劉 慶,欒雪濤,徐世彥,孟 瑩,高江曼,惠竹梅
(西北農(nóng)林科技大學(xué)葡萄酒學(xué)院/陜西省葡萄與葡萄酒工程中心/陜西省果樹(shù)繁育中心,陜西楊凌 712100)
24-表油菜素內(nèi)酯對(duì)葡萄葉片抵御霜霉菌侵染的影響
劉 慶,欒雪濤,徐世彥,孟 瑩,高江曼,惠竹梅
(西北農(nóng)林科技大學(xué)葡萄酒學(xué)院/陜西省葡萄與葡萄酒工程中心/陜西省果樹(shù)繁育中心,陜西楊凌 712100)
【目的】研究外源 24-表油菜素內(nèi)酯(24-epibrassinolide,EBR)處理對(duì)霜霉菌侵染葡萄葉片的影響,為探究葡萄霜霉病的致病機(jī)理提供參考?!痉椒ā吭囼?yàn)以歐亞種釀酒葡萄(Vitis vinifera. L)赤霞珠(Cabernet Sauvignon)葉片為材料,在霜霉菌侵染離體葡萄葉片的初期,研究不同濃度的EBR處理(0.1、0.5和1.0 mg·L-1EBR)對(duì)葡萄葉片霜霉病發(fā)病率和病情指數(shù)、霜霉菌菌絲生長(zhǎng)、孢囊梗的形成、氣孔周圍孢子數(shù)量、葡萄葉片氣孔開(kāi)度和內(nèi)源激素含量的影響及相互關(guān)系?!窘Y(jié)果】EBR各處理均顯著抑制了接種霜霉菌0.5 h后葡萄葉片氣孔開(kāi)度,以及接種后1 d和2 d病菌菌絲的發(fā)育。0.5和1.0 mg·L-1EBR處理均顯著抑制了接種霜霉菌0.5 h后葉片氣孔周圍的游動(dòng)孢子數(shù)量和3 d后菌絲體在侵染區(qū)域的覆蓋面積;接種4 d后,EBR各處理均顯著抑制了霜霉菌孢子囊數(shù)量以及葉片發(fā)病率與病情指數(shù),且0.5 mg·L-1和1.0 mg·L-1EBR處理降低發(fā)病率和病情指數(shù)的幅度最大,發(fā)病率分別比CK降低51.4%和45.0%,病情指數(shù)分別降低71.2%和62.9%??傮w而言,0.5 mg·L-1和1.0 mg·L-1EBR處理抑制霜霉菌生長(zhǎng)發(fā)育較為顯著,且二者之間無(wú)顯著性差異。0.5 mg·L-1EBR處理的葉片脫落酸(ABA)、茉莉酸(JA)和水楊酸(SA)含量與CK之間均存在顯著差異,氣孔孔徑與SA含量,ABA含量與JA含量呈顯著正相關(guān)。【結(jié)論】EBR處理提高了葡萄葉片抵御霜霉菌侵染的能力,可能與其抑制病菌發(fā)育,改變寄主內(nèi)源激素含量,從而促進(jìn)氣孔關(guān)閉等因素有關(guān)。
葡萄;霜霉病菌;24-表油菜素內(nèi)酯;誘導(dǎo)抗病性;氣孔開(kāi)度
【研究意義】葡萄霜霉?。跴lasmopara viticola (Berk. & Curt.) Berl. & de Toni]是葡萄生產(chǎn)中最重要的病害之一。在溫暖和濕潤(rùn)的地區(qū),霜霉病在短時(shí)間內(nèi)迅速蔓延,影響葡萄葉片和果實(shí)正常發(fā)育,造成巨大的經(jīng)濟(jì)損失[1]。油菜素內(nèi)酯(Brassinosteroids,BRs),是植物中廣泛存在的甾醇類植物激素。研究發(fā)現(xiàn)BRs能夠調(diào)節(jié)一系列的植物生長(zhǎng)與發(fā)育[2],而且越來(lái)越多的試驗(yàn)證明 BRs不僅能夠緩解植物非生物脅迫,例如鹽脅迫[3-4]、寒冷脅迫[5-6]、干旱脅迫[7-8]、重金屬脅迫[9-10],還能夠提高植物對(duì)生物脅迫的抗性[11-13]。NAKASHITA等[11]研究指出BRs能夠激發(fā)煙草針對(duì)煙草花葉病毒(TMV)、煙草野火病菌(Pseudomonas syringae pv. Tabaci)和粉孢菌(Oidium sp.)的侵染產(chǎn)生防御反應(yīng)。在冬棗與柑橘的貯藏試驗(yàn)中,用BRs與EBR分別處理均減輕了采后果實(shí)的發(fā)?。?4-15]。因此,研究24-表油菜素內(nèi)酯(EBR)提高葡萄葉片對(duì)霜霉病的抗性及其作用機(jī)理對(duì)霜霉病的防治具有重要意義?!厩叭搜芯窟M(jìn)展】在一個(gè)生長(zhǎng)季節(jié)內(nèi),葡萄霜霉菌(P. viticola)的孢子囊和游動(dòng)孢子可通過(guò)氣孔對(duì)葡萄進(jìn)行多次再侵染[16],而在霜霉菌侵染葡萄葉片的過(guò)程中,通過(guò)葉片的組織觀察可以直觀高效地觀察到寄主與病原菌之間的相互作用,進(jìn)而判斷寄主的抗病性或霜霉菌的致病力[17]。