)<0,則上述分數(shù)階系統(tǒng)漸近穩(wěn)定.

定理1:設計控制器ui(t)=-kiei(t),若滿足條件(A+(li-ki)IN)+C?Γ<0則分數(shù)階復雜網(wǎng)絡系統(tǒng)(1)可以實現(xiàn)投影同步.

證明:由

Dtqei(t)=Aei(t)+f(xi(t))-Λf(s(t))+

C?Γ]ei(t)<0,

根據(jù)引理1,很容易得到定理1.

2 分數(shù)階時滯復雜網(wǎng)絡系統(tǒng)的投影同步

考慮如下一類分數(shù)階時滯復雜網(wǎng)絡系統(tǒng):

Dtqxi(t)=Axi(t)+f(xi(t-τ))+

(i=1,2,…,N),

(5)

A為適當維數(shù)的常數(shù)矩陣,ui為控制輸入,τ為時滯常數(shù),Γ是網(wǎng)絡的內(nèi)部耦合矩陣,C=(cij)N×N是外部耦合矩陣,滿足cij≥0(i≠j),同時對角線元素定義為:

(6)

假設3:復雜網(wǎng)絡的孤立節(jié)點的解滿足:

Dtqs(t)=As(t)+f(s(t-τ))

(7)

s(t)可以是一個穩(wěn)定點,或者周期解,也可以是混沌軌跡.

假設4:非線性函數(shù)滿足條件:

‖f(xi(t-τ))-Λf(s(t-τ))‖≤

li‖xi(t-τ)-Λs(t-τ)‖

定義系統(tǒng)誤差為:

ei(t)=xi(t)-Λs(t),(i=1,2,…,N),

則有:

Dtqei(t)=Aei(t)+f(xi(t-τ))-Λf(s(t-τ))+

(8)

引理2[16]:分數(shù)階時滯系統(tǒng)

Dtαx(t)=f(x(t),x(t-τ)),如果有正定的矩陣P和半正定矩陣Q滿足

xT(t)PDtαx(t)+xTQx(t)-

xT(t-τ)Qx(t-τ)≤0,

則上述分數(shù)階時滯系統(tǒng)是Lyapunov穩(wěn)定的.

定理2:設計控制器ui(t)=-kiei(t),若滿足如下矩陣不等式(9),則分數(shù)階復雜網(wǎng)絡系統(tǒng)(5)可以實現(xiàn)投影同步.

(9)

證明:根據(jù)引理2:

其中

e(t-τ)=[‖e1(t-τ)‖,‖e2(t-τ)‖,…,

‖eN(t-τ)‖]T.

3 數(shù)值仿真

選取分數(shù)階Lorenz系統(tǒng)為例,系統(tǒng)描述為

Dtqx1=a(x2-x1)

Dtqx2=bx1-x1x3-x2

Dtqx3=x1x2-cx3,

Dtqs1=a(s2-s1)

Dtqs2=bs1-s1s3-s2

Dtqs3=s1s2-cs3

其中x1,x2,x3為狀態(tài)變量,a,b,c為系統(tǒng)參數(shù),當q=0.93,a=10,b=28,c=8/3時系統(tǒng)處于混沌狀態(tài).為了方便,取含三個節(jié)點的網(wǎng)絡進行仿真.

圖1 定理1中的系統(tǒng)誤差曲線Fig. 1 The system errors for Theorem 1

圖2 定理2中的系統(tǒng)誤差曲線Fig. 2 The system errors for Theorem 2

定理1中選取控制器ui(t)=-kiei(t),Λ=diag(-1,1,1),Γ=I3,li=1.2ki=1,從系統(tǒng)的誤差曲線如圖1所示, 定理2中選取控制器ui(t)=-kiei(t), Λ=diag(-1,1,1),Γ=I3,τ=0.5,li=1.5,ki=1.5,系統(tǒng)的誤差曲線如圖2所示.

