孟凡德, 袁國(guó)棟, 韋婧, 畢冬雪, 王海龍, 劉興元
(1.中國(guó)科學(xué)院煙臺(tái)海岸帶研究所/中國(guó)科學(xué)院海岸帶環(huán)境過(guò)程與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室/山東省海岸帶環(huán)境過(guò)程重點(diǎn)實(shí)驗(yàn)室,山東 煙臺(tái) 264003;2.中國(guó)科學(xué)院大學(xué),北京 100049;3.浙江農(nóng)林大學(xué)環(huán)境與資源學(xué)院,浙江 臨安 311300;4.廣東大眾農(nóng)業(yè)科技股份有限公司,廣東 東莞 523169)
?
風(fēng)化煤提取的胡敏酸對(duì)鎘的吸附性能及其應(yīng)用潛力
孟凡德1,2, 袁國(guó)棟1*, 韋婧1, 畢冬雪1,2, 王海龍3,4, 劉興元4
(1.中國(guó)科學(xué)院煙臺(tái)海岸帶研究所/中國(guó)科學(xué)院海岸帶環(huán)境過(guò)程與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室/山東省海岸帶環(huán)境過(guò)程重點(diǎn)實(shí)驗(yàn)室,山東 煙臺(tái) 264003;2.中國(guó)科學(xué)院大學(xué),北京 100049;3.浙江農(nóng)林大學(xué)環(huán)境與資源學(xué)院,浙江 臨安 311300;4.廣東大眾農(nóng)業(yè)科技股份有限公司,廣東 東莞 523169)
以“堿溶酸析”法從新疆風(fēng)化煤中提取的胡敏酸為研究對(duì)象,對(duì)其理化性質(zhì)和表面形態(tài)進(jìn)行表征,并通過(guò)吸附試驗(yàn)探究反應(yīng)時(shí)間、溶液pH、鎘離子(Cd2+)質(zhì)量濃度對(duì)胡敏酸吸附Cd2+的影響。結(jié)果表明:風(fēng)化煤提取的胡敏酸碳元素質(zhì)量分?jǐn)?shù)高達(dá)58.68%,羧基的質(zhì)量摩爾濃度為5.81 mol/kg,等電點(diǎn)為2.7;該胡敏酸含Cd量為0.15 mg/kg,符合國(guó)家土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)。胡敏酸對(duì)Cd2+的吸附在8 h內(nèi)達(dá)到平衡,吸附量隨Cd2+質(zhì)量濃度(0~100 mg/L)和溶液pH升高而增加,到pH=6.0時(shí)最大,之后胡敏酸開(kāi)始溶解導(dǎo)致吸附量降低。Langmuir方程比Freundlich方程能更好地?cái)M合胡敏酸對(duì)Cd2+的吸附等溫線,顯示出單分子層吸附的特點(diǎn)。在pH=5.0時(shí),胡敏酸對(duì)Cd2+的飽和吸附量達(dá)137.37 mg/g,相當(dāng)于用去了酸度系數(shù)(pKa)為3的羧基含量的71%。在pH=4.3、Cd2+初始質(zhì)量濃度為80 mg/L的同等條件下,新疆風(fēng)化煤提取的胡敏酸對(duì)Cd2+的吸附量為86.97 mg/g, 高于國(guó)際腐殖質(zhì)協(xié)會(huì)胡敏酸標(biāo)樣1R106H對(duì)Cd2+的吸附量(73.49 mg/g)。風(fēng)化煤來(lái)源廣、儲(chǔ)量大、價(jià)格低,以它為原料制備獲得的胡敏酸產(chǎn)量高、吸附能力強(qiáng)、環(huán)境友好、施用安全,有望作為吸附劑用于含重金屬?gòu)U水處理,以及作為鈍化劑和土壤調(diào)理劑用于重金屬污染土壤的修復(fù)。
鎘; 胡敏酸; 吸附; 風(fēng)化煤; 污染土壤
Summary Cadmium (Cd) is a toxic and carcinogenic contaminant released from a wide range of industries. Its accumulation in soil and water is of growing environmental and health concerns. Thus, there is an increasing demand for materials that are effective for Cd adsorption, economically feasible, and unlikely to create new environmental problems.
Humic acid (HA) is ubiquitous in soil and sediment. It can also be extracted from lignite and leonardite, which can be viewed as ancient biochar and oxidized ancient biochar, respectively. Being abundant in carboxyl and hydroxyl groups (—COOH, —OH), HA has a strong propensity for adsorbing heavy metal cations by forming inner-sphere complexes, thus reducing their mobility and bioavailability. A leonardite (Leo) from Xinjiang, China was used to produce HA by ultrasonically dispersing Leo in 0.1 mol/L NaOH solution at 40 ℃ for 30 min, and then flocculating the supernatant with 6 mol/L HCl. The obtained HA (Leo-HA) was characterized for its surface properties by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and was analyzed for elemental compositions, carboxyl group, and isoelectric point (pI). Further, its adsorption characteristics were determined by kinetic and batch experiments, and its potential applications in removing Cd2+from water and immobilizing Cd2+in soils were assessed based on its technical reliability, economic feasibility, and environmental impact. For environmental relevance, a relatively low range of Cd2+concentrations (0-100 mg/L) was used in adsorption experiment, during which the pH of solution was maintained constant.
Results showed that Leo-HA had a low pI of 2.7 and a high C content of 58.68%, which is not unusual for coal-derived HA. FTIR confirmed the abundance of —COOH and —OH groups. The carboxyl group was determined at 5.81 mol/kg. The low Cd concentration (0.15 mg/kg) of Leo-HA met the prerequisite for safe use in agricultural land, as regulated by Farmland Environmental Quality Standards. Kinetic studies showed that Cd2+adsorption onto Leo-HA reached equilibrium in 8 h and the process was pH-dependent. The adsorption increased with pH within 2.0-6.0, and then decreased as pH further increased to 7.0. This is because Leo-HA starts to dissolve as solution pH approaches to neutral. Adsorption data were better fitted into Langmuir equation (R2=0.991) than Freundlich equation (R2=0.891), suggesting the monolayer nature of Cd2+adsorption onto Leo-HA. At pH 5.0, the maximum adsorption capacity (Qm) derived from the Langmuir equation was 137.37 mg/g, which was equivalent to 71% of the carboxyl groups of Leo-HA. ThisQmwas much higher than what had been reported in the literature for lignite, lignite-derived HA, and soil HA. A simple comparison at pH 4.3 and an initial Cd2+concentration of 80 mg/L showed that the Leo-HA adsorbed more Cd2+(86.97 mg/g) than the reference HA 1R106H (73.49 mg/g) from IHSS did, even though the later had a higher carboxyl content (6.82 mol/kg). This apparent discrepancy was due to the fact that dissolution of 1R106H was observed at pH 4.3, whereas the Leo-HA was stable at this pH.