通過(guò)熒光顯微鏡觀察霜霉菌侵染葡萄葉片(接種后24、30、48和120 h),發(fā)現(xiàn)用硫胺素處理能提高葡萄葉片的抗病性[18]。在研究核黃素誘導(dǎo)葡萄對(duì)霜霉菌侵染產(chǎn)生防御反應(yīng)的試驗(yàn)中,通過(guò)接種霜霉菌后24、48和72 h顯微觀察病菌從孢子囊長(zhǎng)出初生菌絲到形成網(wǎng)狀菌絲體,明確了核黃素處理提高了葡萄對(duì)霜霉病的抗性[19]。氣孔是病菌侵染的潛在天然通道,植物激素在調(diào)節(jié)氣孔關(guān)閉上發(fā)揮著重要的作用[20-22],能通過(guò)保衛(wèi)細(xì)胞關(guān)閉氣孔,阻止病菌的侵染、蔓延[20]。大量試驗(yàn)證明脫落酸(ABA)積極地參與調(diào)控氣孔關(guān)閉過(guò)程,以此來(lái)抵御病原菌對(duì)寄主細(xì)胞侵染[14,23]。保衛(wèi)細(xì)胞在感知病菌相關(guān)分子信號(hào)后,激發(fā)水楊酸(SA)通過(guò)ABA信號(hào)途徑誘導(dǎo)氣孔關(guān)閉[20];另外,研究還發(fā)現(xiàn)茉莉酸(JA)依靠Ca2+,NO、ROS信號(hào),并激發(fā)K+通道和S型陰離子通道調(diào)節(jié)氣孔開(kāi)度[20-21]?!颈狙芯壳腥朦c(diǎn)】EBR處理能夠緩解葡萄非生物脅迫,例如寒冷脅迫,鹽脅迫等。而EBR處理緩解能否緩解葡萄生物脅迫,如霜霉病菌侵染等還未見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】以歐亞種釀酒葡萄赤霞珠葉片為材料,通過(guò)離體葉片接種葡萄霜霉菌,采用熒光顯微鏡和掃描電鏡觀察 EBR處理對(duì)霜霉菌侵染葡萄葉片過(guò)程中形態(tài)結(jié)構(gòu)和葉片氣孔開(kāi)度的影響;并通過(guò)測(cè)定激素水平變化與氣孔開(kāi)度的關(guān)系,探明 EBR處理提高葡萄葉片抵御霜霉菌侵染的作用機(jī)制,為全面揭示葡萄抗霜霉病的作用機(jī)理提供理論依據(jù)。
試驗(yàn)于 2015年在西北農(nóng)林科技大學(xué)葡萄酒學(xué)院進(jìn)行。
1.1試驗(yàn)材料
試驗(yàn)場(chǎng)所為葡萄冷棚溫室。供試品種為歐亞種(Vitis vinifera L.)釀酒葡萄赤霞珠(Cabernet Sauvignon)。選擇長(zhǎng)勢(shì)一致、健康狀況良好的植株,帶柄采集副梢幼葉(從上至下第3—6節(jié)葉片)。
在陜西楊凌地區(qū)葡萄霜霉病發(fā)病初期,采集發(fā)病的葡萄幼葉,用無(wú)菌水沖洗葉片發(fā)病區(qū)域,收集霜霉菌孢子囊懸浮液并搖勻,利用血球計(jì)數(shù)板統(tǒng)計(jì)霜霉菌孢子囊數(shù)量,調(diào)配孢子囊懸浮液至試驗(yàn)濃度(5×105個(gè)/mL)。
1.2試驗(yàn)設(shè)計(jì)
本試驗(yàn)采用的24-表油菜素內(nèi)酯(24- epibrassinolide,EBR)購(gòu)自美國(guó)Sigma公司,Ruibio分裝。試驗(yàn)共設(shè)4個(gè)處理,分別是①EBR1:0.1 mg·L-1EBR;②EBR2:0.5 mg·L-1EBR;③EBR3:1.0 mg·L-1EBR;④CK:清水處理。EBR母液配置方法:稱取1.0 mg EBR,用98%(v/v)乙醇將其溶解。將 EBR母液稀釋到適宜濃度,乙醇最終含量為0.1%(v/v),用吐溫-80作為
展開(kāi)劑,最終含量為 0.1%(v/v)。清水對(duì)照中加入同樣體積的98%乙醇和吐溫-80。從溫室中采集的葡萄葉片(帶葉柄)經(jīng)無(wú)菌水清洗2—3遍,自然晾干。將葡萄幼葉的葉柄斜切至一定長(zhǎng)度,并將葡萄葉柄浸沒(méi)在不同濃度的 EBR溶液中,然后將葉片放置在溫度22℃、濕度95%、光照強(qiáng)度1 000 lx的人工氣候箱中3 h。激素處理結(jié)束后,立即用打孔器(d=14 mm)在葉片上打孔,收集葉圓片并置于墊有濕潤(rùn)濾紙的培養(yǎng)皿中。EBR處理3.5 h后接種葡萄霜霉菌,每個(gè)葉圓片接種40 μL葡萄霜霉菌懸浮液,且濃度為5×105個(gè)孢子囊/mL。接種完成后,將培養(yǎng)皿放置于白天溫度為22℃、濕度95%、光照強(qiáng)度1 000 lx和夜晚溫度20℃、濕度90%的人工氣候箱中。試驗(yàn)中每個(gè)處理設(shè)置3次重復(fù),每個(gè)重復(fù)包含10個(gè)培養(yǎng)皿,每個(gè)培養(yǎng)皿中放置10枚葡萄葉圓片。分別在接種霜霉菌后0.5 h、1、2、3和4 d后采樣,用于觀察和測(cè)定霜霉菌侵染過(guò)程中病菌和葉片相關(guān)指標(biāo)。