4 結(jié)論

研究了一類分數(shù)階復雜網(wǎng)絡混沌系統(tǒng)及其時滯系統(tǒng)的投影同步問題,基于Lyapunov穩(wěn)定性理論和分數(shù)階微積分的相關理論,給出了分數(shù)階復雜網(wǎng)絡以及分數(shù)階時滯復雜網(wǎng)絡實現(xiàn)投影同步的充分性條件,將系統(tǒng)實現(xiàn)投影同步的充分性條件轉(zhuǎn)化為矩陣不等式,從而更容易MATLAB求解,仿真結(jié)果表明了方法的正確性.

1徐爭輝,劉友金,譚文等.一個對稱分數(shù)階經(jīng)濟系統(tǒng)混沌特性分析.系統(tǒng)工程理論與實踐,2014,34(5):1237~1242 (Xu Z H, Liu Y J,Tan W,et al. Chaotic dynamics in a commensurate fractional-order nonlinear economic system.SystemsEngineeringandThroryPractice,2014,34(5):1237~1242 (in Chinese))

2郝建紅,賓虹,姜蘇娜等.分數(shù)階線性系統(tǒng)穩(wěn)定理論在混沌同步中的簡單應用.河北師范大學學報自然版,2014,38(5):469~475 (Hao J H,Bin H,Jiang S N,et al. Stability theorem for fractional linear systems and its application in chaos synchronization.JournalofHebeiNormalUniversity(NaturalScuenceEdition),2014,38(5):469~475 (in Chinese))

3鐘啟龍,邵永輝,鄭永愛.基于TS模型的分數(shù)階混沌系統(tǒng)同步.揚州大學學報(自然版),2012,17(2):46~49 ( Zhong Q L,Shao Y H,Zheng Y A. Synchronization of the fractional order chaotic systems based on TS models.JournalofYangzhouUniversity(NaturalScienceEdition),2012,17(2):46~49 (in Chinese))

4張云雷,吳超然.基于反饋控制的分數(shù)階時滯神經(jīng)網(wǎng)絡的同步.重慶工商大學學報(自然版),2014,31(12):49~53(Zhang Y L ,Wu C R. Synchronization of fractional -order neural network with delay based on feedback control.JournalofChongqingTechnolBusinessUniversity(NaturalScienceEdition), 2014,31(12):49~53 (in Chinese))

5韓敏,張雅美,張檬.具有雙重時滯的時變耦合復雜網(wǎng)絡的牽制外同步.物理學報,2015,64(7):5061~5069 (Han M,Zhang Y M,Zhang M. Outer syncronization analysis of two time-varying networks with double delays based on pinning control.ActaPhysicaSinica, 2015,64(7):5061~5069 (in Chinese))

6Lü L, Li G,Guo Y. Generalized chaos synchronization of a weighted complex network with different nodes.ChinesePhysicsB,2010,19(8):5071~5077

7Mei J, Jiang M H, Wang J. Finite-time structure identification and synchronization of drive-response systems with uncertain parameter.CommunicationsinNonlinearScienceandNumericalSimulation,2013,(18):999~1015

8余明哲,張友安.一類不確定分數(shù)階混沌系統(tǒng)的滑模自適應同步.北京航空航天大學學報,2014,40(9):1276~1280 (Yu M Z, Zhang Y A. Sliding mode adaptive synchronization for a class of fractional-order chaotic systems with uncertainties.JournalofBeijingUniversityofAeronauticsandAstronautics, 2014,40(9):1276~1280 (in Chinese))

9嚴勝利,張昭晗.一類不確定分數(shù)階混沌系統(tǒng)的同步控制.系統(tǒng)仿真技術(shù),2013,9(4):366~370 (Yan S L,Zhang Z H. Synchronization control of a class of uncertain fractional order chaotic systems.SystemSimulationTechnology, 2013,9(4):366~370 (in Chinese))

10潘廣,魏靜.一種分數(shù)階混沌系統(tǒng)同步的只適應滑模控制器設計.物理學報,2015,64(4):5051~5057 (Pan G,Wei J. Design of an adaptive sliding mode controller for synchronization of fractional-order chaotic systems.ActaPhysicaSinica,2015,64(4):5051~5057 (in Chinese))

11張燕蘭.分數(shù)階Rayleigh-Duffing-like系統(tǒng)的自適應追蹤廣義投影同步.動力學與控制學報,2014,12(4):348~352 (Zhang Y L. Adaptive tracking generalized projective synchronization of fractional Rayleigh-Duffing-like system.JournalofDynamicsandControl,2014,12(4):348~352 (in Chinese))