Leonardite is abundant across China. Leo-HA has the advantages of low cost, high adsorption capacity, and low Cd content, thus it is a prospective adsorbent for immobilizing Cd2+in contaminated soils or removing Cd2+from water. Lime has widely been used to immobilize Cd2+in soils, but it tends to reduce soil organic matter content, damage soil structure, and pose a hazard to the safety of its users in the field. In contrast, Leo-HA is beneficial to soil structure and soil quality, as well as safe to handle in the field. Field trials of applying Leo-HA onto heavy metal contaminated soils would be a logical step to follow.
環(huán)境保護(hù)部和國(guó)土資源部2014年聯(lián)合公布的《全國(guó)土壤污染狀況調(diào)查公報(bào)》顯示,我國(guó)土壤污染總超標(biāo)率為16.1%,污染類型以無(wú)機(jī)型為主;無(wú)機(jī)污染物超標(biāo)點(diǎn)位數(shù)占全部超標(biāo)點(diǎn)位的82.8%,其中,鎘(Cd)是首要的重金屬污染物[1]。不合理的礦山開(kāi)采和冶煉、金屬電鍍、磷肥施用和鉛鎘蓄電池處理等是產(chǎn)生Cd污染的重要原因[2]。我國(guó)生活飲用水對(duì)Cd的最大允許值是0.005 mg/L,然而,我國(guó)水體環(huán)境狀況總體不容樂(lè)觀,長(zhǎng)江、黃河等七大水系均受到不同程度的重金屬污染[3-9]。Cd、Pb等重金屬可通過(guò)飲用水和食物鏈進(jìn)入人體,嚴(yán)重威脅人體健康[10-11]。因此,研究和制備符合性能穩(wěn)定可靠、不產(chǎn)生新的環(huán)境問(wèn)題、經(jīng)濟(jì)可行3個(gè)條件的吸附材料[12]用于重金屬污染水體和土壤的修復(fù)既重要又緊迫。
近10年來(lái),生物質(zhì)炭作為一種新型環(huán)保材料在污染物吸附及污染水體和土壤修復(fù)方面受到重視,從制備技術(shù)和吸附性能到應(yīng)用前景和限制因素等都已有很好的分析和討論[13-15]。目前,商品化的生物質(zhì)炭供應(yīng)有限,價(jià)格偏高,使其大規(guī)模的應(yīng)用受到限制。從實(shí)際應(yīng)用角度考慮,生物質(zhì)炭的物料來(lái)源需要拓寬,制備過(guò)程需要改進(jìn),與其他產(chǎn)業(yè)的共通互聯(lián)需要加強(qiáng)。
生物質(zhì)炭是生物質(zhì)在缺氧條件下經(jīng)熱解過(guò)程脫氣、排液而產(chǎn)生的固體物質(zhì),常作為土壤調(diào)理劑使用。煤是古代生物質(zhì)(泥炭)在擠壓、增溫、缺氧條件下經(jīng)地質(zhì)熱解過(guò)程脫水、排氣(甲烷)所剩的固體物。暴露于地表的煤層在氧氣和水分的共同作用下轉(zhuǎn)變成富含腐殖酸的風(fēng)化煤。因此,廣義上,煤是古老的生物質(zhì)炭,風(fēng)化煤是富氧的古老生物質(zhì)炭,而腐殖酸則是以富氧的古老生物質(zhì)炭為原料經(jīng)過(guò)堿性活化的產(chǎn)物。
腐殖酸是工業(yè)名稱,與胡敏酸大致相當(dāng),因制備條件不同可含有不同數(shù)量的富里酸。胡敏酸(humic acid,HA)是廣泛存在于土壤和底泥的天然有機(jī)膠體,能和黏土礦物形成穩(wěn)定的有機(jī)-礦質(zhì)復(fù)合體,起到疏松土壤、保蓄水分、改良土壤理化性質(zhì)等作用,是土壤生態(tài)功能的物質(zhì)基礎(chǔ)[16]。胡敏酸含有多種官能團(tuán),如羧基和羥基等。前人對(duì)胡敏酸吸附重金屬的過(guò)程、機(jī)制和效果已有充分和深入的研究[17-22]。TAN總結(jié)了Zn2+與胡敏酸反應(yīng)的3種方式[23],即COO-與Zn2+的靜電吸引、—OH與Zn2+的絡(luò)合作用及—COOH和—OH對(duì)Zn2+的螯合作用。這些作用可降低重金屬離子在土壤中的遷移能力和生物有效性,從而減少植物對(duì)重金屬的吸收。由于風(fēng)化煤來(lái)源廣、國(guó)內(nèi)儲(chǔ)量大(超過(guò)1 000億t),制備胡敏酸方法簡(jiǎn)單、陽(yáng)離子交換量高,因此,胡敏酸應(yīng)用于重金屬污染水體和土壤修復(fù)的潛力較大。
胡敏酸吸附重金屬的研究大多集中于對(duì)高濃度重金屬吸附方面,在吸附過(guò)程中溶液pH未保持恒定,這些與實(shí)際應(yīng)用條件明顯不符。為了能夠更好地弄清楚可商品化的胡敏酸對(duì)重金屬的吸附能力和效果,我們利用風(fēng)化煤提取的胡敏酸對(duì)低質(zhì)量濃度Cd2+進(jìn)行吸附動(dòng)力學(xué)試驗(yàn)和等溫吸附試驗(yàn),研究反應(yīng)時(shí)間、溶液pH、重金屬離子濃度對(duì)吸附的影響,評(píng)估風(fēng)化煤提取的胡敏酸應(yīng)用于修復(fù)重金屬污染水體和土壤的可能性。
1.1胡敏酸的制備及理化性質(zhì)表征
