曹銓,沈禹穎,王自奎,張小明,楊軒
(草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020)
?
生草對(duì)果園土壤理化性狀的影響研究進(jìn)展
曹銓,沈禹穎*,王自奎,張小明,楊軒
(草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020)
果園生草栽培模式對(duì)土壤理化性狀的影響是果園集約、高效、生態(tài)、可持續(xù)生產(chǎn)的重要基礎(chǔ)。生草栽培可降低土壤容重4.7%~13.0%,提高水穩(wěn)性土壤團(tuán)聚體含量,進(jìn)而改善土壤的導(dǎo)水性能和保水性能,也有助于攔截降雨,提高雨水的利用率;干旱少雨的季節(jié)可能會(huì)出現(xiàn)牧草與果樹爭(zhēng)水的現(xiàn)象,需要通過選擇適宜的草種及加強(qiáng)田間管理等措施來減小爭(zhēng)水對(duì)果樹造成的不利影響;生草有助于土壤有機(jī)碳的積累,連續(xù)生草6年可使土壤表層有機(jī)碳增加19.6%~27.8%,有機(jī)碳的累積量會(huì)隨生草年限的增加而增加;生草覆蓋可調(diào)節(jié)果園土壤溫度,增加土壤微生物的多樣性和酶活性;生草還可以促進(jìn)土壤養(yǎng)分的有效性,同時(shí)豆科牧草也可通過固氮作用提高氮素利用效率,總體而言,果園多年種植牧草對(duì)土壤養(yǎng)分的積累具有正效應(yīng)。本研究可為有關(guān)的研究工作和生草模式的進(jìn)一步推廣應(yīng)用提供依據(jù)。
生草模式;土壤水分;土壤養(yǎng)分;土壤有機(jī)碳;微生物多樣性;土壤酶活性
果園生產(chǎn)模式與作物生產(chǎn)相比具有投入高、產(chǎn)出高的特點(diǎn),有效的果園管理有助于降低成本、提高產(chǎn)出[1]。我國(guó)果園地面的管理模式仍以清耕加除草劑除草為主,這不僅會(huì)導(dǎo)致水土流失、生物多樣性降低及環(huán)境污染等問題的產(chǎn)生[2-4],且在多雨的季節(jié)不利于田間機(jī)械操作。果園生草是指對(duì)果園實(shí)施全園或行間生草覆蓋,每年割草1~2次覆于樹盤下或用于發(fā)展養(yǎng)殖業(yè),亦可常年不刈割的一種果園土壤耕作管理模式[5-6],其已經(jīng)成為北美[7]和歐洲地區(qū)[8-9]果園建設(shè)的主流模式。與清耕模式相比,其有利于構(gòu)建良好的果園生產(chǎn)體系、改善果園環(huán)境、提高果園生產(chǎn)力[7,10]。
果園生草具有改良土壤理化性質(zhì)、調(diào)節(jié)果園生態(tài)環(huán)境、抑制雜草和病害、促進(jìn)果樹生長(zhǎng)發(fā)育的生產(chǎn)生態(tài)效應(yīng),所以被認(rèn)為是一種可持續(xù)的果園管理模式[11-13]。該模式自20世紀(jì)90年代被引入中國(guó),率先在福建、廣東、山東等地開始應(yīng)用,但直至目前我國(guó)果園土壤耕作管理措施仍以清耕法為主,其主要原因一方面受到 “除草務(wù)盡”、“與果爭(zhēng)水肥”等傳統(tǒng)觀念的影響,另一方面因各果產(chǎn)區(qū)氣候、立地條件等差異較大,在草種選擇與田間管理方面缺乏相應(yīng)的規(guī)范化技術(shù)[14-16]。近幾年有關(guān)果園生草的綜述文章也比較多,王艷廷等[3]綜述了生草對(duì)果園土壤、小氣候、病蟲害、樹體生長(zhǎng)及果實(shí)品質(zhì)等的影響,李發(fā)林等[4]綜述了果園生草模式的水土保持效應(yīng),杜麗清等[14]主要分析了生草栽培的果園環(huán)境效應(yīng)及果樹生理效應(yīng)。本研究側(cè)重分析生草對(duì)果園土壤理化性狀的影響效果及造成這些影響的原因,旨在為果園生草模式有關(guān)的研究工作和進(jìn)一步推廣應(yīng)用提供依據(jù)。
國(guó)內(nèi)大量研究表明果園生草可使土壤結(jié)構(gòu)得到改善、增加孔隙度、降低容重,且能增強(qiáng)土壤水分的入滲能力和持水能力。黃土高原渭北蘋果(Malusdomestica)園間作白三葉(Trifoliumrepens) 7年以后改變了土壤團(tuán)聚體有機(jī)碳含量與分布,增加了果園土壤水穩(wěn)性團(tuán)聚體平均重量直徑,降低了團(tuán)聚體破壞率,顯著提高了0~20 cm土層>0.25 mm水穩(wěn)性團(tuán)聚體的含量及其穩(wěn)定性[17]。生草區(qū)比清耕區(qū)土壤平均容重降低6.51%,其中0~20 cm土層土壤容重降低6.93%,20~40 cm土層土壤容重降低6.05%[18]。在山西平定縣的研究表明果園生草覆蓋區(qū)與對(duì)照相比,直徑1.0 mm以上的土壤團(tuán)聚體增加了10.2%~12.2%,土壤容重下降4.7%~10.8%,土壤孔隙度增加2.5%~5.5%[19]。茶園間作牧草后,與清耕相比其土壤結(jié)構(gòu)和物理性狀得到了明顯改善,土壤團(tuán)聚體數(shù)量增加,通透性改善,容重下降,持水能力增強(qiáng)[20]。國(guó)外也有一些研究表明果園種草可改善土壤結(jié)構(gòu),降低土壤板結(jié)發(fā)生的可能性,提高土壤滲水能力和保水能力[13,21]。還有研究指出生草使得果園及橄欖(Oleaeuropaea)園土壤的容重增加,飽和導(dǎo)水率降低,這主要是頻繁使用割草機(jī)造成的[22-24]。綜上,在清耕果園種草可以改善土壤結(jié)構(gòu),增強(qiáng)其保水能力,但不合理的牧草刈割模式反而可能會(huì)破壞土壤結(jié)構(gòu),所以應(yīng)針對(duì)不同牧草品種采取適宜的管理措施。
