高夢丹,林敬銓,童 亮,張金一,韓 娜,劉學(xué)紅(紹興文理學(xué)院醫(yī)學(xué)院,浙江紹興 312000)
姜黃素抑制NF-κB信號通路對脊髓損傷修復(fù)作用的研究進(jìn)展
高夢丹,林敬銓,童 亮,張金一,韓 娜,劉學(xué)紅
(紹興文理學(xué)院醫(yī)學(xué)院,浙江紹興 312000)
炎癥反應(yīng)是脊髓損傷(SCI)發(fā)病機(jī)制中最重要的環(huán)節(jié),是形成脊髓繼發(fā)性損傷的基礎(chǔ)。SCI后,NF-κB信號通路過度活化,大量具有生物學(xué)活性的NF-κB迅速入核,調(diào)控靶基因引起嚴(yán)重的炎癥反應(yīng),進(jìn)一步加重組織損傷。抑制NF-κB信號通路、有效控制炎癥反應(yīng)是促進(jìn)SCI修復(fù)的有效途徑。目前發(fā)現(xiàn),姜黃素能夠多靶點(diǎn)地抑制NF-κB信號通路,阻斷NF-κB過度活化和減少炎癥因子的表達(dá),在SCI修復(fù)中具有重要作用。本文就NF-κB信號通路、NF-κB信號通路在SCI中的作用機(jī)制以及姜黃素抑制NF-κB信號通路在SCI中的作用等進(jìn)行綜述。
姜黃素;NF-κB信號通路;脊髓損傷
脊髓損傷(spinal cord injury,SCI)是一種嚴(yán)重的外傷性神經(jīng)系統(tǒng)創(chuàng)傷,具有高發(fā)病率、高致殘率、青壯年患者居多的特點(diǎn)。流行病學(xué)調(diào)查數(shù)據(jù)顯示,2011年全球SCI患病率達(dá)236~1009人/100萬人,美國患病率達(dá)906人/100萬人,我國發(fā)病率呈逐年上升趨勢[1-3]。SCI分為原發(fā)性損傷和繼發(fā)性損傷。原發(fā)性損傷直接造成損傷區(qū)域的組織細(xì)胞壞死,其損傷部位、性質(zhì)是決定損傷程度和臨床表現(xiàn)的主要因素。而繼發(fā)性損傷是在原發(fā)損傷后數(shù)分鐘到數(shù)小時內(nèi),出現(xiàn)一系列病理生理改變?nèi)缛毖脱?、炎癥反應(yīng)、細(xì)胞凋亡、組織水腫、膠質(zhì)瘢痕形成、血脊髓屏障破壞和自由基產(chǎn)生等而造成的進(jìn)一步損害,可持續(xù)數(shù)小時到數(shù)周[4]。因原發(fā)機(jī)械性損傷難以逆轉(zhuǎn),而繼發(fā)性損傷是可阻止甚至是可逆的,故臨床干預(yù)主要針對繼發(fā)性損傷。在眾多繼發(fā)性損害因素中,炎癥反應(yīng)是SCI發(fā)病機(jī)制中的最重要環(huán)節(jié),是形成其余多種繼發(fā)損傷的基礎(chǔ)。NF-κB信號轉(zhuǎn)導(dǎo)系統(tǒng)在損傷后因受到刺激被激活,多種細(xì)胞內(nèi)的NF-κB水平上調(diào),促炎因子表達(dá)增加,引起嚴(yán)重的繼發(fā)性炎癥反應(yīng),進(jìn)一步損傷脊髓組織[5]。探討NF-κB信號轉(zhuǎn)導(dǎo)系統(tǒng)及其信號轉(zhuǎn)導(dǎo)過程和生物學(xué)作用,合理調(diào)控NF-κB信號通路,有效控制損傷區(qū)域組織的炎癥反應(yīng),對于SCI修復(fù)具有重要意義。
NF-κB是一種能與免疫球蛋白κ輕鏈啟動子κB位點(diǎn)結(jié)合的核因子,幾乎存在于所有類型細(xì)胞的胞漿中[6]。NF-κB有多種活化信號,可調(diào)控多種基因的表達(dá),在組織細(xì)胞的炎癥反應(yīng)、腫瘤發(fā)生、增殖及凋亡等方面均起著重要作用。
1.1NF-κ B信號轉(zhuǎn)導(dǎo)系統(tǒng)的組成
