高 達(dá) 林暢松 胡明毅 黃理力
(1.長(zhǎng)江大學(xué)地球科學(xué)學(xué)院 武漢 430100;2.長(zhǎng)江大學(xué)沉積盆地研究中心 武漢 430100;3.中國(guó)地質(zhì)大學(xué)(北京)海洋學(xué)院 北京 100083;4.中國(guó)石油杭州地質(zhì)研究院 杭州 310023)
?
利用自然伽馬能譜測(cè)井識(shí)別碳酸鹽巖高頻層序
——以塔里木盆地塔中地區(qū)T1井良里塔格組為例
高達(dá)1,2林暢松3胡明毅1,2黃理力4
(1.長(zhǎng)江大學(xué)地球科學(xué)學(xué)院武漢430100;2.長(zhǎng)江大學(xué)沉積盆地研究中心武漢430100;3.中國(guó)地質(zhì)大學(xué)(北京)海洋學(xué)院北京100083;4.中國(guó)石油杭州地質(zhì)研究院杭州310023)
碳酸鹽巖系地層中普遍發(fā)育高頻層序,且與四級(jí)、五級(jí)層序界面伴生的早期巖溶作用對(duì)油氣儲(chǔ)層的改善十分關(guān)鍵,然而基于測(cè)井資料如何客觀的識(shí)別和劃分高頻層序是學(xué)界不斷探索的難點(diǎn)問(wèn)題。論文選取塔里木盆地塔中地區(qū)的T1井,利用自然伽馬能譜測(cè)井中Th/U(釷/鈾)比值曲線,使用滑動(dòng)平均濾波和小波變換等方法,對(duì)上奧陶統(tǒng)良里塔格組開展了高頻層序研究。結(jié)果表明,Th/U比值曲線滑動(dòng)平均濾波處理后,能清晰、客觀地反映沉積旋回,其比值的增加指示沉積水體加深、泥質(zhì)增多,比值減少指示沉積水體變淺、泥質(zhì)減少;該井良里塔格組可劃分為3個(gè)三級(jí)層序、8個(gè)四級(jí)層序和32個(gè)五級(jí)層序,三~五級(jí)層序分別與小波變換得出一維離散曲線的振蕩趨勢(shì)非常吻合,四級(jí)和五級(jí)層序極有可能分別反映了米蘭科維奇旋回中地球偏心率長(zhǎng)周期旋回(0.4 Ma)和短周期旋回(0.1 Ma);連井對(duì)比表明塔中地良里塔格組下部的三級(jí)和四級(jí)層序發(fā)育具有明顯差異,這種差異受控于良里塔格組沉積前古地貌形態(tài);儲(chǔ)層發(fā)育段均與四級(jí)、五級(jí)層序界面有關(guān),塔中地區(qū)東部更易發(fā)育有利的儲(chǔ)層。研究結(jié)果對(duì)于依據(jù)測(cè)井資料開展碳酸鹽巖高頻層序研究具有理論意義,對(duì)于建立區(qū)內(nèi)的高精度層序地層格架進(jìn)而預(yù)測(cè)礁灘相儲(chǔ)層分布具有實(shí)際意義。
高頻層序自然伽馬能譜測(cè)井小波變換良里塔格組塔里木盆地
高頻層序是指發(fā)育在三級(jí)層序內(nèi)部的四級(jí)層序、五級(jí)層序以及更低級(jí)別的層序[1-2],對(duì)沉積地層的高頻層序或高頻旋回的研究已成為層序地層學(xué)和旋回地層學(xué)研究的熱點(diǎn)。由米蘭科維奇天文旋回造成的高頻海平面變化被認(rèn)為是高頻層序形成的驅(qū)動(dòng)因素,其中四級(jí)層序可相當(dāng)于準(zhǔn)層序組或中期基準(zhǔn)面旋回,五級(jí)層序可相當(dāng)于準(zhǔn)層序或短期基準(zhǔn)面旋回[2-6]。越來(lái)越多的研究表明,四級(jí)、五級(jí)層序界面往往與高頻海平面下降造成的碳酸鹽巖早期巖溶(同生期、準(zhǔn)同生期巖溶)密切相關(guān),進(jìn)而對(duì)改善儲(chǔ)層孔隙度起到至關(guān)重要的作用[7-10]。但是,在深部地震資料的精度和連續(xù)的巖芯資料不足的情況下,如何依據(jù)測(cè)井曲線有效識(shí)別高頻層序界面、建立高頻層序格架,成為準(zhǔn)確預(yù)測(cè)早期巖溶型碳酸鹽巖儲(chǔ)層所面臨的關(guān)鍵問(wèn)題。
自然伽馬能譜測(cè)井能夠同時(shí)反映地層中的鈾(238U)、釷(232Th)和鉀(40K)等三種放射性元素的含量,各元素的曲線及元素比值曲線在碳酸鹽巖層序地層研究方面應(yīng)用更為有效[11]。Th和K的含量主要反映碳酸鹽巖中的陸源碎屑成分(主要為黏土),且二者通常具有較好的相關(guān)性;U的富集則通常與有機(jī)碳含量及成巖過(guò)程(如白云石化)相關(guān),其分布不均一性突出,且與Th和K的相關(guān)性都較低[12-13]。碳酸鹽臺(tái)地上的海侵或淹沒界面表現(xiàn)為快速的Th和K含量的增加,Th和K的含量可以被用來(lái)對(duì)比碳酸鹽臺(tái)地和盆地沉積,分析海平面變化趨勢(shì)[14]。元素的比值變化可以指示海平面升降或沉積基準(zhǔn)面變化,如U/Th比值曲線上,高U/Th值部分指示正常海退,低U/Th值部分反映海侵過(guò)程[13];Th/K值增大可指示基準(zhǔn)面降低,反之代表基準(zhǔn)面上升,可用來(lái)劃分高頻層序[15-18]。