1.3測(cè)定指標(biāo)與方法
1.3.1氣孔孔徑(stomatal aperture)的測(cè)定 接種霜霉菌0.5 h后,切取邊長(zhǎng)為5 mm的正方形葉片,浸沒(méi)于2 mL 4%的戊二醛溶液中12 h,固定葉片組織。次日將葡萄葉片用磷酸緩沖液清洗3次,每次10 min。隨后用30%、50%、70%、80%和90%的梯度酒精進(jìn)行脫色處理,每個(gè)濃度處理一次,每次10—15 min,最后用100%的酒精脫色3次,每次30 min。脫色后的葉片用乙酸異戊酯置換30 min。葉片經(jīng)零界點(diǎn)干燥和噴金處理后,置于場(chǎng)發(fā)射掃描電鏡下觀察[24]。
1.3.2氣孔周圍平均游動(dòng)孢子數(shù)量(number of spores per stoma) 接種霜霉菌0.5 h后,將采集到的葡萄葉圓片樣品浸沒(méi)在盛有9.2 mmol·L-1三氯乙酸溶液的試管中進(jìn)行溫和脫色。配置1%(v/v)Blankophor (Maya,China)母液,并用蒸餾水稀釋母液濃度至5%。將葡萄葉圓片放置在載玻片上,并向葡萄葉圓片背面上添加2 mL稀釋后的熒光增白劑溶液,染色2 min后,蓋上蓋玻片。將制備好的樣品放置在熒光顯微鏡下觀察。熒光發(fā)射的激發(fā)波長(zhǎng)為340 nm,在380 nm濾光停止[16]。
1.3.3苯胺藍(lán)染色法 將葡萄葉圓片浸沒(méi)在盛有 1 mol·L-1KOH溶液的試管中,并將試管放置在121℃的滅菌鍋中10 min,進(jìn)行高溫脫色。脫色完成后,用無(wú)菌水清洗葉圓片,共清洗3次,每次15 min,然后用0.05%苯胺藍(lán)染液(以 pH 9—10的 0.067 mol·L-1K2HPO4溶液為溶劑)進(jìn)行組織結(jié)構(gòu)染色[16]。苯胺藍(lán)染色后在熒光顯微鏡下觀察拍照[25],記錄菌絲長(zhǎng)度與霜霉菌第1—4天的形態(tài)特征變化。
1.3.4發(fā)病率與病情指數(shù)的調(diào)查 先針對(duì)葉圓片進(jìn)行數(shù)碼拍照,然后應(yīng)用Photopshop CS5統(tǒng)計(jì)發(fā)病面積[25];依據(jù)霜霉病發(fā)病面積占葉圓片面積的百分比劃分8個(gè)等級(jí),其中0級(jí):未發(fā)病,1級(jí):0.1%—5.0%,2級(jí):5.1%—15.0%,3級(jí):15.1%—30.0%,4級(jí):30.1%—45.0%,5級(jí):45.1%—60.0%,6級(jí):60.1%—85.0%,7級(jí):85.1%—100%。
1.3.5葉片內(nèi)源激素ABA、SA、JA含量的測(cè)定 采用高效液相色譜-質(zhì)譜聯(lián)用儀測(cè)定[26]。
1.4數(shù)據(jù)處理與分析
試驗(yàn)采用SPSS 18.0、Photoshop CS5和Excel軟件進(jìn)行數(shù)據(jù)分析,采用Origin 8.5軟件進(jìn)行作圖分析。
2.1EBR處理對(duì)葉片發(fā)病率與病情指數(shù)的影響
接種霜霉菌第4天,部分葉圓片上的發(fā)病癥狀肉眼即可觀察,在病原菌侵染區(qū)域開(kāi)始觀察到孢囊梗。由圖1中葉圓片發(fā)病照片可知,CK對(duì)應(yīng)的葉圓片上附著大量孢囊梗,而EBR處理的葉圓片孢囊梗和菌絲體數(shù)量顯著低于CK,其中EBR2與EBR3處理對(duì)應(yīng)的病菌發(fā)育受到的抑制最明顯。EBR各處理的葡萄葉圓片的發(fā)病率與病情指數(shù)均顯著低于CK(圖2),其中以EBR2和EBR3處理的抑制效果最顯著,葉片發(fā)病率分別比CK降低了51.4%和45.0%。
2.2EBR處理對(duì)葉片氣孔孔徑及氣孔周圍游動(dòng)孢子的影響