NF-κB信號轉(zhuǎn)導(dǎo)系統(tǒng)主要由NF-κB家族、NF-κB抑制蛋白(inhibitor of NF-κB,IκB)家族和IκB激酶(IκB kinase,IKK)組成。NF-κB家族包括NF-κBl(即p50,由前體蛋白p105產(chǎn)生)、NF-κB2(即p52,由前體蛋白p100產(chǎn)生)、p65(RelA)、c-Rel和RelB 5個成員,亦稱NF-κB/Rel家族。RelA,c-Rel和RelB能經(jīng)核轉(zhuǎn)位啟動靶基因的轉(zhuǎn)錄。NF-κB家族成員多以同源或異源二聚體的形式存在于細(xì)胞內(nèi),其中p50/p65是最為廣泛的二聚體存在形式。在無刺激條件下,NF-κB與其抑制蛋白IκB中的一個結(jié)合,并以無活性的三聚體形式存于胞漿[6-7]。目前發(fā)現(xiàn)IκB家族有9個成員,包括胞漿抑制蛋白IκBα、IκBβ和IκBε。Trocoli等[11]將類IκB抑制劑p105與p100也歸入該家族,最近一些存在于細(xì)胞核的非典型IκB(Bcl-3、IκBζ、IκBNS和IκBη)也被確定[8]。當(dāng)受到刺激時,三聚體中的IκB可被IKK磷酸化,IKK復(fù)合物包含α、β催化亞基和γ調(diào)節(jié)亞基[9]。
1.2NF-κ B信號轉(zhuǎn)導(dǎo)過程
應(yīng)激、炎癥因子、自由基、致癌物、病毒、細(xì)菌蛋白、內(nèi)毒素或絲裂原等均可成為NF-κB活化信號。當(dāng)接收到這些胞外信號時,NF-κB可通過異源二聚體p50/p65參與的經(jīng)典途徑和p52、RelB參與的非經(jīng)典途徑被激活。非經(jīng)典途徑,即p100加工成p52的過程,主要參與免疫反應(yīng)。經(jīng)典途徑主要參與急慢性炎癥反應(yīng),是存在最為廣泛且目前得到一致認(rèn)可的一條活化途徑。經(jīng)典途徑的活化始于促炎受體接收刺激,如腫瘤壞死因子受體(tumor necrosis factor receptors,TNFR)、Toll樣受體(Toll-like re?ceptors,TLR)和抗原受體,由此激活I(lǐng)KK,IκBα經(jīng)IKKβ磷酸化、泛素化,隨后又被蛋白酶體降解,使得原本受IκBα抑制的p50/p65得到釋放并從細(xì)胞質(zhì)轉(zhuǎn)位到細(xì)胞核。p50/p65與靶基因啟動子上的κB位點(diǎn)結(jié)合,招募染色質(zhì)修飾酶和轉(zhuǎn)錄輔因子,從而調(diào)控靶基因的表達(dá)[10-11]。
1.3NF-κ B信號通路的生物學(xué)作用
NF-κB調(diào)控近400種不同基因的表達(dá),包括誘導(dǎo)型一氧化氮合酶(inducible nitric oxide syn?thase,iNOS)、環(huán)氧合酶-2(cyclooxygenase-2,COX-2)等炎癥酶,TNF和白細(xì)胞介素(interleukin,IL)等細(xì)胞因子,以及黏附分子和細(xì)胞周期調(diào)控分子等,參與炎癥反應(yīng)、細(xì)胞凋亡、細(xì)胞增殖和細(xì)胞癌變等多種生物過程[7]。NF-κB的生物學(xué)活性與組織的炎癥反應(yīng)程度相關(guān),降低NF-κB高表達(dá)活性可降低炎癥反應(yīng)。研究顯示,喹吡羅(guinpirole)和羅匹尼羅(ropinirole)可通過增強(qiáng)α晶狀體球蛋白B與NF-κB的胞質(zhì)結(jié)合活性,減少NF-κB表達(dá),明顯降低腦出血后的炎癥損傷[12]。核受體77的過度表達(dá)能降低NF-κB活性,減少炎癥因子和黏蛋白5ac的表達(dá),從而抑制過敏性哮喘的慢性氣道炎癥和黏液生成[13]。
SCI后NF-κB水平明顯升高,且iNOS、胱天蛋白酶3、TNF-α、IL-1β、IL-6以及膠質(zhì)原纖維酸性蛋白(glial fibrillary acidic protein,GFAP)陽性細(xì)胞表達(dá)增加[14]。SCI后,在膠質(zhì)細(xì)胞、神經(jīng)元等細(xì)胞中,NF-κB信號通路過度活化,主要介導(dǎo)損傷后高度炎癥效應(yīng),另外還可促使細(xì)胞凋亡、瘢痕形成和細(xì)胞毒反應(yīng)等。