小波變換被譽(yù)為“數(shù)學(xué)顯微鏡”,能夠同時(shí)將信號(hào)的時(shí)間和頻率信息識(shí)別出來(lái),從而更準(zhǔn)確地得到不同時(shí)頻的數(shù)字信號(hào)的變化規(guī)律[19]。對(duì)自然伽馬曲線進(jìn)行小波變換是旋回地層學(xué)的研究的主要技術(shù),在識(shí)別和分析米蘭科維奇天文旋回方面取得了很好的效果[20-23]。這種方法能將不同級(jí)次的地層旋回性變化分別體現(xiàn)出來(lái),因此也被很好地應(yīng)用在層序地層學(xué)的研究中[24-26]。
論文使用了塔中地區(qū)鉆穿良里塔格組的T1井的自然伽馬能譜測(cè)井資料,在分析對(duì)比Th、U、K參數(shù)特征的基礎(chǔ)上,主要使用Th/U比值曲線,經(jīng)過(guò)滑動(dòng)平均方法對(duì)平滑處理后,主要依據(jù)對(duì)Th/U曲線小波變換結(jié)果綜合分析,確定了不同級(jí)別層序的劃分方案。研究結(jié)果證明使用Th/U比值來(lái)分析碳酸鹽巖層序是切實(shí)可行的,對(duì)于依據(jù)測(cè)井資料開展碳酸鹽巖高頻層序研究具有重要的理論意義,對(duì)于建立區(qū)內(nèi)的高精度層序地層格架進(jìn)而預(yù)測(cè)有利儲(chǔ)層分布具有重要的實(shí)際意義。
塔中地區(qū)位于塔里木盆地的中部,晚奧陶世形成了大規(guī)模的孤立碳酸鹽臺(tái)地(面積達(dá)1×104km2)。受中奧陶世末期西北高、東南低的古構(gòu)造地貌形態(tài)的控制,臺(tái)地早期沉積向向西北方向上超,臺(tái)地沉積具有西北薄、東南厚的趨勢(shì)[27-30]。臺(tái)地向東北方向與滿加爾坳陷相鄰,過(guò)渡為深水盆地沉積。良里塔格組與下伏中—上奧陶統(tǒng)鷹山組呈微角度不整合接觸,與上覆桑塔木組泥巖整合接觸,也被解釋為臺(tái)地淹沒不整合界面[30]。依據(jù)鉆井和地震的綜合約束,將良里塔格組劃分為3個(gè)三級(jí)層序,其中下部的SQ1和SQ2發(fā)育完整的海侵體系域和高位體系域,地震上表現(xiàn)為兩套明顯的加積和前積體;上部的SQ3僅發(fā)育海侵體系域[31-32]。
塔中地區(qū)晚奧陶世沿塔中Ⅰ號(hào)斷裂帶發(fā)育的臺(tái)地邊緣礁灘相沉積構(gòu)成了區(qū)內(nèi)重要的油氣儲(chǔ)層,大量前人研究表明,受同沉積期高頻海平面下降造成的早期(同生期或準(zhǔn)同生期)巖溶作用是礁灘相儲(chǔ)層改善的關(guān)鍵[7-8,33],因此識(shí)別良里塔格組內(nèi)部的高頻層序界面,進(jìn)而建立高精度的層序地層格架,是預(yù)測(cè)早期巖溶型儲(chǔ)層的關(guān)鍵。
論文研究主要使用了位于塔中Ⅰ號(hào)斷裂帶中段、晚奧陶世臺(tái)地邊緣帶的T1井的鉆井?dāng)?shù)據(jù),該井鉆穿良里塔格組(5 240~5 590 m)。根據(jù)伽馬曲線和巖相特征,易將良里塔格組分為3個(gè)巖性段:底部含泥灰?guī)r段主要由灰色、綠灰色含泥泥晶灰?guī)r、粒泥灰?guī)r和泥?;?guī)r構(gòu)成;中部顆?;?guī)r段主要發(fā)育淺灰色顆?;?guī)r、生物礁灰?guī)r和泥?;?guī)r;上部泥質(zhì)條帶灰?guī)r段主要發(fā)育含泥質(zhì)條帶的深灰色泥?;?guī)r、粒泥灰?guī)r。
2.1測(cè)井曲線基本參數(shù)特征
表 1詳細(xì)總結(jié)了T1井的自然伽馬能譜測(cè)井基本參數(shù)特征。該井的泥質(zhì)條帶灰?guī)r的GR值最高,平均值為61.35 API,顆粒灰?guī)r的GR值最低,平均為28.96 API。從各元素的含量來(lái)看,Th值在全井段的變化范圍較大,顆?;?guī)r段的Th值變化范圍和平均值最小,泥質(zhì)條帶灰?guī)r的Th值平均值將近顆?;?guī)r段的2倍;U和K含量在全井段變化范圍都不大。
圖1 塔中地區(qū)構(gòu)造綱要圖Fig.1 Tectonic framework of Tazhong area
深度/mGR/APITh/10-6U/10-6K/%Th/U全井段5240~559014.67~114.03(37.80)1.49~15.49(4.51)0.29~4.48(1.15)0.39~2.93(1.09)0.85~22.45(4.49)泥質(zhì)條帶灰?guī)r段5240~529324.95~114.03(61.35)1.86~15.50(7.18)0.49~3.69(1.62)0.57~2.93(1.54)0.91~19.92(4.97)顆粒灰?guī)r段5293~537314.67~52.53(28.96)1.49~7.36(3.25)0.48~1.88(1.11)0.39~1.32(0.85)1.07~11.79(3.19)含泥灰?guī)r段5373~559017.17~81.83(34.87)1.60~11.84(4.26)0.29~4.48(1.04)0.53~2.05(1.05)0.85~22.45(4.81)
注:括號(hào)內(nèi)為平均值。