風(fēng)化煤(leonardite,Leo)原料來(lái)自新疆維吾爾自治區(qū)昌吉州奇臺(tái)縣一露天煤礦,其可采儲(chǔ)量在2 000萬(wàn)t以上。風(fēng)化煤因長(zhǎng)期暴露于地表,其腐殖酸組分經(jīng)空氣自然氧化,羧基、羥基等官能團(tuán)豐度較高。
胡敏酸的制備方法:將風(fēng)化煤粉末與0.1 mol/L NaOH按固液質(zhì)量體積比1∶10混合,在40 ℃恒溫下超聲30 min,靜置24 h后將上層溶液倒出,重復(fù)提取5次,累計(jì)溶出率達(dá)90%。用6 mol/L HCl調(diào)節(jié)上述提取溶液至pH=2.0,靜置絮凝、以3 000 r/min離心15 min后將上清液倒掉,沉淀物用去離子水洗3遍,去除鹽分及殘留富里酸后得到胡敏酸,于40 ℃烘干,用瑪瑙研缽磨細(xì),備用。
風(fēng)化煤和胡敏酸的理化性質(zhì)分析:官能團(tuán)定性采用傅里葉變換紅外光譜儀(FT/IR-4100,日本Jasco公司)在波長(zhǎng)500~4 000 cm-1范圍內(nèi)分析;表面形態(tài)采用掃描電鏡(S-400,日本日立公司)分析;元素含量采用元素分析儀(Vario Micro cube,德國(guó)Elementar公司)測(cè)定(80 ℃烘干樣品);灰分含量是在馬弗爐中經(jīng)800 ℃煅燒4 h,根據(jù)前后質(zhì)量差計(jì)算;官能團(tuán)含量根據(jù)國(guó)際腐殖質(zhì)協(xié)會(huì)(International Humic Substances Society,IHSS)提供的方法(www.humicsubstances.org/acidity.html)測(cè)定,將含有(0.36±0.01) g/L胡敏酸溶液的pH調(diào)節(jié)至3.0,然后用煮沸的去離子水配置的0.100 mol/L NaOH溶液滴定至pH=8.0,計(jì)算羧基含量,繼續(xù)滴定至pH=10.0,計(jì)算酚羥基含量;等電點(diǎn)依據(jù)FERRO-GARCíA等[24]的方法測(cè)定,將胡敏酸和風(fēng)化煤分別加入到50 mL初始pH(pH0)為2.0、3.0、4.0、5.0、6.0的0.01 mol/L KCl溶液中,并置于(25±1) ℃恒溫振蕩器中振蕩24 h后測(cè)定溶液pH,記為pHE,根據(jù)pH0和△pH(△pH=pHE-pH0)作圖,在△pH=0時(shí)的pH值即是等電點(diǎn);重金屬元素含量測(cè)定采用3酸(HNO3-HF-HClO4)消解[25],電感耦合等離子體質(zhì)譜法(inductively coupled plasma mass spectrometry, ICP-MS)測(cè)定。
1.2吸附試驗(yàn)
1.2.1吸附動(dòng)力學(xué)試驗(yàn)
稱取0.549 4 g四水硝酸鎘[Cd(NO3)2·4H2O,分析純]用超純水溶解定容至100 mL,溶液Cd2+質(zhì)量濃度為2 g/L,按需稀釋后供吸附試驗(yàn)用。
向50 mL離心管中添加40 mg(精確至0.000 1 g)胡敏酸,再加入40 mL初始pH=5.0、以1 mmol/L NaNO3為背景電解質(zhì)的Cd(NO3)2溶液(Cd2+質(zhì)量濃度為80 mg/L)。其中,1 mmol/L NaNO3常被用來(lái)模擬濕潤(rùn)地區(qū)酸性土壤溶液中的離子強(qiáng)度。吸附試驗(yàn)于(25±1) ℃的恒溫振蕩器中進(jìn)行,振蕩時(shí)間分別為0.25、0.5、1、1.5、2、4、8、12、24 h,每個(gè)時(shí)間點(diǎn)2個(gè)平行樣。振蕩結(jié)束后測(cè)定pH,過(guò)0.45 μm聚醚砜濾膜,于4 ℃條件下保存溶液。
1.2.2pH對(duì)吸附的影響
稱取30 mg(精確至0.000 1 g)胡敏酸于50 mL離心管中,分別加入40 mL以1 mmol/L NaNO3為背景電解質(zhì)、不同pH(2.0、3.0、4.0、5.0、6.0、7.0)的Cd(NO3)2溶液(Cd2+的初始質(zhì)量濃度為80 mg/L),每個(gè)pH點(diǎn)2個(gè)平行樣。吸附試驗(yàn)于(25±1) ℃的恒溫振蕩器中進(jìn)行,每隔8 h用0.2 mol/L HCl或NaOH調(diào)節(jié)一次溶液pH,保持pH恒定。48 h后過(guò)0.45 μm聚醚砜濾膜,于4 ℃條件下保存溶液
1.2.3等溫吸附試驗(yàn)
稱取30 mg(精確至0.000 1 g)胡敏酸于50 mL離心管中,分別加入40 mL pH=5.0、以1 mmol/L NaNO3為背景電解質(zhì)的不同初始質(zhì)量濃度的Cd(NO3)2溶液(Cd2+的初始質(zhì)量濃度分別為0、10、20、40、60、80、100 mg/L),每個(gè)質(zhì)量濃度梯度設(shè)2個(gè)平行樣。吸附試驗(yàn)于(25±1) ℃的恒溫振蕩器中進(jìn)行。在吸附過(guò)程中每隔8 h用0.2 mol/L HCl或NaOH調(diào)節(jié)一次溶液pH,保持pH=5.0。在48 h后過(guò)0.45 μm聚醚砜濾膜,于4 ℃條件下保存溶液。
1.2.4單點(diǎn)吸附對(duì)比試驗(yàn)
稱取30 mg(精確至0.000 1 g)風(fēng)化煤提取的胡敏酸和IHSS標(biāo)樣1R106H于50 mL離心管中,分別加入40 mL以1 mmol/L NaNO3為背景電解質(zhì)、初始pH=5.0的Cd(NO3)2溶液(Cd2+的初始質(zhì)量濃度為80 mg/L),每個(gè)吸附材料設(shè)2個(gè)平行樣。吸附試驗(yàn)于(25±1) ℃的恒溫振蕩器中進(jìn)行。在吸附過(guò)程中每隔8 h用0.2 mol/L HCl或NaOH調(diào)節(jié)一次溶液pH,保持胡敏酸和1R106H吸附溶液最終的pH相同(4.3)。48 h后過(guò)0.45 μm聚醚砜濾膜,于4 ℃條件下保存溶液。