2.1NF-κ B信號通路活化促進(jìn)SCI后炎癥反應(yīng)
適度的炎癥可抵御病原、促進(jìn)損傷組織的修復(fù),然而過度的炎癥反應(yīng)則會阻礙神經(jīng)細(xì)胞的修復(fù)和再生,進(jìn)一步導(dǎo)致組織損傷、細(xì)胞死亡、軸突脫髓鞘等。由于SCI后血脊髓屏障破壞,外周血白細(xì)胞進(jìn)入中樞神經(jīng)系統(tǒng),與原本定居脊髓組織并在損傷后活化的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞共同調(diào)控繼發(fā)的炎癥反應(yīng)。這些細(xì)胞產(chǎn)生的炎癥相關(guān)因子主要包括TNF-α,IL-1β,IL-6,IL-8以及這些分子的調(diào)控者NF-κB[15-16]。NF-κB幾乎存在于脊髓組織所有的細(xì)胞中,最主要的功能是調(diào)控炎癥相關(guān)基因的轉(zhuǎn)錄,通過NF-κB信號通路的活化引起SCI后炎癥反應(yīng)以及繼發(fā)性神經(jīng)損害。研究發(fā)現(xiàn),抑制星形膠質(zhì)細(xì)胞中的NF-κB活性可減少炎癥因子的表達(dá),促進(jìn)損傷后脊髓功能恢復(fù)[17]。Yang等[18]發(fā)現(xiàn),SCI后NF-κB異常高表達(dá),高壓氧治療通過下調(diào)高遷移率族蛋白B1/NF-κB表達(dá),減輕SCI后炎癥。
SCI后出血、缺血低氧等應(yīng)激和促炎因子激活I(lǐng)KK,導(dǎo)致IκB磷酸化,從而激活NF-κB信號通路。p65轉(zhuǎn)位至細(xì)胞核后,通過上調(diào)編碼炎癥相關(guān)因子基因的表達(dá),誘導(dǎo)基因轉(zhuǎn)錄,增加TNF-α和IL-1β等的合成和釋放。這些炎癥介質(zhì)又反過來激活NF-κB信號通路,使得IL-6和IL-8等表達(dá)增多。由此形成的細(xì)胞外正反饋調(diào)節(jié),可放大炎癥效應(yīng),加重SCI后神經(jīng)損傷[19]。此外,Han等[20]報道,用IKK抑制劑抑制NF-κB信號通路,可降低細(xì)胞間黏附分子-1 (intercellular cell adhesion molecule-1,ICAM-1)的表達(dá),減少損傷后炎癥細(xì)胞滲入。NF-κB信號通路活化后調(diào)控ICAM-1基因的表達(dá),誘導(dǎo)產(chǎn)生的ICAM-1又轉(zhuǎn)而促進(jìn)SCI后炎癥細(xì)胞的募集和炎癥反應(yīng)的發(fā)生。在正常情況下,由于負(fù)反饋調(diào)節(jié)機(jī)制的存在,NF-κB的活性是暫時的。在細(xì)胞內(nèi),NF-κB活化后,其抑制蛋白IκBα、A20基因表達(dá)亦上調(diào),從而限制了NF-κB的活性。IκBα可直接與胞漿中的NF-κB結(jié)合而抑制其轉(zhuǎn)錄活性,也可結(jié)合細(xì)胞核中的NF-κB并使其轉(zhuǎn)回至胞漿。A20則通過抑制IKK復(fù)合物的催化活性發(fā)揮負(fù)反饋作用。NF-κB活化的同時,無轉(zhuǎn)錄活性的p50同源二聚體生成增多,可與p50/p65競爭DNA上的κB位點(diǎn)[21-22]。SCI后由于各種原因?qū)е律鲜鲐?fù)反饋調(diào)節(jié)機(jī)制被破壞,使得NF-κB呈持續(xù)激活狀態(tài)而引起高度的炎癥反應(yīng)(圖1)。
2.2NF-κ B信號通路在SCI后其他繼發(fā)損傷中的作用