EBR處理顯著影響寄主葉片的氣孔張開(kāi)程度(圖3)。接種霜霉菌0.5 h后,CK的氣孔孔徑顯著高于所有EBR處理;隨著EBR濃度的增加,葉片氣孔孔徑降低,其中,EBR2和EBR3處理使氣孔孔徑分別比CK降低了63.7%和77.8%。接種0.5 h后,EBR2 和EBR3處理的葡萄葉片氣孔周圍孢子數(shù)量顯著低于CK,但EBR1與CK之間無(wú)顯著差異(圖4)。
2.3EBR處理對(duì)霜霉菌侵染葉片過(guò)程中形態(tài)特征的影響
接種霜霉菌后第1天,氣孔下囊泡已經(jīng)長(zhǎng)出初生菌絲(圖5),EBR處理的霜霉菌菌絲長(zhǎng)度均顯著低于CK。其中,EBR2和EBR3處理的菌絲長(zhǎng)度分別只有CK的48.0%和55.3%,且均顯著低于EBR1處理,二者間無(wú)顯著差異(圖6-A)。
霜霉菌菌絲長(zhǎng)出初生菌絲后,菌絲進(jìn)一步伸長(zhǎng),陸續(xù)形成吸器(圖5)。接種病菌后第2天,CK的菌絲長(zhǎng)度顯著高于所有EBR處理,EBR1、EBR2和EBR3的菌絲長(zhǎng)度分別比CK降低了32.2%、58.0%和55.1%。EBR2和EBR3處理下的菌絲發(fā)育受到的抑制作用最為明顯,且二者之間無(wú)顯著性差異(圖6-B)。
圖1 EBR處理對(duì)抵御葡萄霜霉菌侵染葉片的影響Fig. 1 Effect of EBR treatments on the resistance against P. viticola
圖2 EBR處理對(duì)葡萄葉片霜霉病的影響Fig. 2 Effect of EBR treatment on the downy mildew of grapevine leaf
接種霜霉菌后第3天,侵染區(qū)域的葉肉細(xì)胞周圍出現(xiàn)網(wǎng)狀的菌絲體,尤其是 CK,葉圓片上菌絲體基本已布滿了侵染區(qū)域的葉肉細(xì)胞(圖5)。相比之下,EBR2與EBR3的菌絲體生長(zhǎng)發(fā)育受到強(qiáng)烈的抑制。
接種霜霉菌后第4天,葉片病菌侵染區(qū)域開(kāi)始出現(xiàn)孢囊梗,CK處理的葉片上病菌侵染區(qū)域出現(xiàn)大量的孢囊梗,EBR1處理的葉圓片上可以觀察到少量的孢囊梗,而EBR2與EBR3處理的侵染區(qū)域則未發(fā)現(xiàn)孢囊梗(圖5)。
圖3 葡萄葉圓片上氣孔與表皮細(xì)胞Fig. 3 Stomata and epidermal cells on the grape leaf discs
2.4EBR處理對(duì)葡萄葉片內(nèi)源激素的影響
接種霜霉菌0.5 h后,霜霉菌孢子向葉片氣孔周圍聚集。在受到外源EBR處理與病菌侵染而引起的寄主自身防御反應(yīng)的作用下,葡萄葉片的內(nèi)源激素發(fā)生變化,EBR2處理的葉片ABA、JA和SA含量與CK之間均存在顯著差異(表1)。SA與氣孔孔徑相關(guān)系數(shù)是0.966,隨著SA含量的增加,氣孔孔徑呈下降趨勢(shì)。ABA與JA之間的相關(guān)系數(shù)為0.985,二者呈顯著的正相關(guān)(表2)。
圖4 EBR處理對(duì)葡萄葉片氣孔孔徑與氣孔周圍平均游動(dòng)孢子數(shù)量的影響Fig. 4 Effect of EBR treatment on stomatal aperture and number of spores per stoma of grapevine leaf
圖5 EBR處理對(duì)霜霉菌侵染葡萄葉片過(guò)程中形態(tài)特征的影響Fig. 5 Effect of EBR treatment on the morphology of P. viticola invading the grapevine leaf
圖6 EBR處理對(duì)平均每個(gè)感染區(qū)的霜霉菌菌絲長(zhǎng)度的影響Fig. 6 Effect of EBR treatment on the linear length of P. viticola colonies per infection
表1 EBR處理對(duì)葡萄葉片內(nèi)源激素含量的影響Table 1 Effect of EBR treatment on the content of endogenous hormone in grapevine leaf
表2 氣孔孔徑、ABA、SA和JA含量之間的相關(guān)性Table 2 Correlations between stomatal aperture and contents of ABA, JA and SA