溶液pH采用Mettler-Toledo pH計(jì)測(cè)定;Cd2+質(zhì)量濃度用原子吸收分光光度計(jì)(TAS-990,北京普析通用公司)測(cè)定(標(biāo)線質(zhì)量濃度范圍為0~1.5 mg/L)。根據(jù)吸附前后溶液中Cd2+質(zhì)量濃度的變化計(jì)算胡敏酸對(duì)Cd2+的吸附量,用平衡質(zhì)量濃度和吸附量繪制吸附等溫線。數(shù)據(jù)處理、繪圖采用軟件Origin 8.0。
2.1供試材料的理化性質(zhì)
2.1.1元素組成和灰分含量分析
對(duì)流坑村文物建筑、古街巷空間重新劃定保護(hù)區(qū)和保護(hù)點(diǎn),并區(qū)分保護(hù)層次,如核心保護(hù)區(qū):參照文化遺產(chǎn)保護(hù)要求進(jìn)行保護(hù),修繕重要古建筑群,明確“七橫一豎”軸線關(guān)系,營(yíng)造富有文化特色的街巷空間;建設(shè)控制區(qū):對(duì)次要古建筑的保護(hù),在保護(hù)傳統(tǒng)面貌不變的基礎(chǔ)上,可根據(jù)需要置換內(nèi)部功能;環(huán)境協(xié)調(diào)區(qū):屬于外圍區(qū)域,也是古建筑群的緩沖區(qū),可根據(jù)周邊建筑風(fēng)格改建或新建相關(guān)設(shè)施,并充分保護(hù)原生環(huán)境[4]。
風(fēng)化煤和胡敏酸的C、H、N、S和灰分含量如表1所示。作為對(duì)比,表1中列出了國(guó)際腐殖質(zhì)協(xié)會(huì)從新西蘭濕潤(rùn)地帶牧區(qū)土壤——典型不飽和濕潤(rùn)始成土(typic Dystrudept)中提取的腐殖質(zhì)標(biāo)樣1R106H的理化性質(zhì)。胡敏酸的C含量比風(fēng)化煤高,這和胡敏酸的灰分含量較低有關(guān)。新疆風(fēng)化煤提取的胡敏酸的C含量比1R106H胡敏酸高,而N含量很低,反映了不同成因?qū)羲峤M分的影響。2種胡敏酸都有較高的羧基(—COOH)含量,表明它們即使在酸性條件下也對(duì)金屬陽(yáng)離子有較強(qiáng)的吸附能力。
表1 風(fēng)化煤和胡敏酸的理化性質(zhì)
元素和灰分含量以干物質(zhì)為基礎(chǔ)計(jì)算。a)無(wú)灰基干物質(zhì)為基礎(chǔ)計(jì)量;b)無(wú)灰基樣品測(cè)定(數(shù)據(jù)來(lái)自IHSS).
Leo: Leonardite; HA: Leonardite-derived humic acid; IHSS: International Humic Substances Society. Elemental and ash compositions were calculated on dry matter mass;a)On water- and ash-free basis;b)Ash-free basis (data from IHSS).
經(jīng)3酸(HNO3-HF-HClO4)消解,ICP-MS測(cè)定分析得到新疆風(fēng)化煤含Cd、Pb、Cu、Zn的量分別為0.15、2.81、6.51、69.56 mg/kg,風(fēng)化煤提取的胡敏酸含Cd、Pb、Cu、Zn的量分別為0.15、3.23、6.09、19.57 mg/kg,重金屬含量較低,均符合HJ/T332—2006《食用農(nóng)產(chǎn)品產(chǎn)地環(huán)境質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)》的要求,可以作為土壤調(diào)理劑和修復(fù)劑使用。
2.1.2胡敏酸表面形態(tài)分析
掃描電鏡照片(圖1)顯示,經(jīng)過(guò)40 ℃烘干磨細(xì)的胡敏酸主要呈現(xiàn)2類表面形態(tài):一類是表面較為光滑的結(jié)塊,另一類是表面粗糙的多孔團(tuán)聚體。胡敏酸的脫水方法可能會(huì)影響到表面形態(tài),如WILLEY等[26]報(bào)道凍干的胡敏酸不易結(jié)塊、表面粗糙多孔;因此,不同脫水方法得到的胡敏酸是否會(huì)影響其對(duì)重金屬離子的吸附動(dòng)力學(xué)值得今后研究。
圖1 胡敏酸的掃描電鏡圖Fig.1 Scanning electron microscopic image of the humic acid derived from leonardite
2.1.3傅里葉變換紅外光譜分析
胡敏酸中對(duì)金屬陽(yáng)離子起吸附作用的主要是羧基、羥基等酸性官能團(tuán)。SCHNITZER等[27]報(bào)道,胡敏酸羧基和羥基官能團(tuán)的質(zhì)量摩爾濃度范圍分別為2.40~5.40和1.50~4.40 mol/kg。從圖2可以看出,風(fēng)化煤與胡敏酸的紅外光譜圖相似;參考MACCARTHY等[28]對(duì)胡敏酸類物質(zhì)紅外光譜圖的解析,本研究供試的胡敏酸和風(fēng)化煤都含有羥基(3 300~3 500 cm-1)、羧基或羰基(1 706 cm-1)。
2.1.4等電點(diǎn)分析
如圖3所示,初始pH(pH0)對(duì)△pH具有明顯影響,風(fēng)化煤的等電點(diǎn)(4.3)明顯大于胡敏酸(2.7)。風(fēng)化煤提取的胡敏酸結(jié)合點(diǎn)被氫離子結(jié)合[21],灰分(礦物質(zhì))含量較低,從而引起胡敏酸的等電點(diǎn)明顯小于風(fēng)化煤:表明其官能團(tuán)以酸性官能團(tuán)為主。
HA: Humic acid; Leo: Leonardite.圖2 胡敏酸和風(fēng)化煤的紅外光譜圖Fig.2 Fourier transform infrared spectrograms of leonardite and its derived humic acid
2.2胡敏酸對(duì)Cd2+的吸附分析
2.2.1吸附動(dòng)力學(xué)試驗(yàn)