NF-κB信號通路激活產(chǎn)生的細(xì)胞因子不僅介導(dǎo)損傷處炎癥細(xì)胞浸潤,加重炎癥反應(yīng),而且能促使細(xì)胞凋亡、膠質(zhì)瘢痕形成等繼發(fā)性損害。SCI后,TNF-α通過B淋巴細(xì)胞瘤-2家族中Bax基因調(diào)節(jié)的線粒體介導(dǎo)的信號通路,誘導(dǎo)神經(jīng)前體細(xì)胞發(fā)生凋亡[23]。IL-1β主要由小膠質(zhì)細(xì)胞表達(dá),可誘導(dǎo)SCI后多種神經(jīng)細(xì)胞發(fā)生凋亡。Li等[24]用米諾環(huán)素等藥物抑制TLR4-小膠質(zhì)細(xì)胞-NF-κB/IL-1β正反饋通路,發(fā)現(xiàn)脊髓缺血再灌注損傷后,神經(jīng)炎癥和細(xì)胞凋亡均明顯減輕。炎癥因子刺激星形膠質(zhì)細(xì)胞增生,促進(jìn)瘢痕形成和嚴(yán)重阻礙軸突再生。實驗檢測發(fā)現(xiàn),SCI后組織內(nèi)TNF-α,IL-1β和NF-κB等水平增高,細(xì)胞內(nèi)GFAP產(chǎn)生增多,膠質(zhì)瘢痕增生明顯[25]。NF-κB誘導(dǎo)iNOS高表達(dá),產(chǎn)生大量的NO破壞血管內(nèi)皮細(xì)胞導(dǎo)致血管滲漏,NO與超氧陰離子反應(yīng)生成過氧亞硝酸鹽陰離子,后者的強(qiáng)氧化性可導(dǎo)致細(xì)胞毒反應(yīng)。Jiang等[26]報道白楊素(chrysin)抑制SCI后炎癥反應(yīng)和iNOS通路,促進(jìn)神經(jīng)功能恢復(fù)。
姜黃素(curcumin)作為一種具有抗炎活性的天然植物多酚,能多靶點(diǎn)、多途徑地抑制NF-κB信號通路,阻斷NF-κB介導(dǎo)的炎癥效應(yīng)。Lim等[27]發(fā)現(xiàn),在細(xì)菌感染后,應(yīng)用姜黃素可明顯降低NF-κBp65亞基的DNA結(jié)合活性,減少組織的炎癥反應(yīng)。而在SCI后,應(yīng)用姜黃素治療可明顯抑制繼發(fā)的炎癥損傷,有效促進(jìn)損傷后脊髓功能的恢復(fù)(圖1)。
3.1黃素藥學(xué)特征
姜黃素是一種從印度香料植物姜黃的干燥根莖中分離出來的橙黃色天然植物多酚。姜黃素,1,7-雙(4-羥基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮[28],是姜黃的主要活性成分,可穿透血腦屏障。姜黃素具有多種生物學(xué)和藥理學(xué)特性,如抗炎、抗氧化、抗感染、抗腫瘤以及對心、神經(jīng)、肝、腎等保護(hù)作用,且無劑量限制毒性[29-30]。
3.2姜黃素抑制NF-κ B信號通路的作用機(jī)制
目前,對姜黃素抑制NF-κB信號通路作用機(jī)制的研究在SCI方面較缺乏,由其在大腦炎癥等方面的研究推測出姜黃素可抑制由TNFR,TLR和NF-κB誘導(dǎo)性激酶、絲氨酸/蘇氨酸激酶(serine/threonine kinase,Akt)等誘導(dǎo)的NF-κB活性。其中,TLR4是姜黃素抑制NF-κB信號通路的一個重要靶點(diǎn)。Tu等[31]報道,局灶性腦缺血后應(yīng)用姜黃素,TLR2,TLR4,NF-κB以及TNF-α,IL-1β等炎癥因子的表達(dá)均降低,認(rèn)為姜黃素很有可能通過抑制TLR2/4-NF-κB信號通路發(fā)揮抗炎與神經(jīng)保護(hù)的作用。髓系分化因子88(myeloid differentiation factor 88,MyD88)作為TLR4的重要銜接蛋白,可引起下游的NF-κB活化和炎癥效應(yīng),姜黃素能通過抑制TLR4/MyD88/NF-κB信號通路減少腦外傷后炎性損傷[32]。此外,抑制Akt也是姜黃素抑制NF-κB信號通路的重要途徑。姜黃素可通過上調(diào)腦啡肽酶而抑制Akt/NF-κB信號通路及其下游炎癥分子的表達(dá),減輕阿爾茨海默病腦組織的慢性炎癥[33]。
圖1 NF-κ B信號通路活化過程和姜黃素抑制NF-κ B信號通路的作用機(jī)制.箭頭表示激活,橫杠表示抑制.IκBα:NF-κB抑制蛋白α:IKK,IκB激酶;TLR:Toll樣受體;TNFR:腫瘤壞死因子受體;IL-R:白細(xì)胞介素受體;ICAM-1:細(xì)胞間黏附分子1;IL-1:白細(xì)胞介素1;TNF-α:腫瘤壞死因子α;Akt:絲氨酸/蘇氨酸激酶.