測(cè)井曲線圖中可以直觀看到各條曲線的特征變化。GR曲線在底部含泥灰?guī)r段呈現(xiàn)出中等的鋸齒化,中部顆粒灰?guī)r整體較為平滑,上部泥質(zhì)條帶灰?guī)r段整體呈鐘型,向頂部呈現(xiàn)出劇烈振蕩的特征。U曲線和K曲線在良里塔格組的中下部均表現(xiàn)為中等齒化的特征,在含泥灰?guī)r段為強(qiáng)烈齒化特征。Th曲線的變化幅度比GR、U和K曲線都更明顯,在良里塔格組底界突然增大,在內(nèi)部也表現(xiàn)出多個(gè)清晰的鐘形和漏斗形曲線形態(tài)的疊加,向頂部明顯呈現(xiàn)階梯式增長(zhǎng)。
對(duì)GR、Th、U和K四組數(shù)據(jù)的兩兩之間相關(guān)性進(jìn)行了分析(表 2),結(jié)果顯示GR值與Th、K的相關(guān)性最高,而與U的相關(guān)系數(shù)較低;在Th、U、K三者之間,Th和K的相關(guān)性非常好;Th和U、K和U的相關(guān)系性均較差。分析表明,Th和K是自然伽馬的主要貢獻(xiàn)者,U的變化對(duì)GR值的影響不明顯。
表2 塔中地區(qū)T1井良里塔格組GR、Th、U、K等測(cè)井參數(shù)相關(guān)系數(shù)
2.2劃分層序的測(cè)井曲線選取
通過(guò)對(duì)比曲線的特征不難發(fā)現(xiàn), Th曲線可以更清晰地指示碳酸鹽巖中的泥質(zhì)含量的變化,從而更好地反映沉積旋回。而U和K的曲線變化對(duì)沉積旋回的指示不明顯。由于Th和K相關(guān)性極高,對(duì)地層中沉積組分變化具有一致的反映,而U與Th相關(guān)性較差,因此進(jìn)一步制作了Th/U比值曲線來(lái)劃分層序。
從Th/U曲線可看出,其反映的整體趨勢(shì)和Th曲線較為相似,同時(shí)能更清晰地反映沉積界面。但是出現(xiàn)許多Th/U比的異常高值帶來(lái)的曲線“毛刺”現(xiàn)象(圖3),這是由于自然伽馬能譜測(cè)井儀記錄了一些極低的U值造成的,給識(shí)別層序界面帶來(lái)了困難?;瑒?dòng)平均濾波法能夠有效地去除測(cè)井曲線中的與地層性質(zhì)無(wú)關(guān)的毛刺現(xiàn)象,同時(shí)能夠保留反映地層特性的有用成分,是一種常用的測(cè)井曲線平滑處理方法[34-35]。本文采用線性函數(shù)平滑法對(duì)原始的Th/U曲線進(jìn)行平滑處理,該方法的處理公式為(1)式,其中Ti表示待平滑的數(shù)值點(diǎn),并取該點(diǎn)前后共2m+1個(gè)數(shù)值點(diǎn)參與平均計(jì)算。最終選取51點(diǎn)滑動(dòng)平均(即m=25),得到的曲線(Th/U_Ma)整體質(zhì)量明顯提高(圖3)。
(1)
2.3小波變換結(jié)果
為了更客觀地確定層序界面的級(jí)別、區(qū)分不同級(jí)次的層序,研究使用了Matlab軟件中的小波分析工具箱,對(duì)T1井的Th/U曲線進(jìn)行了小波變換。選取了前人使用的Morlet、Daubechies、Dmey等不同小波分別實(shí)驗(yàn)[36-38],發(fā)現(xiàn)Dmey小波對(duì)Th/U曲線分解和重構(gòu)的結(jié)果對(duì)沉積旋回的反映效果最佳。Meyer小波函數(shù)為公式(2),其小波波形為圖 2。用該小波對(duì)Th/U曲線變換得到12條一維離散小波曲線(d1-d12)。對(duì)比發(fā)現(xiàn)其中的d7、d9和d10三條小波曲線的振蕩趨勢(shì)與原始的Th/U曲線反映的沉積旋回結(jié)構(gòu)有相當(dāng)高的匹配度。
(2)
圖2 Meyer小波波形 (引自張榮茜[38])Fig.2 Graphic of the Meyer wavelet (after Zhang[38])
3.1三級(jí)層序及其界面特征
從Th/U和Th曲線上明顯看出,在5 470~5 590 m和5 305~5 470 m井段存在兩個(gè)由增大到減小的
變化周期,向頂部測(cè)井值總體增大,小波變換得到的d10曲線直觀地體現(xiàn)了這種宏觀變化??傮w反映了在良里塔格組沉積期,存在兩次完整的海進(jìn)—海退旋回,在沉積末期海平面持續(xù)上升。
據(jù)此,將良里塔格組劃分為3個(gè)三級(jí)層序(自下而上分別為SQ1、SQ2和SQ3)。其中,SQ1和SQ2的下半段均以Th值和Th/U比值階梯式增大為特征,以發(fā)育泥晶灰?guī)r和含泥灰?guī)r為主,解釋為海侵體系域(TST);上半段測(cè)井值呈現(xiàn)階梯式減小,以發(fā)育厚層顆?;?guī)r和泥粒灰?guī)r為主,解釋為高位體系域(HST);SQ3僅發(fā)育TST,Th值和Th/U比值均為全井段最大,主要發(fā)育富含泥質(zhì)條帶的厚層泥質(zhì)灰?guī)r,指示碳酸鹽沉積因海平面快速上升而漸趨終止。
圖3 塔中地區(qū)T1井良里塔格組高頻層序劃分方案Fig.3 High-frequency sequence stratigraphy of the Lianglitage Formation, Well T1, Tazhong area
3.2四級(jí)層序及其界面特征
根據(jù)滑動(dòng)平均法處理后得到的Th/U_Ma曲線,可在三級(jí)層序內(nèi)部,清晰地識(shí)別出多個(gè)Th/U比值由突然增大到逐漸減小的變化旋回。這種旋回變化又與小波變換得到的d9曲線的振蕩趨勢(shì)極為吻合。這些沉積旋回應(yīng)為三級(jí)層序內(nèi)發(fā)育的四級(jí)層序。