果園生草后果樹和草之間的水分競(jìng)爭(zhēng)一直是學(xué)者和果農(nóng)最關(guān)注的問題之一,相關(guān)的研究結(jié)果因研究地區(qū)以及覆蓋草種的不同而出現(xiàn)差異[25-28]。
果園生草既具有保水的效應(yīng),也有爭(zhēng)水的效應(yīng)(表1)。保水主要體現(xiàn)在以下兩個(gè)方面。首先,與清耕相比,生草能夠增加對(duì)降雨的攔截,減少地表徑流,特別是在降雨較多的區(qū)域或季節(jié)。其次,生草能夠優(yōu)化土壤結(jié)構(gòu),提高土壤的貯水能力,在多雨季節(jié)能顯著增加深層土壤的貯水量。Palese等[23]指出,生草使秋冬雨季過后橄欖園100~200 cm之間的土壤水分提高17%~45%,能夠有效緩解春季和夏季的干旱。生草與果樹之間的水分競(jìng)爭(zhēng)與降雨量的豐欠關(guān)系密切。根據(jù)Ritchie[34]的蒸發(fā)理論可知,第一階段的土壤蒸發(fā)主要和土表的濕潤(rùn)頻率有關(guān)。多雨季節(jié),清耕果園土表蒸發(fā)劇烈,生草可大幅度減少地表的太陽輻射進(jìn)而降低土壤蒸發(fā),起到保水作用;而在少雨季節(jié),清耕果園土表蒸發(fā)較為微弱,生草果園牧草的耗水量大于土壤蒸發(fā)量,所以生草的爭(zhēng)水效應(yīng)明顯[28-32]。在生產(chǎn)實(shí)踐中,應(yīng)選擇適宜的草種,加強(qiáng)生草的管理,促進(jìn)生草的保水效應(yīng),抑制其爭(zhēng)水效應(yīng)。例如,在Oliveira等[22]的研究中,他們每?jī)芍茇赘钜淮巫涎蛎?Festucarubra),以防止其對(duì)土壤水分的過度消耗。需要注意的是,不能片面的因?yàn)榉N草爭(zhēng)水而否定生草模式,因?yàn)樯輰?duì)土壤有機(jī)質(zhì)積累、養(yǎng)分積累、增加微生物多樣性及酶活性等還有重要的促進(jìn)作用,下面幾部分將予以綜述。
果園生草由于增加了地表覆蓋,在高溫季節(jié)可減少太陽光對(duì)地面的直接照射,減緩熱量向深層的傳遞,使得地表溫度升高較慢,有效降低水分蒸發(fā)。在寒冷的冬季和夜晚,生草對(duì)地面可起到保溫作用,有助于縮小果園土壤的年溫差和日溫差,增強(qiáng)果園的抗逆能力[35-37]。例如,葡萄(Vitisvinifera)園行間種植白三葉可使夏季高溫時(shí)地表溫度顯著降低,特別是在中午12:00時(shí),降幅高達(dá)21.1%[38];桔(Platycodongrandiflorus)園采取生草覆蓋后,夏季高溫干旱前期的氣溫比清耕對(duì)照低1.0~10.0 ℃,高溫干旱期氣溫較清耕低1.0~9.0 ℃[39];茶園間作白三葉草能降低土壤日溫差,增強(qiáng)同一層次土壤溫度的相對(duì)穩(wěn)定性,有利于茶樹穩(wěn)產(chǎn)高產(chǎn)[20];在高原溝壑果園,覆草法在春、夏季對(duì)土壤具有明顯的降溫作用,在秋末覆草比清耕法提高地溫1.5 ℃,具有一定的保溫作用,有利于果樹根系的生長(zhǎng)和養(yǎng)分積累[40];桃(Amygdaluspersica)樹行間種植白三葉,在溫度低時(shí)起保溫作用,在溫度高時(shí)對(duì)桃園有降溫作用,在春季干旱時(shí)較清耕區(qū)明顯地提高相對(duì)濕度,從而為桃樹提供適宜的環(huán)境條件[41];幼齡桔園間作黑麥草或黑麥草和紫云英(Astragalussinicus)混播具有冬季保暖作用,有利于幼齡桔園免受凍害,保證產(chǎn)量[42]。果園生草對(duì)土壤溫度的調(diào)節(jié)是生草措施影響生態(tài)效應(yīng)的重要基礎(chǔ)。通過覆蓋的措施降低土壤溫差不僅能減少土壤水分的無效蒸發(fā),也有利于土壤微生物的繁殖和活動(dòng),從而促進(jìn)有機(jī)質(zhì)的分解及土壤養(yǎng)分的積累等過程。