3.3姜黃素抑制NF-κ B信號通路在SCI修復(fù)中的作用
SCI后24 h的損傷組織中TNF-α和NF-κB的mRNA和蛋白質(zhì)水平顯著升高,經(jīng)姜黃素處理后TNF-α和NF-κB的表達(dá)被有效抑制[34]。姜黃素通過抑制SCI后NF-κB信號通路,阻斷NF-κB的過度活化,降低趨化因子、黏附分子、TNF-α、IL-1β和IL-6等炎性因子以及炎癥酶iNOS和COX-2的表達(dá),進(jìn)而減少損傷后組織中炎癥反應(yīng)、細(xì)胞凋亡和膠質(zhì)瘢痕形成等繼發(fā)性損害,促進(jìn)脊髓損傷修復(fù)。研究表明,姜黃素能抑制SCI后NF-κB的DNA結(jié)合活性和小膠質(zhì)細(xì)胞釋放炎癥介質(zhì),降低IL-1β和NO的表達(dá),減少細(xì)胞凋亡和瘢痕形成[35]。姜黃素抑制NF-κB,TNF-α和IL-1β等炎癥相關(guān)因子和細(xì)胞內(nèi)GFAP的表達(dá),減少SCI后瘢痕形成,改善細(xì)胞生長環(huán)境與促進(jìn)神經(jīng)纖維再生[25]。
姜黃素可通過作用于TLR4抑制其引發(fā)的NF-κB信號通路活化,且很有可能經(jīng)TLR4/MyD88/NF-κB通路減少SCI后NF-κB產(chǎn)生和炎癥性損傷。Ni等[36-37]報道,在發(fā)生SCI 72 h后,組織損傷處TNF-α,IL-1β 和IL-6等聚集明顯,姜黃素可通過抑制TLR4/NF-κB炎癥信號通路,明顯下調(diào)SCI后炎癥因子的表達(dá),促進(jìn)運(yùn)動功能恢復(fù),也能減少細(xì)胞凋亡和組織水腫。IKK及其上游激酶Akt是姜黃素抑制NF-κB信號通路的重要靶點(diǎn)。Aggarwal等[38]認(rèn)為,姜黃素能使Akt和IKK的活性降低,從而阻礙IκBα的磷酸化,抑制NF-κB活性及其調(diào)節(jié)的炎癥基因表達(dá)。姜黃素還可通過抑制NF-κB信號通路活化過程中的IκBα降解和p65/p50核轉(zhuǎn)位,減少炎癥細(xì)胞因子產(chǎn)生以及發(fā)揮促進(jìn)脊髓功能恢復(fù)的作用。Wang等[35]和Wang等[35,39]均認(rèn)為,姜黃素固體脂質(zhì)納米?;蚪S素是通過抑制IKK活性和IκBα的降解而阻斷NF-κB信號通路的。此外,還有研究認(rèn)為,姜黃素的抗炎作用與人核因子E2相關(guān)因子2(nuclear factorerythroid 2-related factor 2,Nrf2)有關(guān)。Nrf2能限制SCI后NF-κB的活性上調(diào),姜黃素可通過誘導(dǎo)Nrf2活化,抑制損傷脊髓組織中NF-κB的激活與炎癥因子產(chǎn)生,明顯減輕了運(yùn)動障礙、組織水腫與細(xì)胞凋亡[16]。綜上所述,姜黃素具有多種途徑抑制NF-κB信號通路從而減弱炎癥反應(yīng),達(dá)到抗炎效果,發(fā)揮促進(jìn)脊髓組織修復(fù)及功能恢復(fù)的作用。
NF-κB信號通路在SCI后可被多種刺激信號激活,具有介導(dǎo)炎癥反應(yīng)的作用。姜黃素是一種具有抗炎效應(yīng)的天然植物成分,能多靶點(diǎn)地抑制NF-κB信號通路的活化,降低炎癥因子的水平,減少細(xì)胞凋亡、膠質(zhì)瘢痕形成等繼發(fā)性損傷。應(yīng)用姜黃素治療SCI、促進(jìn)脊髓功能恢復(fù)、改善預(yù)后具有十分廣闊的前景,而抑制NF-κB信號通路將成為一個重要的靶點(diǎn),為臨床治療SCI提供新思路。
[1] SinghA,TetreaultL,Kalsi-RyanS,NouriA,F(xiàn)ehlings MG.Global prevalence and incidence of traumatic spinal cord injury[J].Clin Epidemiol,2014,6:309-331.
[2] Huang XL,Yan TB.Rehabilitation Medicine(康復(fù)醫(yī)學(xué))[M].Beijing:People′s Medical Publishing House,2013:166.
[3] Chen YH,Liu M,He JH.Epidemiological survey of patients with spinal cord injury[J].J Pract Med(實用醫(yī)學(xué)雜志),2011,27(6):1032-1034.