據(jù)此,可將SQ1進(jìn)一步劃分為2個(gè)四級(jí)層序(1-1和1-2),將SQ2劃分為4個(gè)四級(jí)層序(2-1、2-2、2-3和2-4),將SQ3劃分為2個(gè)四級(jí)層序(3-1和3-2),T1井良里塔格組內(nèi)部共發(fā)育8個(gè)四級(jí)層序。這些四級(jí)層序界面均表現(xiàn)為Th/U比值由減小漸變或突變至增大,通常為泥粒灰?guī)r、顆?;?guī)r巖相組合向泥灰?guī)r、泥晶灰?guī)r巖相組合的突變,反映沉積背景由正常水退至快速水進(jìn)的轉(zhuǎn)變過(guò)程。四級(jí)層序的下部多為Th/U比值突然增大、向上逐漸變小或階梯式減小,內(nèi)部發(fā)育多個(gè)泥灰?guī)r、泥?;?guī)r和顆?;?guī)r的巖相組合。頂部的四級(jí)層序(SQ3-2)中Th/U比值持續(xù)增大,巖相組合為泥灰?guī)r和泥?;?guī)r互層,且向頂部泥灰?guī)r厚度變大,反映臺(tái)地向上淹沒的沉積演變過(guò)程。
3.3五級(jí)層序及其界面特征
根據(jù)Th/U比所反映的水進(jìn)—水退沉積旋回,進(jìn)一步可在每個(gè)四級(jí)層序內(nèi)部進(jìn)一步劃分出多個(gè)沉積旋回。這些旋回下部Th/U值突然增大、向上逐漸減小,指示沉積水體由突然加深至緩慢變淺的過(guò)程。這種變化趨勢(shì)與小波分析所得到的d7曲線非常吻合。
這些發(fā)育在四級(jí)層序內(nèi)部的沉積旋回應(yīng)解釋為五級(jí)層序。各四級(jí)層序以發(fā)育4個(gè)五級(jí)層序?yàn)橹?,T1井良里塔格組內(nèi)部共發(fā)育32個(gè)五級(jí)層序。五級(jí)層序的界面處主要表現(xiàn)為Th/U值由低值突然增大,指示快速水進(jìn),巖相由含顆?;蝾w粒質(zhì)灰?guī)r向泥灰?guī)r突變。
不同四級(jí)層序內(nèi)的五級(jí)層序表現(xiàn)出不同的疊置型式,反映沉積背景和沉積過(guò)程的差異。如四級(jí)層序1-2內(nèi)發(fā)育多個(gè)向上變淺的加積—進(jìn)積型五級(jí)層序,反映了環(huán)潮坪背景;四級(jí)層序2-1和2-2以潮下帶相對(duì)低能的泥質(zhì)灰?guī)r、粒泥灰?guī)r沉積為主,反映較深水的沉積背景;四級(jí)層序2-3和2-4則反映潮下帶浪基面附近發(fā)育的多套向上變淺的高能顆粒灘。
3.4層序地層對(duì)比格架
利用以上方法對(duì)位于塔中地區(qū)東部的T2井進(jìn)行層序地層劃分,得出的三級(jí)和四級(jí)層序結(jié)構(gòu)與T1井可以很好地對(duì)比(圖4)。晚奧陶世良里塔格組沉積早期,連井對(duì)比上顯示T2井的良里塔格組地層厚度明顯大于T1井。兩口鉆井的d9和d10曲線分別與四級(jí)和三級(jí)層序有良好地對(duì)應(yīng)。T2井層序SQ1的厚度明顯大于T1井,下部多發(fā)育3個(gè)四級(jí)層序,上超于古隆起之上;層序SQ2的厚度差異明顯減小,且內(nèi)部均發(fā)育3個(gè)四級(jí)層序;SQ3及內(nèi)部的四級(jí)層序亦可對(duì)比。連井層序結(jié)構(gòu)的差異進(jìn)一步證實(shí)了良里塔格組沉積早期(SQ1沉積期)古地貌西高東低的顯著差異,晚期古地貌差異減弱,臺(tái)地地形趨于均一化。
通過(guò)分析自然伽馬能譜測(cè)井中的Th/U比值曲線反映的沉積界面和沉積旋回特征,結(jié)合小波變換結(jié)果確定了T1井良里塔格組發(fā)育3個(gè)三級(jí)層序、8個(gè)四級(jí)層序和32個(gè)五級(jí)層序(圖3)。四級(jí)、五級(jí)層序的個(gè)數(shù)比值恰好為1∶4,極有可能分別反映了米蘭科維奇旋回的偏心率長(zhǎng)周期(0.4 Ma)和偏心率短周期(0.1 Ma)。據(jù)此估算,塔中地區(qū)中部T1井區(qū)良里塔格組的沉積時(shí)限應(yīng)為3.2 Ma,塔中地區(qū)東部T2井區(qū)的沉積時(shí)限則應(yīng)為4.4 Ma。而前人研究表明,在塔中地區(qū)晚奧陶世沉積前,塔中古隆起邊緣和中部高地的地形高差可達(dá)近300 m[27-29],因此不同井區(qū)良里塔格組下部SQ1層序及其內(nèi)部的四級(jí)層序發(fā)育存在差異[30-31]。
在四級(jí)、五級(jí)層序的頂部,由于短暫的海平面下降而發(fā)生的早期巖溶對(duì)碳酸鹽巖礁、灘型儲(chǔ)層的改善起到重要作用已經(jīng)成為共識(shí)[7-10,39]。針對(duì)良里塔格組的微相研究表明,在臺(tái)地邊緣向上變淺的高頻層序的上部普遍發(fā)育顆粒灘和生物礁等高能的微相類型[31-33],高頻層序界面附近的早期大氣淡水成巖透鏡體對(duì)良里塔格組礁灘型儲(chǔ)層的溶蝕改造作用是廣泛發(fā)育的[7-8,33,40]。