油菜素內(nèi)酯作為一種天然的植物激素,既能促進(jìn)植物生長(zhǎng)發(fā)育,還能緩解一系列非生物與生物對(duì)植物的脅迫[27]。本研究結(jié)果表明,24-表油菜素內(nèi)酯處理抑制了霜霉菌的菌絲伸長(zhǎng)、菌絲體蔓延和孢子囊的產(chǎn)生,從而抑制了霜霉菌的初期生長(zhǎng)發(fā)育。
植物的氣孔既是調(diào)節(jié)氣體交換與蒸騰作用的重要途徑,也是病原菌侵染植物的潛在天然通道[20]。番茄細(xì)菌性斑點(diǎn)病菌(Pseudomonas syringae pv. Tomato DC3000)選擇性地朝氣孔方向移動(dòng),并從開(kāi)放的氣孔處侵入[28]。小麥條銹菌(Puccinia striiformis f.sp. tritici)侵染寄主的方式也是通過(guò)氣孔侵入[29]。為了防止病原菌的侵染,保衛(wèi)細(xì)胞在感知到病菌相關(guān)分子模型后,通過(guò)調(diào)節(jié)氣孔孔徑防止病原菌的入侵。本試驗(yàn)中,EBR處理接種霜霉菌后的葡萄葉片氣孔孔徑顯著低于CK,葡萄霜霉菌生長(zhǎng)發(fā)育受到抑制可能與葉片氣孔孔徑減小而不利于病原菌的侵入有關(guān)。
番茄屬(Lycopersicon spp.)中的一些植物在ABA或黑暗環(huán)境的誘導(dǎo)下氣孔關(guān)閉,降低了野油菜黃單胞菌(Xanthomonas campestris pv. vesicatoria)的發(fā)病率與病情指數(shù)[30]。KIEFER等[16]的研究也發(fā)現(xiàn),ABA能誘導(dǎo)氣孔關(guān)閉,在一定程度上抑制霜霉菌孢子朝氣孔方向的游動(dòng)。另外,兩種SA缺陷植株(SA羥化酶過(guò)量表達(dá)的nahG植株和SA感應(yīng)缺陷突變體sid2)均能破壞病菌相關(guān)分子模型(MAMP)或病菌誘導(dǎo)氣孔關(guān)閉[27],說(shuō)明SA在氣孔運(yùn)動(dòng)中發(fā)揮著重要作用。ZENG等[31]的研究表明SA調(diào)節(jié)氣孔關(guān)閉需要通過(guò)ABA信號(hào)途徑發(fā)揮作用。JA遲鈍突變體,jasmonate resistance 1 和coronatine insensitive 1均表現(xiàn)出ABA誘導(dǎo)氣孔關(guān)閉效應(yīng)減弱。相反地,ABA遲鈍突變體aba intensitive 2和ABA低敏感突變體ost1、cpk6均表現(xiàn)為JA誘導(dǎo)氣孔關(guān)閉的效應(yīng)減弱[20]。由此可見(jiàn),JA與ABA相互作用,共同參與了氣孔運(yùn)動(dòng)的調(diào)節(jié)。本試驗(yàn)結(jié)果顯示,EBR2處理的葡萄葉片ABA和JA含量顯著高于CK,其氣孔孔徑的開(kāi)張程度相比CK也受到顯著抑制,且ABA與JA之間存在顯著正相關(guān)。另外,隨著處理的EBR濃度增加,SA含量逐漸下降,氣孔孔徑逐漸降低,且SA與氣孔孔徑之間存在顯著正相關(guān)。EBR處理調(diào)節(jié)氣孔關(guān)閉可能與內(nèi)源激素ABA、SA和JA相互作用,共同調(diào)節(jié)氣孔運(yùn)動(dòng)有關(guān),但對(duì)ABA、SA和JA如何相互作用并調(diào)節(jié)氣孔運(yùn)動(dòng)的作用機(jī)理還有待進(jìn)一步研究。
0.1、0.5和1.0 mg·L-1濃度的24-表油菜素內(nèi)酯處理均能抑制葡萄霜霉菌侵染赤霞珠葡萄葉片,緩解葡萄霜霉病發(fā)生,其中0.5和1.0 mg·L-124-表油菜素內(nèi)酯抑制效果較為顯著。其緩解作用可能與 24-表油菜素內(nèi)酯減小氣孔孔徑,降低氣孔周圍孢子囊數(shù)量,促進(jìn)葉片氣孔關(guān)閉有關(guān)。24-表油菜素內(nèi)酯處理后,葉片ABA、JA和SA含量與CK之間均存在顯著差異,且SA與氣孔孔徑呈顯著相關(guān),ABA與JA含量呈顯著相關(guān);推測(cè)氣孔的關(guān)閉與EBR處理后內(nèi)源激素ABA、SA和JA的相互作用有關(guān),三者共同誘導(dǎo)了氣孔運(yùn)動(dòng)。