[4] Saxena T,Loomis KH,Pai S,Gaupp E,Patil K,Patkar R,et al.Nanocarrier-mediated inhibition of macrophage migration inhibitory factor attenuates secondary injury after spinal cord injury[J].ACS Nano,2015,9(2):1492-1505.
[5]Bracchi-Ricard V,Lambertsen KL,Ricard JA,Karmally S,Johnstone JA,F(xiàn)rydel B,et al.Inhibition of astroglial NF-κB enhances oligodendrogenesis following spinal cord injury[J].J Neuroinflam,2013,10:92.
[6] Ahn KS,Aggarwal BB.Transcription factor NF-κB:a sensor for smoke and stress signals[J].Ann NY Acad Sci,2005,1056(1):218-233.
[7] Heise N,De Silva NS,Silva K,Carette A,Simonetti G,et al.Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB tran?scription factor subunits[J].J Exp Med,2014,211(10):2103-2118.
[8] Chiba T,Inoko H,Kimura M,Sato T.Role of nuclear IκBs in inflammation regulation[J].Biomol Concept,2013,4(2):187-196.
[9] Basak S,Hoffmann A.Crosstalk via the NF-κB signaling system[J].Cytokine Growth F R,2008,19(3-4):187-197.
[10]Zhao X,Hsu KS,Lim JH,Bruggeman LA,Kao HY. α-Aactinin 4 potentiates nuclear factor κ-light-chainenhancer of activated B-cell(NF-κB)activity in podocytes Independent of its cytoplasmic actin binding function[J].J Biol Chem,2015,290(1):338-349.
[11]Trocoli A,Djavaheri-Mergny M.The complex inter?play between autophagy and NF-kappa B signaling pathways in cancer cells[J].Am J Cancer Res,2011,1(5):629-649.
[12]Zhang Y,Chen YJ,Wu J,Manaenko A,Yang P,Tang JP,et al.Activation of dopamine D2 recep?torsuppressesneuroinflammationthrough αB-crystalline by inhibition of NF-κB nuclear transloca?tion in experimental ICH mice model[J].Stroke,2015,46(9):2637-2646.
[13]Kurakula K,Vos M,Logiantara A,Roelofs JJ,Nieuwenhuis MA,Koppelman GH,et al.Nuclear receptor Nur77 attenuates airway inflammation in mice by suppressing NF-κB activity in lung epithelial cells[J].J Immunol,2015,195(4):1388-1398.
[14]Yin X,Yin Y,Cao FL,Chen YF,Peng Y,Hou WG,et al.TanshinoneⅡA attenuates the inflammatory response and apoptosis after traumatic injury of the spinal cord in adult rats[J].PLoS One,2012,7(6):e38381.