T1井的儲(chǔ)層解釋結(jié)果表明,有利的儲(chǔ)層段均與四級(jí)和五級(jí)層序界面有關(guān)(圖3)。Th/U比值從高值突然減小的界面是海平面明顯下降所形成的,在這些界面附近應(yīng)為早期淡水成巖透鏡體發(fā)育的層位,同時(shí)巖溶作用可能造成局部的U異常。同時(shí),在以顆粒灘為主的層序中,儲(chǔ)層發(fā)育更好。連井對(duì)比顯示T2井的四級(jí)層序平均厚度(68.5 m)明顯大于T1井的四級(jí)層序的平均厚度(43.9 m),這反映出,與塔中地區(qū)西部相比,塔中地區(qū)東部具有更高的碳酸鹽生長(zhǎng)率,生物礁和顆粒灘的發(fā)育更優(yōu),因此在海平面下降的背景下更易形成優(yōu)質(zhì)儲(chǔ)層。
圖4 塔中地區(qū)T1井和T2井良里塔格組小波變換結(jié)果與層序地層對(duì)比剖面圖(鉆井位置見圖1)Fig.4 Wavelet transition result and sequence stratigraphy correlation of the Lianglitage Formation between Well T1 and Well T2 (the location of wells refers to Fig.1)
(1) 塔中地區(qū)良里塔格組的自然伽馬能譜測(cè)井具有Th值和K值的相關(guān)性極好,且二者與U值的相關(guān)性較差的特點(diǎn);制作Th/U比值曲線并使用滑動(dòng)平均濾波處理后,能清晰、客觀地反映沉積旋回;并結(jié)合對(duì)Th/U曲線進(jìn)行Dmey小波變換得到的各條一維離散小波曲線,將T1井良里塔格組劃分為3個(gè)三級(jí)層序、8個(gè)四級(jí)層序和32個(gè)五級(jí)層序。
(2) 四級(jí)和五級(jí)層序的個(gè)數(shù)比(1∶4)表明二者極有可能分別反映了米蘭科維奇旋回中地球偏心率的長(zhǎng)周期旋回(0.4 Ma)和短周期旋回(0.1 Ma),據(jù)此可估T1井區(qū)的良里塔格組沉積時(shí)限約為3.2 Ma;連井對(duì)比表明受晚奧陶世良里塔格組沉積前古地貌控制,良里塔格組下部SQ1及其內(nèi)部的四級(jí)層序存在較大差異;塔中地區(qū)東部具有更高的碳酸鹽巖生長(zhǎng)率更易形成良好儲(chǔ)層。
(3) 四級(jí)、五級(jí)層序的頂面Th/U比值的明顯降低和U值的異常指示著可能的大氣水成巖透鏡體的發(fā)育,有利儲(chǔ)層的形成同時(shí)依賴于早期的巖相類型??陀^的四級(jí)、五級(jí)等高頻層序劃分結(jié)果對(duì)于精確預(yù)測(cè)礁灘相早期巖溶型儲(chǔ)層具有重要意義。
References)
1Mitchum R M Jr, Van Wagoner J C. High-frequency sequences and their stacking patterns: sequence-stratigraphic evidence of high-frequency eustatic cycles[J]. Sedimentary Geology, 1991, 70(2/3/4): 131-160.
2Goldhammer R K, Lehmann P J, Dunn P A. The origin of high-frequency platform carbonate cycles and third-order sequences (Lower Ordovician El Paso Gp, west Texas): constraints from outcrop data and stratigraphic modeling[J]. Journal of Sedimentary Petrology, 1993, 63(3): 318-359.
3吳興寧,趙宗舉. 塔中地區(qū)奧陶系米級(jí)旋回層序分析[J]. 沉積學(xué)報(bào),2005,23(2):310-315.[Wu Xingning, Zhao Zongju. Aanlyses of Ordovician meter-scale cyclic-sequence in Tazhong area[J]. Acta Sedimentologica Sinica, 2005, 23(2): 310-315.]
4林暢松. 沉積盆地的層序和沉積充填結(jié)構(gòu)及過(guò)程響應(yīng)[J]. 沉積學(xué)報(bào),2009,27(5):849-862. [Lin Changsong. Sequence and depositional architecture of sedimentary basin and process responses[J]. Acta Sedimentologica Sinica, 2009, 27(5): 849-862.]
5鄭榮才,彭軍,吳朝容. 陸相盆地基準(zhǔn)面旋回的級(jí)次劃分和研究意義[J]. 沉積學(xué)報(bào),2001,19(2):249-255. [Zheng Rongcai, Peng Jun, Wu Chaorong. Grade division of base-level cycles of terrigenous basin and its implication[J]. Acta Sedimentologica Sinica, 2001, 19(2): 249-255.]