References
[1] MüLLER K, SLEUMER H. Biologische untersuchungen über die peronosporakrankheit des weinstocks mit besonderer berücksichtigung ihrer bek?mpfung nach inkubationsmethode. Z Wiss Landwirtsch,1934, 79: 509-576.
[2] CLOUSE S D, SASSE J M. Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 427-451.
[3] YUAN L, ZHU S, LI S, SHU S, SUN J, GUO S. 24-Epibrassinolide regulates carbohydrate metabolism and increases polyamine content in cucumber exposed to Ca(NO3)2stress. Acta Physiologiae Plantarum,2014, 36: 2845-2852.
[4] SHAHID M A, BALAL R M, PERVEZ M A, ABBAS T, AQEEL M A, RIAZ A, MATTSON N S. Exogenous 24-epibrassinolide elevates the salt tolerance potential of pea (Pisum sativum L.) by improving osmotic adjustment capacity and leaf water relations. Journal of Plant Nutrition, 2015, 38: 1050-1072.
[5] XI Z M, WANG Z Z, FANG Y L, HU Z Y, HU Y, DENG M M,ZHANG Z W. Effects of 24-epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (V. vinifera L.)under chilling stress. Plant Growth Regulation, 2013, 71: 57-65.
[6] WU X X, DING H D, CHEN J L, ZHU Z W, ZHA D S. Amelioration of oxidative damage in Solanum melongena seedlings by 24-epibrassinolide during chilling stress and recovery. Biologia Plantarum, 2015, 59: 350-356.
[7] TALAAT N B, SHAWKY B T, IBRAHIM A S. Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environmental and Experimental Botany, 2015, 113: 47-58.
[8] YUAN G F, JIA C G, LI Z, SUN B, ZHANG L P, LIU N, WANG Q M. Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae,2010, 126: 103-108.
[9] Ali B, Hasan S A, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany, 2008, 62: 153-159.
[10] KANWAR M K, BHARDWAJ R, ARORA P, CHOWDHARY S,SHARMA P, KUMAR S. Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere, 2012, 86: 41-49.
[11] NAKASHITA H, YASUDA M, NITTA T, ASAMI T, FUJIOKA S,ARAI Y, SEKIMATA K., TAKATSUTO S, YAMAGUCHI I,YOSHIDA S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant Journal, 2003, 33: 887-898.