Neilsen等[43]指出發(fā)展果園生草模式的主要原因是其可以增加土壤有機(jī)碳含量,進(jìn)而提高土壤肥力,增加土壤微生物多樣性,減少農(nóng)藥和化肥的使用,生產(chǎn)出優(yōu)質(zhì)的水果。生草后土壤有機(jī)碳含量的增加與生草年限緊密相關(guān)。加拿大不列顛哥倫比亞省有灌溉條件的蘋果園種植苜蓿(Medicagosativa)兩年后,土壤有機(jī)碳與清耕處理相比無顯著增加,4年后增加9.2%,6年后增加27.8%[1]。陜西渭北旱塬蘋果園連續(xù)6年種植白三葉使土壤有機(jī)碳含量增加19.6%,果實(shí)產(chǎn)量增加14.4%,單果重增加10.2%[44]。不同草種對(duì)果園土壤有機(jī)碳的影響效果也有所不同。Qian等[51]在陜西洛川旱作果園的研究結(jié)果表明,種植白三葉、小冠花和多年黑麥草3年后,土壤有機(jī)碳分別提高19.6%,25.4%和9.5%。山西萬榮縣有灌溉條件果園種植不同牧草使土壤有機(jī)碳都大幅度提高,但提高幅度差異不顯著,在27%~31%之間[45]。新疆南部阿克蘇地區(qū)果園人工生草和自然生草兩種措施都使土壤有機(jī)碳有所提高,但人工生草的提高幅度更大;人工生草和自然生草條件下0~10 cm土層有機(jī)碳分別比清耕提高了10.7%和1.8%,10~20 cm土層有機(jī)碳增加了10.1%和3.1%[46]。也有研究指出牧草混播比單播提高土壤有機(jī)碳的效果更加顯著[47]。土壤有機(jī)碳近年來越來越受到人們關(guān)注,有機(jī)碳的增加意味著土壤固定了更多的溫室氣體CO2,所以果園生草是一種綠色環(huán)保的生產(chǎn)方式。但是不同生草種類對(duì)土壤有機(jī)碳狀況的影響存在一定的差異,有機(jī)碳的積累程度還和各地的氣候條件、土壤類型和生草年限等因素有關(guān)。
不同研究得出的牧草對(duì)土壤養(yǎng)分的影響效應(yīng)不盡相同(表2)。果園生草后,牧草主要通過以下幾個(gè)機(jī)制影響土壤的養(yǎng)分。首先,牧草的生長(zhǎng)會(huì)消耗土壤的養(yǎng)分,與果樹存在養(yǎng)分競(jìng)爭(zhēng)。其次,種植牧草后土壤的微生物數(shù)量可能會(huì)大幅度增加,從而促進(jìn)有機(jī)碳的分解,增加土壤礦質(zhì)養(yǎng)分含量;再者,豆科牧草具有固氮作用,種植豆科牧草亦可提高氮素利用效率[48-50]。果園生草下,牧草對(duì)養(yǎng)分的消耗與促進(jìn)作用之間存在一個(gè)臨界點(diǎn),且與果園的基礎(chǔ)養(yǎng)分關(guān)系密切;如果其正效應(yīng)大于負(fù)效應(yīng),則表現(xiàn)出養(yǎng)分的積累,否則表現(xiàn)出牧草與果樹之間的養(yǎng)分競(jìng)爭(zhēng)。表2列出的結(jié)果差異較大,但總體上牧草對(duì)土壤養(yǎng)分積累顯示出正效應(yīng)。李會(huì)科等[52]指出,生草的前期4年,土壤養(yǎng)分消耗大于積累,蘋果與牧草存在養(yǎng)分競(jìng)爭(zhēng),在第 5 年全氮、全磷、全鉀呈現(xiàn)恢復(fù)性增長(zhǎng),出現(xiàn)這種結(jié)果可能與試驗(yàn)地的基礎(chǔ)養(yǎng)分較差有關(guān)。
牧草品種對(duì)土壤養(yǎng)分的影響效應(yīng)差異較大。例如Qian等[51]指出,白三葉、小冠花和黑麥草都顯著提高了土壤速效鉀和速效磷含量,以白三葉的效果最為顯著;種植小冠花和黑麥草的果園土壤速效氮顯著低于清耕,表明它們與果樹之間存在氮的競(jìng)爭(zhēng),而種植豆科牧草白三葉的果園土壤的速效氮顯著高于清耕處理。葡萄園行間種植白三葉草和紫花苜蓿使土壤速效氮、全氮含量顯著升高,高羊茅使堿解氮和全氮含量顯著降低[53]。Jerie等[55]的研究表明種植豆科牧草可提高土壤硝態(tài)氮和銨態(tài)氮的含量,同時(shí)可降低土壤的含水量,有助于減少雨季氮素的深層滲漏。
表2 生草對(duì)果園養(yǎng)分的影響效應(yīng)
李會(huì)科等[18]對(duì)黃土高原旱地生草果園土壤微生物的研究得出,與清耕相比,生草后各樣地細(xì)菌、真菌和放線菌的數(shù)目均有提高,說明生草后有利于提高土壤微生物的數(shù)量。葡萄園生草可顯著提高土壤微生物數(shù)量,較清耕處理固氮菌與纖維素分解菌數(shù)量升高的幅度較大,放線菌數(shù)量升高的幅度最小[53]。Shishido等[56]認(rèn)為果園土地的不同利用方式,可改變果園微生物群落結(jié)構(gòu),St. Laurent等[57]的研究也證明果園生草有助于增加土壤微生物的數(shù)量。微生物生物量代表參與土壤能量和養(yǎng)分循環(huán)以及有機(jī)物質(zhì)轉(zhuǎn)化所對(duì)應(yīng)的微生物的數(shù)量,其多少是決定有機(jī)物分解﹑養(yǎng)分循環(huán)和能量流動(dòng)的重要因素。通過種草的方式改善微生物群落結(jié)構(gòu)是防治果園土壤退化、提高果園生態(tài)涵養(yǎng)水平的有效措施。