6Tucker M, Garland J. High-frequency cycles and their sequence stratigraphic context: orbital forcing and tectonic controls on Devonian cyclicity, Belgium[J]. Geologica Belgica, 2010, 13(3): 213-240.
7劉嘉慶,李忠,韓銀學(xué),等. 塔里木盆地塔中上奧陶統(tǒng)碳酸鹽臺(tái)地高頻層序控制的早期成巖作用及其對(duì)儲(chǔ)層分布的影響[J]. 巖石學(xué)報(bào),2010,26(12):3629-3640. [Liu Jiaqing, Li Zhong, Han Yinxue, et al. Early diagenesis in high-frequency sequence framework of the Upper Ordovician carbonate platform in Tazhong, Tarim Basin and its influence on reservoir distribution[J]. Acta Petrologica Sinica, 2010, 26(12): 3629-3640.]
8劉忠寶,于炳松,李廷艷,等. 塔里木盆地塔中地區(qū)中上奧陶統(tǒng)碳酸鹽巖層序發(fā)育對(duì)同生期巖溶作用的控制[J]. 沉積學(xué)報(bào),2004,22(1):103-109. [Liu Zhongbao, Yu Bingsong, Li Tingyan, et al. Sequence development controls on Syngenesis karst of the Middle-Upper Ordovician carbonate in Tazhong area, Tarim Basin[J]. Acta Sedimentologica Sinica, 2004, 22(1): 103-109.]
9Ronchi P, Ortenzi A, Borromeo O, et al. Depositional setting and diagenetic processes and their impact on the reservoir quality in the late Visean-Bashkirian Kashagan carbonate platform (Pre-Caspian Basin, Kazakhstan)[J]. AAPG Bulletin, 2010, 94(9): 1313-1348.
10Saller A H, Dickson J A D, Matsuda F. Evolution and distribution of porosity associated with subaerial exposure in Upper Paleozoic platform limestones, west Texas[J]. AAPG Bulletin, 1999, 83(11): 1835-1854.
11陽(yáng)孝法,林暢松,楊海軍,等. 自然伽馬能譜在塔中地區(qū)晚奧陶世碳酸鹽巖層序地層分析中的應(yīng)用[J]. 石油地球物理勘探,2010,45(3):384-391. [Yang Xiaofa, Lin Changsong, Yang Haijun, et al. Application of natural gamma ray spectrometry in analysis of Late Ordovician carbonate sequence stratigraphic analysis in middle Tarim Basin[J]. Oil Geophysical Prospecting, 2010, 45(3): 384-391.]
12Bábek O, Kalvoda J, Cossey P, et al. Facies and petrophysical signature of the Tournaisian/Viséan (Lower Carboniferous) sea-level cycle in carbonate ramp to basinal settings of the Wales-Brabant massif, British Isles[J]. Sedimentary Geology, 2013, 284-285: 197-213.
13Ehrenberg S N, Sv?n? T A. Use of spectral gamma-ray signature to interpret stratigraphic surfaces in carbonate strata: An example from the Finnmark carbonate platform (Carboniferous-Permian), Barents Sea[J]. AAPG Bulletin, 2001, 85(2): 295-308.
14Bábek O, Prˇikryl T, Hladil J. Progressive drowning of carbonate platform in the Moravo-Silesian Basin (Czech Republic) before the Frasnian/Famennian event: Facies, compositional variations and gamma-ray spectrometry[J]. Facies, 2007, 53(2): 293-316.
15鄭興平,羅平. 川東渝北飛仙關(guān)組的米蘭克維奇周期及其應(yīng)用[J]. 天然氣勘探與開發(fā),2004,27(1):16-19. [Zheng Xingping, Luo Ping. Analysis and application of Milankovitch cycles on Feixianguan Formation, Northeast Sichuan Basin, China[J]. Natural Gas Exploration & Development, 2004, 27(1): 16-19.]
16鄔光輝,成麗芳,于紅楓,等. 塔中上奧陶統(tǒng)臺(tái)緣帶高頻層序地層特征與儲(chǔ)層縱向分布[J]. 新疆地質(zhì),2011,29(2):203-206. [Wu Guanghui, Cheng Lifang, Yu Hongfeng, et al. The characteristics and its affects to reservoirs of high-frequency sequence of Upper Ordovician platform margin in Tazhong area[J]. Xinjiang Geology, 2011, 29(2): 203-206.]
17鄭興平,周進(jìn)高,吳興寧. 碳酸鹽巖高頻層序定量分析技術(shù)及其應(yīng)用[J]. 中國(guó)石油勘探,2004,9(5):26-30. [Zheng Xingping, Zhou Jin’gao, Wu Xingning. High-frequency sequence quantitative analysis technology of carbonate rock and its application[J]. Marine Petroleum Geology, 2004, 9(5): 26-30.]
18趙宗舉,陳軒,潘懋,等. 塔里木盆地塔中—巴楚地區(qū)上奧陶統(tǒng)良里塔格組米蘭科維奇旋回性沉積記錄研究[J]. 地質(zhì)學(xué)報(bào),2010,84(4):518-536. [Zhao Zongju, Chen Xuan, Pan Mao, et al. Milankovitch cycles in the Upper Ordovician Lianglitage Formation in the Tazhong-Bachu area, Tarim Basin[J]. Acta Geologica Sinica, 2010, 84(4): 518-536.]
19任金鋒,廖遠(yuǎn)濤,孫鳴,等. 基于小波變換的高精度層序地層定量劃分研究及其應(yīng)用[J]. 地球物理學(xué)進(jìn)展,2013,28(5):2651-2658. [Ren Jinfeng, Liao Yuantao, Sun Ming, et al. A method for quantitative division of sequence stratigraphy with high-resolution based on wavelet transform and its application[J]. Progress in Geophysics, 2013, 28(5): 2651-2658.]