反應(yīng)時(shí)間對(duì)胡敏酸吸附Cd2+具有明顯影響,胡敏酸對(duì)Cd2+的吸附量隨著反應(yīng)時(shí)間的延長(zhǎng)而增加,特別是在0~1.5 h之間吸附量明顯增加,之后吸附量增加幅度減小直至吸附平衡(圖4)。在吸附過(guò)程中起作用的主要是羧基官能團(tuán),因?yàn)轸然?、羥基的酸度系數(shù)(pKa)分別為pH=3.0和pH=9.0[23],在酸性條件下羥基基本不解離。吸附試驗(yàn)初始,溶液的pH隨著反應(yīng)時(shí)間增長(zhǎng)快速降低,之后降低幅度減小直至趨于穩(wěn)定。結(jié)合吸附量和溶液pH隨時(shí)間的變化,胡敏酸吸附Cd2+達(dá)到平衡所需時(shí)間為8 h。
HA: Humic acid; Leo: Leonardite.圖3 風(fēng)化煤與胡敏酸的等電點(diǎn)Fig.3 Isoelectric points of leonardite and its derived humic acid
2.2.2溶液pH對(duì)胡敏酸吸附Cd2+的性能影響
溶液pH是控制吸附過(guò)程的關(guān)鍵因子之一[22]。如圖5所示,在pH<5.0時(shí),胡敏酸對(duì)Cd2+的吸附量受pH影響顯著,隨著pH升高,胡敏酸對(duì)Cd2+的吸附量逐漸上升,當(dāng)pH=6.0時(shí)達(dá)到最大。通常,溶液pH升高有利于胡敏酸對(duì)陽(yáng)離子的吸附[29]。當(dāng)pH>6.0時(shí),胡敏酸對(duì)Cd2+的吸附量降低。在低pH時(shí),溶液中的H+、Cd2+與COO-競(jìng)爭(zhēng)結(jié)合;隨著溶液pH的升高,H+競(jìng)爭(zhēng)減少,Cd2+的吸附增多。當(dāng)pH=7.0時(shí)部分胡敏酸已經(jīng)溶解,導(dǎo)致固相胡敏酸質(zhì)量減少,從而降低了對(duì)Cd2+的吸附量。
圖4 反應(yīng)時(shí)間對(duì)Cd2+吸附量和溶液pH的影響Fig.4 Effects of reaction time on Cd2+ adsorption and solution pH
圖5 pH對(duì)胡敏酸吸附Cd2+的影響Fig.5 Effect of pH on Cd2+ adsorption by leonardite-derived humic acid
2.2.3吸附等溫線
目標(biāo)重金屬濃度是影響吸附反應(yīng)的另一重要控制因子[30]。本試驗(yàn)通過(guò)在恒定pH=5.0條件下胡敏酸對(duì)Cd2+的吸附,探討胡敏酸對(duì)Cd2+的吸附能力。圖6表明,當(dāng)Cd2+的初始質(zhì)量濃度小于60 mg/L(平衡質(zhì)量濃度<2 mg/L)時(shí),胡敏酸對(duì)Cd2+的吸附量隨著Cd2+質(zhì)量濃度的增加快速增大;之后,胡敏酸對(duì)Cd2+的吸附量小幅度增加至趨于穩(wěn)定。由于羧基的酸度系數(shù)(pKa)=3,當(dāng)pH=5.0時(shí),胡敏酸中[COO-]/[COOH]的比值為100∶1,大部分羧基官能團(tuán)可用于Cd2+的吸附。當(dāng)Cd2+質(zhì)量濃度低時(shí),陽(yáng)離子結(jié)合點(diǎn)充足,能夠有效吸附Cd2+;隨著Cd2+質(zhì)量濃度增加,羧基被陽(yáng)離子飽和,達(dá)到飽和吸附量[31]。
圖6 胡敏酸對(duì)Cd2+的吸附等溫線Fig.6 Isotherm of Cd2+ adsorption by leonardite-derived humic acid
對(duì)試驗(yàn)數(shù)據(jù)采用Langmuir和Freundlich吸附模型進(jìn)行擬合分析。Langmuir模型是表層單分子吸附,吸附過(guò)程在吸附材料表面進(jìn)行且表面吸附能量均勻;Freundlich模型是一個(gè)經(jīng)驗(yàn)?zāi)P?,描述了吸附體系是復(fù)雜的,吸附過(guò)程不僅僅發(fā)生單分子層吸附。
Langmuir方程:
Q=Qm·KL·Ce/(1+KL·Ce).
(1)
Freundlich方程:
Q=KF·Ce1/n.
(2)
其中:Q為吸附平衡時(shí)的吸附量,mg/g;Qm為用Langmuir方程計(jì)算吸附飽和時(shí)的最大吸附量,mg/g;Ce為吸附平衡時(shí)金屬離子質(zhì)量濃度,mg/L;KL為L(zhǎng)angmuir常數(shù),L/mg,表征吸附能力;KF和1/n是Freundlich常數(shù),分別表征親和系數(shù)和吸附強(qiáng)度。擬合結(jié)果表明,Langmuir模型能更好地描述胡敏酸對(duì)Cd2+的吸附行為(表2),胡敏酸對(duì)Cd2+的吸附更符合單分子層吸附。經(jīng)過(guò)Langmuir方程計(jì)算,在本試驗(yàn)條件下胡敏酸對(duì)Cd2+的飽和吸附量達(dá)137.37 mg/g。與文獻(xiàn)報(bào)道的飽和吸附量(表3)進(jìn)行比較發(fā)現(xiàn),從新疆風(fēng)化煤提取的胡敏酸對(duì)Cd2+的飽和吸附量遠(yuǎn)高于表3中其他研究者所用的從煤炭和土壤提取的胡敏酸對(duì)Cd2+的飽和吸附量。從新疆風(fēng)化煤提取的胡敏酸對(duì)Cd2+有較高的吸附量,可能與其較高的官能團(tuán)含量有關(guān),其羧基質(zhì)量摩爾濃度高達(dá)5.81 mol/kg(表1)。在pH=5.0時(shí)的飽和吸附量(137.37 mg/g)只相當(dāng)于占用了胡敏酸中71%的羧基。從新疆風(fēng)化煤提取的胡敏酸對(duì)Cd2+的飽和吸附量也高于赤泥[32]、杉葉[33]、劣質(zhì)煤[34]對(duì)Cd2+的吸附量。
表2 胡敏酸吸附Cd2+的Langmuir和Freundlich模型擬合參數(shù)
Qm:最大吸附量。Qm: Maximum adsorption capacity.