李會(huì)科等[58]研究表明在0~60 cm土層,果園生草區(qū)及清耕區(qū)過氧化氫酶﹑尿酶及堿性磷酸酶活性變化趨勢(shì)是上層明顯高于下層,隨土壤深度增加而減少;果園生草區(qū)生草第3和第5年土壤過氧化氫酶﹑尿酶及堿性磷酸酶活性都顯著高于清耕區(qū),并隨生草年限的增加,3種酶活性趨于增加;同時(shí),不同的果園生草對(duì)過氧化氫酶﹑尿酶、堿性磷酸酶活性影響存在差異。生草栽培提高了梨園土壤堿性磷酸酶、蔗糖酶和過氧化氫酶的活性[59]。葡萄園行間種植的紫花苜蓿、白三葉和高羊茅等土壤酶活性研究測(cè)定結(jié)果表明,行間播種紫花苜蓿使土壤的脲酶、磷酸酶及纖維素酶活性明顯高于其他處理,而過氧化氫酶在各處理中變化不大[60]。土壤酶是微生物及植物根系等產(chǎn)生的生物活性物質(zhì),與土壤肥力狀況和土壤環(huán)境質(zhì)量密切相關(guān),土壤酶活性增加也表明種草改善了土壤的質(zhì)量。
生草栽培可改善果園土壤結(jié)構(gòu),提高土壤的導(dǎo)水性能和保水性能,但頻繁的機(jī)械操作可能會(huì)壓實(shí)土壤,降低土壤導(dǎo)水性能,所以在實(shí)踐中應(yīng)采取適度的割草頻率或改進(jìn)鋤草技術(shù)。生草增加了地表覆蓋,有助于攔截降雨,減少地表徑流[61],雨季增加深層土壤貯水,從而減少旱季缺水對(duì)果樹生長(zhǎng)的抑制,提高雨水的利用率。旱季土壤水分虧缺常常會(huì)出現(xiàn)牧草與果樹爭(zhēng)水的現(xiàn)象,需要通過選擇適宜的草種及加強(qiáng)田間管理等措施來減小爭(zhēng)水對(duì)果樹造成的不利影響。生草覆蓋不僅有助于土壤有機(jī)碳的積累,也可調(diào)節(jié)果園土壤溫度,進(jìn)而增加土壤微生物的多樣性和酶活性,微生物多樣性和酶活性的提高能夠促進(jìn)有機(jī)碳的分解,提高土壤肥力。雖然牧草的生長(zhǎng)會(huì)消耗土壤養(yǎng)分,但微生物數(shù)量的增多會(huì)促進(jìn)有機(jī)碳的分解,從而增加土壤養(yǎng)分,同時(shí)豆科牧草也可通過固氮作用增加土壤養(yǎng)分,種植牧草多年在多數(shù)情況下對(duì)土壤養(yǎng)分的積累會(huì)產(chǎn)生正效應(yīng)。
果園地面管理對(duì)于提高水肥等農(nóng)業(yè)資源的高效利用、改善果實(shí)品質(zhì)及減少CO2和N2O等溫室氣體排放有著重要的影響。很多研究表明果園地面覆蓋地膜、秸稈或者硬質(zhì)木屑也具有改善土壤結(jié)構(gòu)、減少土壤蒸發(fā)、減少溫室氣體排放及改善果實(shí)品質(zhì)的效應(yīng)[1,10,22-23,51,62-63]。干旱半干旱雨養(yǎng)農(nóng)業(yè)區(qū)水分是限制果樹生長(zhǎng)的關(guān)鍵因子,果園生草可能會(huì)促進(jìn)果園水分虧缺,所以可以嘗試地膜覆蓋、秸稈覆蓋等模式。目前所開展的研究主要局限在生草后對(duì)土壤理化性狀、果園小氣候及果樹生長(zhǎng)等方面,對(duì)果草系統(tǒng)光、水、肥等傳輸過程方面的研究較少。因此,今后應(yīng)當(dāng)加強(qiáng)這方面的觀測(cè)和模擬,并以地上果草的生長(zhǎng)和地下根系的發(fā)展為紐帶,將水、肥、氣、熱等的傳輸利用過程結(jié)合起來建立模擬果草系統(tǒng)資源利用和生長(zhǎng)果草的模擬模型,用以指導(dǎo)果園生產(chǎn)管理。
References:
[1]Neilsen G, Forge T, Angers D,etal. Suitable orchard floor management strategies in organic apple orchards that augment soil organic matter and maintain tree performance. Plant and Soil, 2014, 378(1): 325-335.
[2]Mason J L. Effect of cultivation and nitrogen on fruit quality, yield and color of Mcintosh apples grown in irrigated grass sod cover crop. Canadian Journal of Plant Science, 1969, 49(2): 149-154.
[3]Wang Y T, Ji X H, Wu Y S,etal. Research progress of cover crop in Chinese orchard. Chinese Journal of Applied Ecology, 2015, 26(6): 1892-1900.
[4]Li F L, Zheng Y R, Zheng T,etal. Research advances on soil and water conservation effect of pasture-planting in orchard. Chinese Agricultural Science Bulletin, 2013, 29(34): 34-39.
[5]Meng L. Orchard Prataculture Technology[M]. Beijing: Chemical Industry Press, 2004.