20劉洋,吳懷春,張世紅,等. 珠江口盆地珠—坳陷韓江組—萬(wàn)山組旋回地層學(xué)[J]. 地球科學(xué),2012,37(3):411-423. [Liu Yang, Wu Huaichun, Zhang Shihong, et al. Cyclostratigraphy research on the Hanjiang-Wanshan Formations in Zhuyi depression, Pearl River Mouth Basin[J]. Earth Sciences, 2012, 37(3): 411-423.]
21吳懷春,張世紅,黃清華. 中國(guó)東北松遼盆地晚白堊世青山口組浮動(dòng)天文年代標(biāo)尺的建立[J]. 地學(xué)前緣,2008,15(4):159-169. [Wu Huaichun, Zhang Shihong, Huang Qinghua. Establishment of floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation in the Songliao Basin of Northeast China[J]. Earth Science Frontiers, 2008, 15(4): 159-169.]
22Wu Huaichun, Zhang Shihong, Hinnov L A, et al. Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian-Lower Danian in Songliao Basin, northeastern China[J]. Earth and Planetary Science Letters, 2014, 407: 82-95.
23伊海生. 沉積旋回疊置形式的波形分析及旋回層序劃分方法[J]. 沉積學(xué)報(bào),2015,33(5):855-864. [Yi Haisheng. The waveform graphic analysis of cyclic stacking patterns in sedimentary successions and detection methods of cyclostratigraphic sequences[J]. Acta Sedimentologica Sinica, 2015, 33(5): 855-864.]
24王貴文,徐敬領(lǐng),楊寧,等. 小波分頻分析法在沉積層序劃分及等時(shí)對(duì)比中的應(yīng)用[J]. 高校地質(zhì)學(xué)報(bào),2013,19(1):70-77. [Wang Guiwen, Xu Jingling, Yang Ning, et al. Using wavelet frequency analysis to divide sedimentary sequence cycles and isochronous correlation[J]. Geological Journal of China Universities, 2013, 19(1): 70-77.]
25趙偉,姜在興,邱隆偉,等. 小波分析劃分層序單元的地質(zhì)學(xué)理論基礎(chǔ)、方法與應(yīng)用[J]. 石油與天然氣地質(zhì),2010,31(4):436-441. [Zhao Wei, Jiang Zaixing, Qiu Longwei, et al. Geological concept, method and application of sequence unit identification through wavelet analysis[J]. Oil & Gas Geology, 2010, 31(4): 436-441.]
26朱劍兵,紀(jì)友亮,趙培坤,等. 小波變換在層序地層單元自動(dòng)劃分中的應(yīng)用[J]. 石油勘探與開發(fā),2005,32(1):84-86. [Zhu Jianbing, Ji Youliang, Zhao Peikun, et al. Application of wavelet transform in auto-identify units of stratigraphy sequence[J]. Petroleum Exploration & Development, 2005, 32(1): 84-86.]
27彭莉,劉小平,林暢松,等. 塔中隆起晚奧陶世古地貌及其沉積相特征[J]. 石油地球物理勘探,2009,44(6):767-772. [Peng Li, Liu Xiaoping, Lin Changsong, et al. Late Ordovician palaeogeomorphology and its sedimentary facies characteristics in central Tarim uplift[J]. Oil Geophysical Prospecting, 2009, 44(6): 767-772.]
28林暢松,李思田,劉景彥,等. 塔里木盆地古生代重要演化階段的古構(gòu)造格局與古地理演化[J]. 巖石學(xué)報(bào),2011,27(1):210-218. [Lin Changsong, Li Sitian, Liu Jingyan, et al. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages[J]. Acta Petrologica Sinica, 2011, 27(1): 210-218.]
29Lin Changsong, Yang Haijun, Liu Jingyan, et al. Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: significance for the evolution of paleo-uplifts and tectonic geography during deformation[J]. Journal of Asian Earth Sciences, 2012, 46: 1-19.
30Yang Xiaofa, Lin Changsong, Yang Haijun, et al. Depositional architecture of the late Ordovician drowned carbonate platform margin and its responses to sea-level fluctuation in the northern slope of the Tazhong region, Tarim Basin[J]. Petroleum Science, 2010, 7(3): 323-336.
31左璠璠,林暢松,高達(dá),等. 塔中地區(qū)西北部良里塔格組沉積特征及其演化規(guī)律[J]. 現(xiàn)代地質(zhì),2014,28(5):1008-1016. [Zuo Fanfan, Lin Changsong, Gao Da, et al. Sedimentary characteristics and their evolution of Lianglitage Formation in northwestern Tazhong area[J]. Geoscience, 2014, 28(5): 1008-1016.]
32Gao Da, Lin Changsong, Yang Haijun, et al. Microfacies and depositional environments of the Late Ordovician Lianglitage Formation at the Tazhong Uplift in the Tarim Basin of Northwest China[J]. Journal of Asian Earth Sciences, 2014, 83: 1-12.
33高達(dá),林暢松,楊海軍,等. 塔中地區(qū)良里塔格組沉積微相及其對(duì)有利儲(chǔ)層的控制[J]. 地球科學(xué),2013,38(4):819-831. [Gao Da, Lin Changsong, Yang Haijun, et al. Microfacies of Late Ordovician Lianglitage Formation and their control on favorable reservoir in Tazhong area[J]. Earth Science, 2013, 38(4): 819-831.]
34雍世和,孫寶佃. 用滑動(dòng)平均濾波法消除測(cè)井曲線上的毛刺干擾[J]. 華東石油學(xué)院學(xué)報(bào),1983(1):11-19. [Yong Shihe, Sun Baodian. Smoothing out the sawtooth interference on the log curves by the method of moving average filter[J]. Journal of China University of Petroleum, 1983(1): 11-19.]