表3 胡敏酸對(duì)Cd2+的吸附效果對(duì)比
Qm:最大吸附量。Qm: Maximum adsorption capacity; HA: Humic acid; Leo: Leonardite.
2.2.4風(fēng)化煤提取的胡敏酸與IHSS標(biāo)樣吸附量的比較
在pH=4.3、Cd2+初始質(zhì)量濃度為80 mg/L的相同試驗(yàn)條件下,風(fēng)化煤提取的胡敏酸和IHSS標(biāo)樣1R106H對(duì)鎘的吸附量分別是86.97和73.49 mg/g。雖然前者的COOH含量略小(表1),但其吸附量反而較大,這可能是因?yàn)?R106H標(biāo)樣在吸附試驗(yàn)過(guò)程中已經(jīng)有少量溶解,部分與羧基絡(luò)合的Cd2+存在于溶液中,導(dǎo)致測(cè)得的吸附量較低。這從另一個(gè)方面顯示出新疆風(fēng)化煤提取的胡敏酸的一個(gè)實(shí)用優(yōu)點(diǎn),即在酸性條件下比較穩(wěn)定,在pH<6.0時(shí)基本不溶解,用于酸性土壤不太會(huì)造成Cd2+和胡敏酸形成可溶態(tài)復(fù)合物隨水遷移。這也正是農(nóng)田重金屬鈍化/穩(wěn)定化技術(shù)的基礎(chǔ)。
風(fēng)化煤俗稱露頭煤,是接近于地表的煙煤、褐煤、無(wú)煙煤等經(jīng)過(guò)空氣、陽(yáng)光、雨雪等自然條件風(fēng)化作用形成的產(chǎn)物。它含氧量高、熱值低,不適合作為燃料使用。但新疆昌吉產(chǎn)的風(fēng)化煤腐殖質(zhì)豐富,是提取胡敏酸的優(yōu)質(zhì)原料,且儲(chǔ)量大、價(jià)格低;提取的胡敏酸含很高的羧基(5.81 mol/kg),對(duì)Cd2+的吸附量隨Cd2+質(zhì)量濃度和pH升高而增加,在pH=6.0時(shí)最高。在酸性(pH=5.0)及1 mmol/L NaNO3共存(模擬濕潤(rùn)地區(qū)酸性土壤溶液的離子強(qiáng)度)條件下對(duì)Cd2+的飽和吸附量仍高達(dá)137.37 mg/g。這對(duì)于開(kāi)發(fā)該風(fēng)化煤在酸性重金屬污染土壤修復(fù)中的應(yīng)用至關(guān)重要。
目前,我國(guó)南方農(nóng)田重金屬污染嚴(yán)重,帶來(lái)食品安全和人體健康方面的擔(dān)憂[10-11]。重金屬污染土壤的修復(fù)方法有很多,鈍化/穩(wěn)定化技術(shù)具備操作簡(jiǎn)單、不破壞土壤結(jié)構(gòu)、不影響農(nóng)業(yè)生產(chǎn)等優(yōu)點(diǎn),有望成為修復(fù)重金屬污染農(nóng)田的重要技術(shù)之一。在鈍化技術(shù)中,修復(fù)材料的選擇是難點(diǎn)之一。胡敏酸具備環(huán)境友好、價(jià)格適中、在土壤中保留時(shí)間較長(zhǎng)、吸附量大等優(yōu)點(diǎn),倍受重視。從新疆風(fēng)化煤提取的胡敏酸對(duì)Cd2+具有很強(qiáng)的吸附能力,且風(fēng)化煤本身(Cd 、Pb、Cu 、Zn 分別為0.15、2.81、6.51、69.56 mg/kg)及提取的胡敏酸(Cd 、Pb、Cu、Zn分別為0.15、3.23、6.09、19.57 mg/kg)重金屬含量都不高,符合現(xiàn)有土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)。因此,它們有望在修復(fù)重金屬污染土壤方面得到實(shí)際應(yīng)用。
我國(guó)南方農(nóng)田以酸性土壤(pH=4.5~6.0)為主,普遍具有土壤養(yǎng)分有效性低、礦質(zhì)養(yǎng)分流失嚴(yán)重的問(wèn)題,重金屬在酸性土壤中活性高,易被作物吸收,添加胡敏酸可提供離子交換和絡(luò)合作用以降低土壤溶液中的Cd2+濃度[37],減少作物吸收。當(dāng)土壤pH接近于中性時(shí),少量胡敏酸會(huì)溶解,可帶著Cd2+隨滲濾液向下移動(dòng)。但酸性土壤底土通常都有鐵-鋁-錳(水合)氧化物,易與胡敏酸和Cd2+形成穩(wěn)定的礦物-有機(jī)質(zhì)-Cd復(fù)合體[38],從而被截留在底土。因此,胡敏酸既有鈍化表土的Cd2+、減少作物吸收的功效,又有帶著表土中的Cd2+向下移動(dòng)、固定在底土的潛能,在治理酸性土壤重金屬污染方面具有一定潛力,值得進(jìn)行小規(guī)模田間試驗(yàn)。此外,胡敏酸還能改善土壤物理、化學(xué)及生物學(xué)性質(zhì),不會(huì)像施用石灰那樣造成有機(jī)質(zhì)分解和土壤板結(jié),且胡敏酸的田間施用過(guò)程比較安全,不會(huì)灼傷操作人員。
從新疆風(fēng)化煤中提取的胡敏酸含量高達(dá)90%(含7.87%灰分)。與風(fēng)化煤相比,提取的胡敏酸的C、—COOH含量增大,灰分含量明顯降低。風(fēng)化煤和胡敏酸的等電點(diǎn)分別是4.3和2.7。胡敏酸對(duì)Cd2+的吸附在8 h時(shí)達(dá)到平衡;pH明顯影響胡敏酸對(duì)Cd2+的吸附,當(dāng)pH=6.0時(shí)胡敏酸對(duì)Cd2+的吸附量最大;在pH=5.0、Cd2+的初始質(zhì)量濃度為0~100 mg/L時(shí),胡敏酸對(duì)Cd2+的飽和吸附量達(dá)137.37 mg/g,比已有的相關(guān)文獻(xiàn)報(bào)道的吸附量高,這和本文所用胡敏酸羧基含量較高有關(guān)。在相同試驗(yàn)條件下,Cd2+初始質(zhì)量濃度為80 mg/L時(shí),胡敏酸對(duì)Cd2+的吸附能力(86.97 mg/g)高于IHSS標(biāo)樣1R106H(73.49 mg/g)。由于風(fēng)化煤來(lái)源廣、儲(chǔ)量大、價(jià)格低,制備獲得的胡敏酸產(chǎn)量高、吸附能力強(qiáng)、環(huán)境友好,胡敏酸有望作為吸附劑用于含重金屬?gòu)U水處理,作為鈍化劑和土壤調(diào)理劑用于重金屬污染土壤的修復(fù)。
[1]環(huán)境保護(hù)部和國(guó)土資源部.全國(guó)土壤污染狀況調(diào)查公報(bào)(2014).中國(guó)環(huán)保產(chǎn)業(yè),2014(5):10-11.
The Ministry of Environmental Protection and the Ministry of Land and Resources. Bulletin on national survey of soil contamination (2014).ChinaEnvironmentalProtectionIndustry, 2014(5):10-11. (in Chinese)
[2]RAO M M, RAMESH A, RAO G P C,etal. Removal of copper and cadmium from the aqueous solutions by activated carbon derived fromCeibapentandrahulls.JournalofHazardousMaterials, 2006,129(1/2/3):123-129.