12董俊,張廣軍,姚宏,王玨,許根.分數(shù)階異結(jié)構(gòu)超混沌系統(tǒng)完全同步與反相同步控制.動力學與控制報,2014,12(2):119~126 (D J, Z G J, Yao H, Wang J, Xu G. The control of complete synchronization and anti-phase synchronization for fractional-order hyper-chaotic systems of different structures.JournalofDynamicsandControl,2014,12(2):119~126 (in Chinese))

13楊麗新,江俊.分數(shù)階復雜網(wǎng)絡系統(tǒng)的混合投影同步研究.動力學與控制學報,2015,13(1):52~55 (Yang L X,Jiang J. Hybrid projective synchronization of fractional-order complex dynamical networks.JournalofDynamicsandControl,2015,13(1):52~55 (in Chinese))

14Podlubny. Fractional differential equation. Academic Press:San Diego,CA ,USA,1999

15胡建兵,趙靈冬.分數(shù)階系統(tǒng)穩(wěn)定性理論與控制研究.物理學報,2013,62(24):5041~5047 (Hu J B, Zhao L D. Stability theorem and control of fractional systems.ActaPhysicaSinica,2013,62(24):5041~5047 (in Chinese))

16趙靈冬.分數(shù)階非線性時滯系統(tǒng)的穩(wěn)定性理論及控制研究[博士學位論文].上海:東華大學,2014 (Zhao L D. The stability theory of fracional nonlinear tiem-delay systems and its control[PhD Thesis]. Shanghai:Donghua University,2014 (in Chinese))

*The project supported by the National Natural Science Foundation of Tianyuan (11226337)

? Corresponding author E-mail: bxmao329@163.com

18 May 2015,revised 18 September 2015.

PROJECTIVE SYNCHRONIZATION OF A CLASS OF FRACTIONAL-ORDER COMPLEX NETWORK CHAOS SYSTEMS*

Mao Beixing?Li Qingbin

(DepartmentofMathematicsandPhysics,ZhengzhouInstituteofAeronauticalIndustryManagement,Zhengzhou450015,China)

The paper studied the projective synchronization problem of a class of fractional-order complex network chaos systems based on fractional order systems theory. The sufficient conditions for fractional-order complex network and its time-delayed systems to realize the projective synchronization was proposed. Numerical simulations of chaotic system verified the validity of the proposed method.

projective synchronization,fractional order systems,complex networks

E-mail: bxmao329@163.com

10.6052/1672-6553-2015-72

2015-05-18收到第1稿,2015-09-18收到修改稿.

*國家自然科學基金數(shù)學天元基金資助項目(11226337)

猜你喜歡
網(wǎng)絡系統(tǒng)時滯投影
解變分不等式的一種二次投影算法
帶有時滯項的復Ginzburg-Landau方程的拉回吸引子
基于最大相關熵的簇稀疏仿射投影算法
找投影
找投影
學生天地(2019年15期)2019-05-05 06:28:28
基于DEMATEL-ISM的軍事通信網(wǎng)絡系統(tǒng)結(jié)構(gòu)分析
高速公路網(wǎng)絡系統(tǒng)配置淺析
時滯復雜網(wǎng)絡系統(tǒng)的保性能控制
計算機工程(2015年4期)2015-07-05 08:27:41
一階非線性時滯微分方程正周期解的存在性
一類時滯Duffing微分方程同宿解的存在性
惠安县| 河津市| 上栗县| 博爱县| 承德县| 曲麻莱县| 科技| 清镇市| 景德镇市| 和政县| 万载县| 沁阳市| 甘洛县| 呼和浩特市| 景谷| 香港 | 土默特左旗| 仙居县| 涡阳县| 辉县市| 鹤峰县| 封开县| 许昌市| 南通市| 邵武市| 溆浦县| 舒城县| 白城市| 师宗县| 桓台县| 通辽市| 若尔盖县| 托克托县| 萨迦县| 长乐市| 镇宁| 蒙城县| 会昌县| 肇州县| 新巴尔虎右旗| 五华县|