[6]Ma G H, Zeng M, Wang Y Y,etal. Research progress on orchard sod culture. Chinese Agricultural Science Bulletin, 2005, 21(7): 273-277.
[7]Peck G M, Merwin I A, Thies J E,etal. Soil properties change during the transition to integrated and organic apple production in a New York orchard. Applied Soil Ecology, 2011, 48(1): 18-30.
[8]Celano G, Palese A M, Ciucci A,etal. Evaluation of soil water content in tilled and cover-cropped olive orchards by the geoelectrical technique. Geoderma, 2011, 163(3-4): 163-170.
[9]Ramos M E, Benítez E, García P A,etal. Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: effects on soil quality. Applied Soil Ecology, 2010, 44(1): 6-14.
[10]Wang P, Wang Y, Wu Q S. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Soil and Tillage Research, 2016, 155: 54-61.
[11]Milgroom J, Auxiliadora Soriano M, Garrido J M,etal. The influence of a shift from conventional to organic olive farming on soil management and erosion risk in southern Spain. Renewable Agriculture and Food Systems, 2007, 22(1): 1-10.
[12]Wardle D A, Yeates G W, Bonner K I,etal. Impacts of ground vegetation management strategies in a kiwifruit orchard on the composition and functioning of the soil biota. Soil Biology and Biochemistry, 2001, 33(7-8): 893-905.
[13]Hoyt G D, Hargrove W L. Legume cover crops for improving crop and soil management in the southern United States. HortScience, 1986, 21(3): 397-402.
[14]Du L Q, Wu H, Zheng L Y. Review of eco-enviromental effect of orchard sod culture. Chinese Agricultural Science Bulletin, 2015, 31(11): 217-221.
[15]Lv D G, Qin S J, Du G D,etal. The research on eco-physiologic effects and application of orchard sod culture. Journal of Shenyang Agriculture University, 2012, 43(2): 131-136.
[16]Kou J C, Yang W Q, Han M Y,etal. Research progress on interplanting grass in orchard in China. Pratacultural Science, 2010, 27(7): 154-159.
[17]Wang Y J, Li T C, Zhang D Y,etal. Effects of intercropping white clover on soil aggregates and soil organic carbon of aggregates in apple-white clover intercropping system. Acta Agrestia Sinica, 2013, 21(3): 485-493.
[18]Li H K, Zhao Z Y, Zhang G J. Effects of planting different herbage on soil fertility of apple orchard in weibei areas. Journal of Northwest Forestry University, 2004, 19(2): 31-34.
[19]Hao S Y, Liu H D, Niu J L,etal. Effects of herbage-mulching to the apple yield and soil water and other soil physical properties in the loess plateau. Soils and Fertilizers, 2003, (1): 25-27.
[20]Song T Q, Xiao R L, Peng W X,etal. Effects of straw mulching and white clover intercropping on soil environment and the production of tea in young tea plantation in subtropical hilly region. Transactions of the CSAE, 2006, 22(7): 60-64.
[21]Bugg R L, Waddington C. Influence of understory cover and surrounding habitat on interactions between beneficial arthropods and pets in orchards using cover crops to manage arthropod pests of orchards: a review. Agriculture, Ecosystems & Environment, 1994, 50(1): 11-28.
[22]Oliveira M T, Merwin I A. Soil physical conditions in a New York orchard after eight years under different groundcover management systems. Plant and Soil, 2001, 234(2): 233-237.
[23]Palese A M, Vignozzi N, Celano G,etal. Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard. Soil and Tillage Research, 2014, 144: 96-109.
[24]Merwin I A, Stiles W C, van Es H M. Orchard groundcover management impacts on soil physical properties. Journal of the American Society for Horticultural Science, 1994, 119(2): 216-222.
[25]Zhao Z Y, Li H K. The effects of interplant different herbage on soil water in apple orchards in the area of weibei plateau. Acta Horticulturae Sinica, 2006, 33(3): 481-484.
[26]Li G H, Yi H L. Influences of sod culture on the soil water content, effect of soil nutrients, fruit yield and quality in citrus orchard. Chinese Journal of Eco-agriculture, 2005, 13(2): 161-163.
[27]Monteiro A, Lopes C M. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agriculture, Ecosystems & Environment, 2007, 121(4): 336-342.
[28]Li G C, Wang B Y, Wang M X. Effects of grass on orchard soil water and evapotranspiration. China Fruits, 1996, (1): 18-19.
[29]Hui Z M, Li H, Zhang Z W,etal. Effect of green coverings on soil water content in vineyards. Agricultural Research in the Arid Areas, 2004, 22(4): 123-126.
[30]Li T C, Li H K, Guo H,etal. Soil moisture characteristics of different herbages on soil water in apple orchard in the area of weibei plateau in dry season. Research of Soil and Water Conservation, 2014, 21(1): 29-33.
[31]Li H K, Zhang G J, Zhao Z Y,etal. Effects of growing different herbages on soil water-holding of a non-irrigated apple orchard in the weibei area of the Loess Plateau. Acta Agrestia Sinica, 2007, 15(1): 76-81.
[32]Xu M G, Wen S L, Gao J S. Effects of different forage planting model on soil and water conservation and environments in red hilly regions. Journal of Soil and Water Conservation, 2001, 15(1): 77-80.
[33]Wang Q J, Cheng F H, Zhao Z J. Effects of grassing and mulching on soil water and structure of pear orchard. Chinese Agricultural Science Bulletin, 2010, 26(9): 259-262.
[34]Ritchie J T. Model for predicting evaporation from row crop with incomplete cover. Water Resource Research, 1972, 8(5): 1204-1213.