[15]Brambilla R,Hurtado A,Persaud TA,Pearse DD,Oudega M,Bethea JR.Transgenic inhibition of astroglial NF-κB leads to increased axonal sparing and sprouting following spinal cord injury[J].J Neurochem,2009,110(2):765-778.
[16]Jin W,Wang J,Zhu TS,Yuan BY,Ni HB,Jiang J,et al.Anti-inflammatory effects of curcumin in experimental spinal cord injury in rats[J].Inflamm Res,2014,63(5):381-387.
[17]Brambilla R,Bracchi-Ricard V,Hu WH,F(xiàn)rydel B,Bramwell A,Karmally S,et al.Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury [J].J Exp Med,2005,202(1):145-156.
[18]Yang J,Liu XE,Zhou Y,Wang GZ,Gao CJ,Su QJ. Hyperbaric oxygen alleviates experimental(spinal cord) injurybydownregulating HMGB1/NF-κB expression[J].Spine(Phila Pa 1976),2013,38 (26):E1641-E1648.
[19]Ren GY,Sun AN,Zhang JJ,Deng C,Wang ZT,Dou W.Advances in roles of NF-κB in regulating pathways of apoptosis[J].Chin J Pharmacol Toxicol(中國藥理學(xué)與毒理學(xué)雜志),2015,29(2):323-327.
[20]Han X,Lu M,Wang SY,Lv DC,Liu HR.Targeting IKK/NF-κB pathway reduces infiltration of inflam?matorycellsandapoptosisafterspinalcord injury in rats[J].Neurosci Lett,2012,511(1):28-32.
[21]P?kalski J,Zuk PJ,Kochańczyk M,Junkin M, Kellogg R,et al.Spontaneous NF-κB activation by autocrine TNFα signaling:a computational analysis [J].PLoS One,2013,8(11):e78887.
[22]Diamant G,Amir-Zilberstein L,Yamaguchi Y,Handa H, Dikstein R.DSIFRestrictsNF-κB signaling by coordinating elongation with mRNA processing of negative feedback genes[J].Cell Rep,2012,2(4):722-731.
[23] Guadagno J,Xu X,Karajgikar M,Brown A,CreganSP.Microglia-derivedTNFαinduces apoptosis in neural precursor cells via transcrip?tional activation of the Bcl-2 family member Puma [J].Cell Death Dis,2013,4(3):e538.
[24] Li XQ,Wang J,F(xiàn)ang B,Tan WF,Ma H.Intrathecal antagonism of microglial TLR4 reduces inflamma?tory damage to blood-spinal cord barrier following ischemia/reperfusion injury in rats[J].Mol Brain,2014,7:28.
[25] Yuan JC,Zou MM,Xiang X,Zhu HT,Chu WH,Liu W,et al.Curcumin improves neural function after spinal cord injury by the joint inhibition of the intracellular and extracellular components of glial scar[J].J Surg Res,2015,195(1):235-245.
[26] Jiang Y,Gong FL,Zhao GB,Li J.Chrysin sup?pressed inflammatory responses and the induc?ible nitric oxide synthase pathway after spinal cord injury in rats[J].Int J Mol Sci,2014,15(7):12270-12279.
[27]Lim R,Barker G,Wall CA,Lappas M.Dietary phytophenols curcumin,naringenin and apigenin reduce infection-induced inflammatory and con?tractile pathways in human placenta,foetal mem?branes and myometrium[J].Mol Hum Reprod,2013,19(7):451-462.
[28] Ruttala HB, Ko YT.Liposomal co-delivery of curcumin and albumin/paclitaxel nanoparticle for enhancedsynergisticantitumorefficacy[J]. Colloid Surface B,2015,128:419-426.
[29] Banerjee S,Chakravarty AR.Metal complexes of curcumin for cellular imaging,targeting,and photoinduced anticancer activity[J].Acc Chem Res,2015,48(7):2075-2083.
[30] Wang J,Wang HY,Zhu RR,Liu Q,F(xiàn)ei J,Wang SL.Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis [J].Biomaterials,2015,53:475-483.
[31] Tu XK,Yang WZ,Chen JP,Chen YA,Xu YC,Shi SS.Curcumin inhibits TLR2/4-NF-κB signal?ing pathway and attenuates brain damage in per?manent focal cerebral ischemia in rats[J].Inflam?mation,2014,37(5):1544-1551.