35郭余峰. 自然伽馬能譜的平滑濾波處理[J]. 大慶石油學(xué)院學(xué)報(bào),2003,27(3):113-114,117. [Guo Yufeng. The disposal of gentle filter on natural gamma energy spectrum[J]. Journal of Daqing Petroleum Institute, 2003, 27(3): 113-114, 117.]
36趙偉,邱隆偉,姜在興,等. 小波分析在高精度層序單元?jiǎng)澐种械膽?yīng)用[J]. 中國(guó)石油大學(xué)學(xué)報(bào):自然科學(xué)版,2009,33(2):18-22. [Zhao Wei, Qiu Longwei, Jiang Zaixing, et al. Application of wavelet analysis in high-resolution sequence unit division[J]. Journal of China University of Petroleum: Edition of Natural Science, 2009, 33(2): 18-22.]
37張運(yùn)波,趙宗舉,袁圣強(qiáng),等. 頻譜分析法在識(shí)別米蘭科維奇旋回及高頻層序中的應(yīng)用——以塔里木盆地塔中—巴楚地區(qū)下奧陶統(tǒng)鷹山組為例[J]. 吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2011,41(2):400-410. [Zhang Yunbo, Zhao Zongju, Yuan Shengqiang, et al. Application of spectral analysis to identify Milankovitch cycles and high-frequency sequences-take the Lower Ordovician Yingshan Formation of Mid-Tarim Basin as an example[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(2): 400-410.]
38張榮茜. 塔北隆起西南部白堊系沉積層序演化及有利儲(chǔ)層相帶預(yù)測(cè)[D]. 北京:中國(guó)地質(zhì)大學(xué)(北京),2013. [Zhang Rongxi. Deposition and stratigraphic sequence development and evolution of cretaceous of the southwestern Tabei Uplift and potential reservior prediction[D]. Beijing: China University of Geosciences(Beijing), 2013.]
39于炳松,樊太亮,黃文輝,等. 層序地層格架中巖溶儲(chǔ)層發(fā)育的預(yù)測(cè)模型[J]. 石油學(xué)報(bào),2007,28(4):41-45. [Yu Bingsong, Fan Tailiang, Huang Wenhui, et al. Predictive model for karst reservoirs in sequence stratigraphic framework[J]. Acta Petrolei Sinica, 2007, 28(4): 41-45.]
40屈海洲,王振宇,楊海軍,等. 礁灘相碳酸鹽巖巖溶作用及其對(duì)孔隙分布的控制——以塔中東部上奧陶統(tǒng)良里塔格組為例[J]. 石油勘探與開發(fā),2013,40(5):552-558. [Qu Haizhou, Wang Zhenyu, Yang Haijun, et al. Karstification of reef-bank facies carbonate rock and its control on pore distribution: A case study of Upper Ordovician Lianglitage Formation in eastern Tazhong area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2013, 40(5): 552-558.]
Using Spectral Gamma Ray Log to Recognize High-frequency Sequences in Carbonate Strata: A case study from the Lianglitage Formation from Well T1 in Tazhong area, Tarim Basin
GAO Da1,2LIN ChangSong3HU MingYi1,2HUANG LiLi4
(1. School of Geosciences, Yangtze University, Wuhan 430100, China;2. Basin Analysis Center, Yangtze University, Wuhan 430100, China;3. School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;4. PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China)
High-frequency sequences are commonly developed in carbonate strata, and eogenetic karst related to fourth- to fifth- order sequence boundaries are of great importance to the improvement of carbonate reservoir quality. However, how to identify high-frequency sequences objectively is a generally acknowledged issue which has been long been explored. In this study, we analyze the high-frequency sequences of the Lianglitage Formation in the Tazhong area of Tarim Basin, by using the natural gamma ray logging data and utilizing moving average flitering and wavelet transformation methods. Th/U ratio log, after moving average filtering process, can clearly and objectively reflect the depositional cycles, with its increase indicating the deepening of depositional environment and the concentration of clay, and its decrease indicating the shallowing of depositional environment and purer limestone deposits. The Lianglitage Formation in this well can be divided into three third-order sequences, eight fourth-order sequences, and 32 fifth-order sequences, the sea-level change reflected by various rank sequences are well coincided with the three one-dimensional discrete curves derived from wavelet transform analysis. Correlation between wells indicates the third- and fourth- order sequences of the lower part of the Lianglitage Formation vary between different areas in the Tazhong Uplift, and the differences attribute to the distinct paleogeomorphology of the Tazhong Uplift before Late Ordovician. The fourth- and fifth- order sequences are believed to reflect the eccentricity long periods and short periods, respectively, in Milankovitch cycles. The reservoir units in the well are all related to the fourth- and fifth- sequence boundaries. The results of this study are of great significance of analyzing high-frequency sequences in carbonate strata based on well-logging data, as well as forecasting favorable reservoirs in a high-resolution sequence framework in this area.
high-frequency sequence; spectral gamma-ray log; wavelet transformation; Lianglitage Formation; Tazhong area; Tarim Basin
A
1000-0550(2016)04-0707-09
10.14027/j.cnki.cjxb.2016.04.011
2015-11-13; 收修改稿日期: 2016-03-13
國(guó)家自然科學(xué)基金(41502104,41372126,41130422);國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目(2011CB201100-03)[Foundation: National Nature Science Foundation of China, No. 41502104,41372126,41130422; Nation Key Basic Research Project (973 Project), No. 2011CB201100-03]
高達(dá)男1990年出生博士講師層序地層學(xué)及沉積學(xué)E-mail: gaoda18@gmail.com
P539.2P588.2