[35]Chen X, Tang J J, Fang Z G,etal. Ecological role of weeds conserved in orchard in red soil hilly area during hot-dry season. Chinese Journal of Ecology, 2003, 22(6): 38-42.
[36]Meng L, Yu L H, Mao P C,etal. Effects of inter-planting cocksfoot and white clover as cover crops on the microclimate of apple orchard. Pratacultural Science, 2009, 26(8): 132-136.
[37]Qi X S, Ding W J, Wang R Q,etal. Effects of interplantation ofTrifoliumrepensin orchards on soil ecology and apple tree production. Rural Eco-Environment, 2005, 21(2): 13-17.
[38]Wei Z F, Guo J N, Gao D T,etal. The effect of green cover on tree and soil physical properties of red globe vineyards. Journal of Henan Agricultural Sciences, 2012, 41(2): 122-125.
[39]Zhang M F. Effects of bio-mulching on soil temperature, humidity and nutrients in orangerie. Fujian Fruits, 1988, (1): 60-62.
[40]Li H Y. Test of different kinds micro-irrigation for apple trees in gully areas in the plateau. Agricultural Research in the Arid Areas, 2001, 19(4): 32-37.
[41]Mao P C, Meng L, Zhang G F,etal. Effect of planting white clover as a cover crop on the microclimate of a peach orchard and the peach quality. Acta Agrestia Sinica, 2006, 14(4): 360-364.
[42]Wu J J, Li Q S, Yan L J. Soil ecological effects of intercropping forage crops in young citrus plantation and its influence on growth of the trees. Chinese Journal of Ecology, 1996, 15(4): 10-14.
[43]Neilsen G H, Lowery D T, Forge T A,etal. Organic fruit production in British Columbia. Canadian Journal of Plant Science, 2009, 89(4): 677-692.
[44]Deng F C, An G Y, Yu J Y,etal. Research on growing grass in apple orchard in weibei upland. Journal of Fruit Science, 2003, 20(6): 506-508.
[45]Liu H D, Hao S Y, Cao Q,etal. Effect of grass cover on soil nutrient and yield and quality of apple. Chinese Journal of Soil Science, 2003, 34(3): 184-186.
[46]Sun X, Chai Z P, Jiang P A,etal. Effects of growing grass on soil fertility of the arid land apple orchard in the south of xinjiang. Chinese Agricultural Science Bulletin, 2011, 27(7): 177-181.
[47]Chen Q X, Liao J S, Zheng G H,etal. Effects of sown grass mulch on soil fertility and tree growth of young longan orchard. Journal of Fujian Agricultural University, 1996, 25(4): 44-47.
[48]Hoagland L, Carpenter-Boggs L, Granatstein D,etal. Orchard floor management effects on nitrogen fertility and soil biological activity in a newly established organic apple orchard. Biology and Fertility of Soils, 2008, 45(1): 11-18.
[49]Yao S, Merwin I A, Bird G W,etal. Orchard floor management practices that maintain vegetative or biomass groundcover stimulate soil microbial activity and alter soil microbial community composition. Plant and Soil, 2005, 271(1): 377-389.
[50]Kamh M, Horst W J, Amer F,etal. Mobilization of soil and fertilizer phosphate by cover crops. Plant and Soil, 1999, 211(1): 19-27.
[51]Qian X, Gu J, Pan H,etal. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. European Journal of Soil Biology, 2015, 70: 23-30.
[52]Li H K, Zhang G J, Zhao Z Y,etal. Effects of interplanted herbage on soil properties of non-irrigated apple orchards in the loess plateau. Acta Prataculturae Sinica, 2007, 16(2): 32-39.
[53]Hui Z M, Li H, Long Y,etal. Variation of soil microbial populations and relationships Between microbial factors and soil nutrients in cover cropping system of vineyard. Acta Horticulturae Sinica, 2010, 37(9): 1395-1402.
[54]Fan Y Z. The Influence of interplanting white clover in the liyuan on soil nutrient and microorganism’s. Northern Horticulture, 2010, 37(6): 72-73.
[55]Jerie P H, Stork P R. Initial studies of the growth, nitrogen sequestering, and de-watering potential of perennial grass selections for use as nitrogen catch crops in orchards. Australian Journal of Agricultural Research, 2003, 54(1): 27-37.
[56]Shishido M, Sakamoto K, Yokoyama H,etal. Changes in microbial communities in an apple orchard and its adjacent bush soil in response to season, land-use, and violet root rot infestation. Soil Biology and Biochemistry, 2008, 40(6): 1460-1473.
[57]St. Laurent A, Merwin I A, Thies J E. Long-term orchard groundcover management systems affect soil microbial communities and apple replant disease severity. Plant and Soil, 2008, 304(1): 209-225.
[58]Li H K. Eco-environmental Effect and Integrated Technical System of Green Cover in Apple Orchard in Weibei Dryland Farming Areas[D]. Yang Ling: Journal of Northwest A & F University, 2008 .
[59]Xu L F, Han Q F, Wu Z Y,etal. Spatial variability of soil enzyme activity in pear orchard under clean and sod cultivation models. Scientia Agricultura Sinica, 2010, 43(23): 4977-4982.
[60]Long Y, Hui Z M, Chen J M,etal. Ecological distributing of soil microorganisms and activity of soil enzymes in vineyard green covering. Journal of Northwest A & F University (Natural Science Edition), 2007, 35(6): 99-103.
[61]Gao X Y, Zhang X X, Zhu J G,etal. A comparison of the effect of three grass species on controlling non-point pollution in orchard. Acta Prataculturae Sinica, 2015, 24(2): 49-54.