[12] 屈淑平, 王力莉, 崔崇士. 表油菜素內(nèi)酯誘導(dǎo)南瓜幼苗抗疫病研究. 中國(guó)蔬菜, 2008(5): 13-16. Qu S P, Wang L L, Cui C S. Studies on resistance of pumpkin seedlings to phytophthora capsici by exogenous 2,4-epibrassinolide treatment. China Vegetables, 2008(5): 13-16. (in Chinese)
[13] 尚慶茂, 張志剛, 董濤, 宋士清, 李曉芬. 油菜素內(nèi)酯誘導(dǎo)黃瓜幼苗抗灰霉病研究. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2007, 13(5): 630-634. SHANG Q M, ZHANG Z G, DONG T, SONG S Q, LI X F. Resistance of cucumber seedings to Botrytis cinerea induced by exogenous brassinolide treatment. Chinese Journal of Applied and Environmental Biology, 2007, 13(5): 630-634. (in Chinese)
[14] ZHU Z, ZHANG Z, QIN G, TIAN S. Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biology and Technology, 2010, 56: 50-55.
[15] ZHU F, YUN Z, MA Q, GONG Q, ZENG Y, XU J, CHENG Y,DENG X. Effects of exogenous 24-epibrassinolide treatment on postharvest quality and resistance of Satsuma mandarin (Citrusunshiu). Postharvest Biology and Technology, 2015, 100: 8-15.
[16] KIEFER B, RIEMANN M, BUCHE C, KASSEMEYER H H, NICK P. The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola. Planta, 2002, 215: 387-393.
[17] DIEZ-NAVAJAS A M, GREIF C, POUTARAUD A, MERDINOGLU D. Two simplified fluorescent staining techniques to observe infection structures of the oomycete Plasmopara viticola in grapevine leaf tissues. Micron, 2007, 38: 680-683.
[18] BOUBAKRI H, WAHAB M A, CHONG J, BERTSCH C, MLIKI A,SOUSTRE-GACOUGNOLLE I. Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses,including HR like-cell death. Plant Physiology and Biochemistry,2012, 57: 120-133.
[19] BOUBAKRI H, CHONG J, POUTARAUD A, SCHMITT C,BERTSCH C, MLIKI A, MASSON J E, OUSTRE-GACOUGNOLLE I. Riboflavin (Vitamin B-2) induces defence responses and resistance to Plasmopara viticola in grapevine. European Journal of Plant Pathology, 2013, 136: 837-855.
[20] SAWINSKI K, MERSMANN S, ROBATZEK S, BOHMER M. Guarding the green: pathways to stomatal immunity. Molecular Plant-microbe Interactions, 2013, 26: 626-632.
[21] 陳德龍, 葉映微, 劉麗紅, 張敏, 劉天宇, 汪俏梅. 植物保衛(wèi)細(xì)胞的激素信號(hào)轉(zhuǎn)導(dǎo)網(wǎng)絡(luò)研究進(jìn)展. 核農(nóng)學(xué)報(bào), 2016, 30(1): 65-71. CHEN D L, YE Y W, LIU L H, ZHANG M, LIU T Y, WANG Q M. Phytohormone signaling network in plant guard cells. Journal of Nuclear Agricultural Sciences, 2016, 30(1): 65-71. (in Chinese)
[22] 田露, 楊波, 田甜, 王蘭蘭. 植物激素對(duì)氣孔運(yùn)動(dòng)的調(diào)節(jié). 沈陽(yáng)師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 33(3): 442-446. TIAN L, YANG B, TIAN T, WANG L L. Regulation of stomatal movement by plant hormones. Journal of ShenYang Normal University (Natural Science Edition), 2015, 33(3), 442-446. (in Chinese)
[23] ESPINO R R C, NESBITT W B. Infection and development of Plasmopara viticola (B. et C.) Berl. et de T. on resistant and susceptible gravepines (Vitis sp.). Philippine Journal of Crop Science,1982, 7: 114-116.
[24] TROUVELOT S, VARNIER,A L, ALLEGRE M, MERCIER L,BAILLIEUL F, ARNOULD C. GIANINAZZI-PEARSON V,KLARZYNSKI O, JOUBERT J M, PUGIN A, DAIRE X. A beta-1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death. Molecular Plant-Microbe Interactions, 2008, 21: 232-243.
[25] LIU R, WANG L, ZHU J, CHEN T, WANG Y, XU Y. Histological responses to downy mildew in resistant and susceptible grapevines. Protoplasma, 2015, 252: 259-270.