[3]吳興讓,尹平河,趙玲.珠江廣州段微表層和次表層水中重金屬分布與風(fēng)險(xiǎn)的初步評(píng)價(jià).暨南大學(xué)學(xué)報(bào)(自然科學(xué)與醫(yī)學(xué)版),2010,31(1):84-88.
WU X R, YIN P H, ZHAO L. Health risk assessment of heavy metals in the water of surface and subsurface microlayer from Guangzhou section of Pearl River.JournalofJinanUniversity(NaturalScience&MedicineEdition), 2010,31(1):84-88. (in Chinese with English abstract)
[4]SONG Y X, JI J F, MAO C P,etal. Heavy metal contamination in suspended solids of Changjiang River: Environmental implication.Geoderma, 2010,159(3):296-295.
[5]YU T, ZHANG Y, HU X N,etal. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu Lake, China.EcotoxicologyandEnvironmentalSafety, 2012,81:55-64.
[6]賀勇,黃河,嚴(yán)家平.淮河中下游底泥中的重金屬與有機(jī)質(zhì)研究.安徽建筑工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版),2006,13(6):79-82.
HE Y, HUANG H, YAN J P. Study on the heavy metals and organic matter in sediments from the middle and lower reaches of Huaihe River.JournalofAnhuiInstituteofArchitecture&Industry(NaturalScience), 2006,13(6):79-82. (in Chinese with English abstract)
[7]RUI Y K, QU L C, KONG X B. Effects of soil use along Yellow River basin on the pollution of soil by heavy metals.SpectroscopyandSpectralAnalysis, 2008,28(4):934-936.
[8]張玲,王剛,葉紅梅,等.2010年海河流域沉積物重金屬潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià).現(xiàn)代農(nóng)業(yè)科技,2013(4):233-234.
ZHANG L, WANG G, YE H M,etal. Assessment of potential ecological risk of heavy metals in sediments from Haihe River at 2010.ModernAgriculturalScienceandTechnology, 2013(4):233-234. (in Chinese)
[9]蘇丹,王彤,劉蘭嵐,等.遼河流域工業(yè)廢水污染物排放的時(shí)空變化規(guī)律研究.生態(tài)環(huán)境學(xué)報(bào),2011,19(12):2953-2959.
SU D, WANG T, LIU L L,etal. Research on the spatio-temporal variation of pollutant discharged from industrial wastewater in the Liaohe River Basin.EcologyandEnvironmentalSciences, 2011,19(12):2953-2959. (in Chinese with English abstract)
[10]DU Y, HU X F, WU X H,etal. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan Province, Central South China.EnvironmentalMonitoringandAssessment, 2013,185(12):9843-9856.
[11]HU J L, WU F Y, WU S C,etal. Phytoavailability and phytovariety codetermine the bioaccumulation risk of heavy metal from soils, focusing on Cd-contaminated vegetable farms around the Pearl River Delta, China.EcotoxicologyandEnvironmentalSafety, 2013,91:18-24.
[12]YUAN G. Nanomaterials to the rescue.Nanotoday, 2008,3(1/2):61.
[13]ZHANG X K, WANG H L, He L Z,etal. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.EnvironmentalScienceandPollutionResearch, 2013,20(12):8472-8483.
[14]AHMAD M, RAJAPAKSHA A U, LIM J E,etal. Biochar as a sorbent for contaminant management in soil and water: A review.Chemosphere, 2014,99:19-33.
[15]BEESLEY L, MORENO-JIMéNEZ E, GOMEZ-EYLES J L,etal. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils.EnvironmentalPollution, 2011,159(12):3269-3282.
[16]YUAN G, THENG B K G. Clay-organic interactions in soil environments//HUANG P M, SUMNER M, LI Y C.HandbookofSoilScience:ResourceManagementandEnvironmentalImpacts. Boca Raton, USA: CRC Press, Taylor & Francis Group, 2011:2-1-2-20.