[62]Meyer A H, Wooldridge J, Dames J F. Effect of conventional and organic orchard floor management practices on arbuscular mycorrhizal fungi in a ‘Cripp’s Pink’/M7 apple orchard soil. Agriculture, Ecosystems & Environment, 2015, 213: 114-120.
[63]Guerra B, Steenwerth K. Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: a review. American Journal of Enology and Viticulture, 2012, 63(2): 149-164.
[3]王艷廷, 冀曉昊, 吳玉森, 等. 我國(guó)果園生草的研究進(jìn)展. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(6): 1892-1900.
[4]李發(fā)林, 鄭域茹, 鄭濤, 等. 果園生草栽培水土保持效應(yīng)研究進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào), 2013, 29(34): 34-39.
[5]孟林. 果園草業(yè)技術(shù)[M]. 北京: 化學(xué)工業(yè)出版社, 2004.
[6]馬國(guó)輝, 曾明, 王羽玥, 等. 果園生草制研究進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào), 2005, 21(7): 273-277.
[14]杜麗清, 吳浩, 鄭良永. 果園生草栽培的生態(tài)環(huán)境效應(yīng)研究進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào), 2015, 31(11): 217-221.
[15]呂德國(guó), 秦嗣軍, 杜國(guó)棟, 等. 果園生草的生理生態(tài)效應(yīng)研究與應(yīng)用. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 43(2): 131-136.
[16]寇建村, 楊文權(quán), 韓明玉, 等. 我國(guó)果園生草研究進(jìn)展. 草業(yè)科學(xué), 2010, 27(7): 154-159.
[17]王英俊, 李同川, 張道勇, 等. 間作白三葉對(duì)蘋果/白三葉復(fù)合系統(tǒng)土壤團(tuán)聚體及團(tuán)聚體碳含量的影響. 草地學(xué)報(bào), 2013, 21(3): 485-493.
[18]李會(huì)科, 趙政陽, 張廣軍. 種植不同牧草對(duì)渭北蘋果園土壤肥力的影響. 西北林學(xué)院學(xué)報(bào), 2004, 19(2): 31-34.
[19]郝淑英, 劉蝴蝶, ??×? 等. 黃土高原區(qū)果園生草覆蓋對(duì)土壤物理性狀、水分及產(chǎn)量的影響. 土壤肥料, 2003, (1): 25-27.
[20]宋同清, 肖潤(rùn)林, 彭晚霞, 等. 覆蓋與間作對(duì)亞熱帶丘陵幼齡茶園土壤環(huán)境和生產(chǎn)的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2006, 22(7): 60-64.
[25]趙政陽, 李會(huì)科. 黃土高原旱地蘋果園生草對(duì)土壤水分的影響. 園藝學(xué)報(bào), 2006, 33(3): 481-484.
[26]李國(guó)懷, 伊華林. 生草栽培對(duì)柑橘園土壤水分與有效養(yǎng)分及果實(shí)產(chǎn)量, 品質(zhì)的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2005, 13(2): 161-163.
[28]李光晨, 王炳義, 王茂興. 生草對(duì)灌溉果園土壤水分及其蒸散的影響. 中國(guó)果樹, 1996, (1): 18-19.
[29]惠竹梅, 李華, 張振文, 等. 西北半干旱地區(qū)葡萄園生草對(duì)土壤水分的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2004, 22(4): 123-126.
[30]李同川, 李會(huì)科, 郭宏, 等. 渭北黃土高原果園生草地旱季土壤水分特征研究. 水土保持研究, 2014, 21(1): 29-33.
[31]李會(huì)科, 張廣軍, 趙政陽, 等. 黃土高原旱地蘋果園生草對(duì)土壤貯水的影響. 草地學(xué)報(bào), 2007, 15(1): 76-81.
[32]徐明崗, 文石林, 高菊生. 紅壤丘陵區(qū)不同種草模式的水土保持效果與生態(tài)環(huán)境效應(yīng). 水土保持學(xué)報(bào), 2001, 15(1): 77-80.
[33]王慶江, 程福厚, 趙志軍. 生草和覆蓋對(duì)梨園土壤水分和結(jié)構(gòu)的影響. 中國(guó)農(nóng)學(xué)通報(bào), 2010, 26(9): 259-262.
[35]陳欣, 唐建軍, 方治國(guó), 等. 高溫干旱季節(jié)紅壤丘陵果園雜草保持的生態(tài)作用. 生態(tài)學(xué)雜志, 2003, 22(6): 38-42.
[36]孟林, 俞立恒, 毛培春, 等. 蘋果園間種鴨茅和白三葉對(duì)園區(qū)小環(huán)境的影響. 草業(yè)科學(xué), 2009, 26(8): 132-136.
[37]齊鑫山, 衛(wèi)建, 王仁卿, 等. 果園間種白三葉草對(duì)土壤生態(tài)及果樹生產(chǎn)的影響. 農(nóng)村生態(tài)環(huán)境, 2005, 21(2): 13-17.
[38]魏志峰,郭景南,高登濤,等. 行間生草對(duì)紅地球葡萄園樹體及土壤物理性狀的影響. 河南農(nóng)業(yè)科學(xué), 2012, 41(2): 122-125.
[39]張名福. 生物覆蓋對(duì)改善柑園溫、濕度和營(yíng)養(yǎng)物質(zhì)的效應(yīng). 福建果樹, 1988, (1): 60-62.
[40]李懷有. 高塬溝壑區(qū)果園土壤管理制度試驗(yàn)研究. 干旱地區(qū)農(nóng)業(yè)研究, 2001, 19(4): 32-37.