[26] PAN X, WELTI R, WANG X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols, 2010, 5:986-992.
[27] 惠竹梅, 王智真, 胡勇, 鄧敏敏, 張振文. 24-表油菜素內(nèi)酯對(duì)低溫脅迫下葡萄幼苗抗氧化系統(tǒng)及滲透調(diào)節(jié)物質(zhì)的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(5): 1005-1013. XI Z M, WANG Z Z, HU Y, DENG M M, ZHANG Z W. Effects of 24-epibrassinolide on the antioxidant system and osmotic adjustment substance in grape seedlings (V. vinifera L.) under chilling stress. Scientia Agricultura Sinica, 2013, 46(5): 1005-1013. (in Chinese)
[28] MELOTTO M, UNDERWOOD W, KOCZAN J, NOMURA K, HE S Y. Plant stomata function in innate immunity against bacterial invasion. Cell, 2010, 126: 969-980.
[29] MOLDENHAUER J, MOERSCHBACHER B M, VAN DER WESTHUIZEN A J. Histological investigation of stripe rust (Puccinia striiformis f.sp tritici) development in resistant and susceptible wheat cultivars. Plant Pathology, 2006, 55: 469-474.
[30] RAMOS L J, VOLIN R B. Role of stomatal opening and frequency on infection of Lycopersicon spp. by Xanthomonas campestris pv. vesicatoria. Phytopathology, 1987, 77: 1311-1317.
[31] ZENG W, HE S Y. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. Plant Physiology, 2010, 153: 1188-1198.
(責(zé)任編輯 趙伶俐)
Effect of 24-epibrassinolide Treatment on Grapevine Leaf Against Plasmopara viticola
LIU Qing, LUAN Xue-tao, XU Shi-yan , MENG Ying, GAO Jiang-man, XI Zhu-mei
(College of Enology, Northwest A&F University/Shaanxi Engineering Research Center for Viti-Viniculture/Shaanxi Provincial Fruit Trees Propagation Center, Yangling 712100, Shaanxi)
【Objective】 The study researched the effect of 24-epibrassinolide (EBR) treatment on the resistance in grapevine leaf against Plasmopara viticola and the mechanism of the induced resistance. 【Method】 Cabernet Sauvignon (Vitis vinifera L.)grapevine leaves were used for experimental materials. At the early development of P. viticola invading grapevine leaf, the effect of different concentration of exogenous EBR (0.1, 0.5 and 1.0 mg·L-1EBR) on the disease incidence and severity of downy mildew of grapevine leaves, linear length of colonies per infection, the development of P. viticola sporangiophores while this pathogen invading the grapevine leaf, the number of spores per stoma, the stomatal aperture and the content of endogenous hormone and the relation between hormone content and stomatal aperture were investigated. 【Result】 EBR-treated leaves had a significantly lower stomatal aperture at 0.5 h after inoculation. Both on 1 d and 2 d, a significantly lower linear length of P. viticola colonies per infection was observed in all EBR treatments. The spread of mycelium almost covered most of the infection area in control while 0.5 and 1.0 mg·L-1EBR treated leaf resulted in a markedly restricted number of spores per stoma and growth of P. viticola after 3 days of inoculation. After 4 days of inoculation, EBR treatment significantly controlled the development of P. viticola sporangiophores,disease incidence and disease severity, and 0.5 mg·L-1and 1.0 mg·L-1EBR treatment resulted in higher resistance. The leaves treatedwith 0.5 mg·L-1and 1.0 mg·L-1had a lower disease incidence and severity of downy mildew, while disease incidence was decreased by 51.4% and 45.0%,and disease severity drop by 71.2% and 62.9%, and there is no significance between the two treatment. There was a significant difference in ABA, JA and SA contents in grape leaves between CK and 0.5 mg·L-1EBR treatment. Stomatal aperture has significantly positive correlation with SA content while ABA content does with JA content. 【Conclusion】 The increased resistance against P. viticola invasion was possibly related with the suppression of pathogen development and the stomata closure which plant hormone crosstalk involved in.
grapevine; Plasmopara viticola; 24-epibrassinolide; induced resistance; stomata aperture
2015-12-01;接受日期:2016-05-25
國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-30-zp-9)、陜西省自然科學(xué)基金(2011JM3004)、西北農(nóng)林科技大學(xué)基本科研業(yè)務(wù)費(fèi)專項(xiàng)(QN2009059)
聯(lián)系方式:劉慶,E-mail:lq0418nwafu@sina.com。通信作者惠竹梅,E-mail:xizhumei@nwsuaf.edu.cn