[17]謝曉梅,翁棣.有機(jī)酸對(duì)紅壤等溫吸附鎘的影響.浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2003,29(5):485-489.
XIE X M, WENG D. Effects of organic acids on adsorption isotherms of cadmium in red soils.JournalofZhejiangUniversity(AgricultureandLifeSciences), 2003,29(5):485-489. (in Chinese with English abstract)
[18]BRADL H B. Adsorption of heavy metal ions on soils and soils constituents.JournalofColloidandInterfaceScience, 2004,277(1):1-18.
[19]YANG K, MIAO G F, WU W H,etal. Sorption of Cu2+on humic acids sequentially extracted from a sediment.Chemosphere, 2015,138:657-663.
[20]CONTE P, AGRETTO A, SPACCINI R,etal. Soil remediation: Humic acids as natural surfactants in the washings of highly contaminated soils.EnvironmentalPollution, 2005,135(3):515-522.
[23]TAN K H.HumicMatterinSoilandtheEnvironment:PrinciplesandControversies. Boca Raton, USA: CRC Press, 2014:476.
[25]陳皓,何瑤,陳玲,等.土壤重金屬監(jiān)測(cè)過(guò)程及其質(zhì)量控制.中國(guó)環(huán)境監(jiān)測(cè),2010,26(5):40-43.
CHEN H, HE Y, CHEN L,etal. The monitoring process of heavy metals in soils and its quality control measures.EnvironmentalMonitoringinChina, 2010,26(5):40-43. (in Chinese with English abstract)
[26]WILLEY R J, RADWAN A, VOZZELLA M E,etal. Humic acid gel drying with supercritical carbon dioxide.JournalofNon-CrystallineSolids, 1998,225:30-35.
[27]SCHNITZER M, KODAMA H. Reactions of minerals with soil humic substances//DIXON J B, WEED S B, KITTRICK J A,etal.MineralsinSoilEnvironments. Madison, USA: Soil Science Society of America Inc., 1977:741-770.
[28]MACCARTHY P, RICE J A. Spectroscopic methods (other than NMR) for determining functionality in humic substances//AIKEN G R, MCKNIGHT D M, WERSHAW R L,etal.HumicSubstancesinSoil,SedimentandWater.Geochemistry,Isolation,andCharacterization. New York, USA: John Wiley & Sons, 1985:527-559.
[30]LIU A, GONZALEZ R D. Modeling adsorption of copper(Ⅱ), cadmium(Ⅱ) and lead(Ⅱ) on purified humic acid.Langmuir, 2000,16(8):3902-3909.
[31]IGBERASE E, OSIFO P. Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution.JournalofIndustrialandEngineeringChemistry, 2015,26:340-347.
[32]APAK R, Gü?Lü K, TURGUT M H. Modeling of copper(Ⅱ), cadmium(Ⅱ), and lead(Ⅱ) adsorption on red mud.JournalofColloidandInterfaceScience, 1998,203(1):122-130.
[33]SERENCAM H, GUNDONGDU A, UYGUR Y,etal. Removal of cadmium from aqueous solution by Nordmann fir (Abiesnordmanniana(Stev.) Spach. Subsp.nordmanniana) leaves.BioresourceTechnology, 2008,99(6):1992-2000.
[35]李光林,魏世強(qiáng),青長(zhǎng)樂(lè).鎘在胡敏酸上的吸附動(dòng)力學(xué)和熱力學(xué)研究.土壤學(xué)報(bào),2004,41(1):74-80.
LI G L, WEI S Q, QING C L. Kinetics and thermodynamics of cadmium adsorption on humic acid.ActaPedologicaSinica, 2004, 41(1):74-80. (in Chinese with English abstract)
[36]SHAKER M A, ALBISHRI H M. Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid.Chemosphere, 2014,111:587-595.
[37]王晶,張旭東,李彬,等.腐殖酸對(duì)土壤中Cd形態(tài)的影響及利用研究.土壤通報(bào),2002,33(3):185-187.
WANG J, ZHANG X D, LI B,etal. The effect of humid acid on the cadmium transformation and the mechanism.ChineseJournalofSoilScience, 2002,33(3):185-187. (in Chinese with English abstract)
[38]YUAN G, PERCIVAL H J, THENG B K G,etal. Sorption of copper and cadmium by allophane-humic complexes//VIOLANTE A, HUANG P M, BOLLAG J M,etal.SoilMineral-OrganicMatter-MicroorganismInteractionsandEcosystemHealth. Amsterdam, Netherlands: Elsevier, 2002:37-47.
Humic acid from leonardite for cadmium adsorption and potential applications.JournalofZhejiangUniversity(Agric. &LifeSci.), 2016,42(4):460-468
MENG Fande1,2, YUAN Guodong1*, WEI Jing1, BI Dongxue1,2, WANG Hailong3,4, LIU Xingyuan4
(1.KeyLaboratoryofCoastalEnvironmentalProcessesandEcologicalRemediation/YantaiInstituteofCoastalZoneResearch,ChineseAcademyofSciences;ShandongProvincialKeyLaboratoryofCoastalEnvironmentalProcesses,Yantai264003,Shandong,China; 2.UniversityofChineseAcademyofSciences,Beijing100049,China; 3.SchoolofEnvironmentalandResourceSciences,ZhejiangA&FUniversity,Lin’an311300,Zhejiang,China; 4.GuangdongDazhongAgricultureScienceCo.,Ltd.,Dongguan523169,Guangdong,China)
cadmium; humic acid; adsorption; leonardite; contaminated soil
廣東省東莞市引進(jìn)創(chuàng)新科研團(tuán)隊(duì)資助項(xiàng)目(2014607101003).
Corresponding author):袁國(guó)棟(http://orcid.org/0000-0002-2008-3099),E-mail:gdyuan@yic.ac.cn
聯(lián)系方式:孟凡德(http://orcid.org/0000-0002-6985-0877),E-mail:fdmeng@yic.ac.cn
2016-01-22;接受日期(Accepted):2016-05-16;網(wǎng)絡(luò)出版日期(Published online):2016-07-18
X 52; X 53
A
URL:http://www.cnki.net/kcms/detail/33.1247.S.20160718.2024.006.html