[41]毛培春, 孟林, 張國(guó)芳, 等. 白三葉對(duì)桃園小氣候和桃品質(zhì)的影響. 草地學(xué)報(bào), 2006, 14(4): 360-364.
[42]吳建軍, 李全勝, 嚴(yán)力蛟. 幼齡桔園間作牧草的土壤生態(tài)效應(yīng)及其對(duì)桔樹生長(zhǎng)的影響. 生態(tài)學(xué)雜志, 1996, 15(4): 10-14.
[44]鄧豐產(chǎn), 安貴陽, 郁俊誼, 等. 渭北旱塬蘋果園的生草效應(yīng). 果樹學(xué)報(bào), 2003, 20(6): 506-508.
[45]劉蝴蝶, 郝淑英, 曹琴, 等. 生草覆蓋對(duì)果園土壤養(yǎng)分、果實(shí)產(chǎn)量及品質(zhì)的影響. 土壤通報(bào), 2003, 34(3): 184-186.
[46]孫霞, 柴仲平, 蔣平安, 等. 生草對(duì)新疆南部干旱區(qū)蘋果園土壤肥力的影響. 中國(guó)農(nóng)學(xué)通報(bào), 2011, 27(7): 177-181.
[47]陳清西, 廖鏡思, 鄭國(guó)華, 等. 果園生草對(duì)幼齡龍眼園土壤肥力和樹體生長(zhǎng)的影響. 福建農(nóng)業(yè)大學(xué)學(xué)報(bào), 1996, 25(4): 44-47.
[52]李會(huì)科, 張廣軍, 趙政陽, 等. 生草對(duì)黃土高原旱地蘋果園土壤性狀的影響. 草業(yè)學(xué)報(bào), 2007, 16(2): 32-39.
[53]惠竹梅, 李華, 龍妍, 等. 葡萄園行間生草體系中土壤微生物數(shù)量的變化及其與土壤養(yǎng)分的關(guān)系. 園藝學(xué)報(bào), 2010, 37(9): 1395-1402.
[54]范玉貞. 梨園間種白三葉草對(duì)土壤養(yǎng)分與微生物的影響. 北方園藝, 2010, (6): 72-73.
[58]李會(huì)科. 渭北旱地蘋果園生草的生態(tài)環(huán)境效應(yīng)及綜合技術(shù)體系構(gòu)建[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2008.
[59]徐凌飛, 韓清芳, 吳中營(yíng), 等. 清耕和生草梨園土壤酶活性的空間變化. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(23): 4977-4982.
[60]龍妍, 惠竹梅, 程建梅, 等. 生草葡萄園土壤微生物分布及土壤酶活性研究. 西北農(nóng)林科技大學(xué)學(xué)報(bào) (自然科學(xué)版), 2007, 35(6): 99-103.
[61]高小葉, 張興興, 朱建國(guó), 等.生草栽培對(duì)果園面源污染的控制: 三種牧草的比較研究. 草業(yè)學(xué)報(bào), 2015, 24(2): 49-54.
Effects of living mulch on soil physical and chemical properties in orchards: a review
CAO Quan, SHEN Yu-Ying*, WANG Zi-Kui, ZHANG Xiao-Ming, YANG Xuan
StateKeyLaboratoryofGrasslandAgro-ecosystems,CollegeofPastoralAgricultureScienceandTechnology,LanzhouUniversity,Lanzhou730020,China
A review has been undertaken to provide a basis for further research on and the application of living mulch practices in orchards. The effects of living mulch on soils’ physical and chemical properties make an important contribution to intensive, efficient, ecological and sustainable production. Forage cultivation can reduce soil bulk density by 4.7%-13.0% and improve the content of soil aggregates, thus enhancing hydraulic properties and water retention capacity. Forage cultivation can also help to raise rainfall interception and improve water use efficiency. Forage grass will compete for water with fruit trees in drought seasons, though adverse effects can be reduced by selecting appropriate grass varieties and strengthening field management. Forage grass cover can improve soil organic carbon (SOC) content. SOC can be improved by 19.6%-27.8% after planting forage grass for 6 years. The accumulation of SOC increases as the duration of forage planting increases. Living mulch can help to adjust soil temperature, which enhances microbial diversity and enzymatic activity. Living mulch will directly deplete soil nutrients, but the increase in the number of microorganisms can promote the decomposition of organic matter that increases nutrients. Moreover, legumes add nutrients through nitrogen fixation. Living mulch usually has a positive effect on soil nutrient accumulation.
living mulch; soil moisture; soil nutrient; soil organic carbon; microbial diversity; soil enzymatic activity
10.11686/cyxb2015500http://cyxb.lzu.edu.cn
曹銓, 沈禹穎, 王自奎, 張小明, 楊軒. 生草對(duì)果園土壤理化性狀的影響研究進(jìn)展. 草業(yè)學(xué)報(bào), 2016, 25(8): 180-188.
CAO Quan, SHEN Yu-Ying, WANG Zi-Kui, ZHANG Xiao-Ming, YANG Xuan. Effects of living mulch on soil physical and chemical properties in orchards: a review. Acta Prataculturae Sinica, 2016, 25(8): 180-188.
2015-11-03;改回日期:2015-12-28
國(guó)家科技支撐計(jì)劃-西部城郊生態(tài)涵養(yǎng)高效農(nóng)業(yè)模式研究與示范項(xiàng)目(2014BAD14B006)資助。
曹銓(1989-),男,甘肅張掖人,在讀博士。E-mail:qcao14@lzu.edu.cn
Corresponding author.E-mail:yy.shen@lzu.edu.cn