[32] Zhu HT,Bian C,Yuan JC,Chu WH,Xiang X,Chen F,et al.Curcumin attenuates acute inflam?matory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury[J].J Neuroinflamm,2014,11:59.
[33] Deng YS,Lu X,Wang L,Li T,Ding YA,Zhang YP,et al.Curcumin inhibits the AKT/NF-κB signaling via CpG demethylation of the promoter and restoration of NEP in the N2a cell line[J]. AAPS J,2014,16(4):649-657.
[34]Yu DS,Cao Y,Mei XF,Wang YF,F(xiàn)an ZK,Wang YS,et al.Curcumin improves the integrity of blood-spinal cord barrier after compressive spinal cord injury in rats[J].J Neurol Sci,2014,346(1-2):51-59.
[35] Wang YF,Zu JN,Li J,Chen C,Xi CY,Yan JL. Curcumin promotes the spinal cord repair via inhi?bition of glial scar formation and inflammation[J]. Neurosci Lett,2014,560:51-56.
[36] Ni H,Jin W,Yuan B,Zhu T,Wang J,Jiang J,et al.Curcumin inhibits the increase of labile zinc and the expression of inflammatory cytokines after traumatic spinal cord injury in rats[J].J Surg Res,2014,187(2):646-652.
[37] Ni H,Jin W,Zhu T,Wang J,Yuan B,et al.Cur?cumin modulates TLR4/NF-κB inflammatory sig?naling pathway following traumatic spinal cord in?jury in rats[J].J Spinal Cord Med,2015,38(2):199-206.
[38] Aggarwal S,Ichikawa H,Takada Y,Sandur SK,Shishodia S,Aggarwal BB.Curcumin(diferuloyl?methane)down-regulates expression of cell prolif?eration and antiapoptotic and metastatic gene products through suppression of I kappa B alpha kinase and Akt activation[J].Mol Pharmacol,2006,69(1):195-206.
[39] Wang J,Zhu RR,Sun DM,Sun XY,Geng ZS,Liu H,et al.Intracellular uptake of curcumin-load?ed solid lipid nanoparticles exhibits anti-inflamma?toryactivitiessuperiortothoseofcurcumin throughtheNF-κBsignalingpathway[J].J Biomed Nanotechnol,2015,11(3):403-415.
Effect of curcumin on spinal cord injury repair via inhibiting NF-κ B signalling pathway:research progress
GAO Meng-dan,LIN Jing-quan,TONG Liang,ZHANG Jin-yi,HAN Na,LIU Xue-hong
(Medical College,Shaoxing University,Shaoxing 312000,China)
Inflammation response is the most crucial link in the pathogeneses of spinal cord injury (SCI),and is the basis of secondary damage.NF-κB Signalling pathway is activated excessively after SCI,so that numerous NF-κB possessing biological activities is quickly translocated into the nuclear and regulates the target genes,resulting in heightened inflammation and further tissue damage. Suppressing NF-κB signalling pathway and controlling inflammation response effectively are effective approaches to promoting SCI repair.It is found that curcumin has multiple target molecules to suppress NF-κB signalling pathway,block the excessive activation of NF-κB and reduce the expression of proinflammation cytokines,which plays an important role in SCI repair.This article discusses NF-κB signalling pathway,the contribution of NF-κB signalling pathway to SCI and the role of curcumins inhibition of NF-κB signalling pathway in SCI.
curcumin;NF-κB signalling pathway;spinal cord injury
The project supported by Zhejiang provincial Natural Science Foundation(LY15H17000);and Public Technology Applied Research Projects of Shaoxing City(2013D10035)
LIU Xue-hong,Tel:(0575)88345099;E-mail:liuxueh6588@126.com
R285.5,R966
A
1000-3002-(2016)03-0272-06
10.3867/j.issn.1000-3002.2016.03.014
2015-09-07接受日期:2016-02-25)
(本文編輯:喬虹)
浙江省自然科學(xué)基金(LY15H170001);紹興市公益性技術(shù)應(yīng)用研究計劃資助項目(2013D10035)
高夢丹(1993-),女,本科在讀,E-mail:gmd2752@sina.com
劉學(xué)紅,E-mail:liuxueh6588@126.com,Tel:(0575)88345099